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Abstract— In this paper, we propose a per-tone frequency-
domain equalization approach for OFDM over doubly-selective
channels. We consider the most general case, where the doubly-
selective channel delay spread is larger than the cyclic prefix
(CP), which results into inter-block interference (IBI). IBI in
conjunction with the Doppler effect destroys the orthogonality
between subcarriers and hence, results into severe intercarrier
interference (ICI). In this paper, we propose a novel per-tone
frequency-domain equalizer (PTFEQ) that is obtained through
transferring a time-varying time-domain equalizer (TV-TEQ) to
the frequency-domain. The purpose of the TV-TEQ is to restore
orthogonality between subcarriers and eliminate ICI. We use the
mean-square error criterion to design the PTFEQ. An efficient
implementation of the proposed PTFEQ is also discussed. Finally,
we show some simulation results of the proposed equalization
technique.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
attracted a lot of attention, as it provides a simple means
to deal with frequency-selective channels. However, if the
channel varies over an OFDM block, this destroys the orthog-
onality between the subcarriers, i.e. results into intercarrier
interference (ICI). In addition, inter-block interference (IBI)
arises when the channel delay spread is larger than the
cyclic prefix (CP). IBI in conjunction with the Doppler effect
results into severe ICI. In this paper, we focus on a per-
tone frequency-domain IBI/ICI mitigation technique. We first
apply a time-varying (TV) finite impulse response (FIR) time-
domain equalizer (TEQ). The purpose of the TEQ is to convert
the doubly-selective channel into a purely frequency-selective
channel whose delay spread fits within the CP. Our per-
tone frequency-domain equalizer (PTFEQ) is then obtained
by transferring the TEQ operation to the frequency-domain.

Different approaches for reducing ICI in OFDM over
doubly-selective channels have been proposed, including
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frequency-domain equalization and/or time-domain window-
ing. In [1], [2] the authors propose matched-filter, least-
squares (LS) and minimum mean-square error (MMSE) re-
ceivers incorporating all subcarriers. Receivers considering
the dominant adjacent subcarriers have been presented in
[3]. For multiple-input multiple-output (MIMO) OFDM over
doubly-selective channels, a frequency-domain ICI mitigation
technique is proposed in [4]. A time-domain windowing
(linear pre-processing) approach to restrict ICI support in
conjunction with iterative MMSE estimation is presented in
[5]. ICI self-cancellation schemes are proposed in [6], [7].
There, redundancy is added to enable self-cancellation, which
implies a substantial reduction in bandwidth efficiency. To
avoid this rate loss, partial response encoding in conjunction
with maximum-likelihood sequence detection to mitigate ICI
in OFDM systems is studied in [8]. All of the above mentioned
works, assume the channel delay spread fits within the CP, and
hence, no IBI is present.

Previously, a time-invariant (TIV) FIR TEQ [9] is used to
shorten a purely frequency-selective channel when its delay
spread is larger than the CP. A per-tone equalizer is then
obtained by transferring the TEQ operation to the frequency-
domain [10]. In this paper, we assume the doubly-selective
channel to have a delay spread larger than the CP. A TV
FIR TEQ is applied to convert the doubly-selective channel
into a purely frequency-selective channel whose delay spread
fits within the CP. The proposed PTFEQ is then obtained
by transferring the TV FIR TEQ operation to the frequency-
domain.

This paper is organized as follows. In Section II, we
present the system model. In Section III, we discuss the basis
expansion model (BEM) channel. The proposed PTFEQ is
presented in Section IV. An efficient implementation of the
proposed PTFEQ is discussed in Section V. In Section VI,
we show through computer simulations the performance of
the proposed equalizer. Finally, our conclusions are drawn in
Section VII.

Notation: We use upper (lower) bold face letters to denote
matrices (column vectors). Superscripts ∗, T , and H represent
conjugate, transpose, and Hermitian, respectively. We denote
the Kronecker delta as δ[n] and E{·} denotes expectation. We
denote the N×N identity matrix as IN and the M×N all-zero
matrix as 0M×N . Finally, diag{x} denotes the diagonal matrix
with x on the diagonal, and diag{A0, . . . ,AM−1} denotes the
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block diagonal matrix with the submatrices A0, . . . ,AM−1

are on the diagonal.

II. SYSTEM MODEL

We assume a single-input multiple-output (SIMO) OFDM
system with Nr receive antennas. At the transmitter, the
conventional OFDM modulation is applied, i.e., the incoming
bit sequence is parsed into blocks of N frequency-domain
QAM symbols. Each block is then transformed into a time-
domain block using an N -point IFFT. A cyclic prefix (CP) of
length ν is inserted at the head of each block. The time-domain
blocks are then serially transmitted over a multipath fading
channel. The channel is assumed to be linear time-varying
(LTV). Focusing only on the baseband-equivalent description,
the received signal at the rth receive antenna, y(r)(t), is given
by:

y(r)(t) =
∞∑

n=−∞
x[n]g(r)(t; t − nT ) + η(r)(t),

where g(r)(t; τ) is the baseband-equivalent of the doubly-
selective channel from the transmitter to the rth receive
antenna, which constitutes the physical channel as well as the
transmit and receive filters, η(r)(t) is the baseband-equivalent
filtered additive noise at the rth receive antenna, and x[n] is
the discrete time-domain sequence transmitted at rate 1/T , the
symbol rate. Suppose Sk[i] is the QAM symbol transmitted on
the kth subcarrier of the ith OFDM block (k ∈ {0, . . . , N−1},
with N the total number of subcarriers in the OFDM block).
Then x[n] can be written as:

x[n] =
1√
N

N−1∑
k=0

Sk[i]ej2π(m−ν)k/N ,

where i = �n/(N + ν)� and m = n − i(N + ν). Note that
this description includes the transmission of a CP of length ν.

Sampling each receive antenna at the symbol rate 1/T , the
received sample sequence at the rth receive antenna, y(r)[n] =
y(r)(nT ), can be written as:

y(r)[n] =
∞∑

θ=−∞
g(r)[n; θ]x[n − θ] + η(r)[n], (1)

where η(r)[n] = η(r)(nT ) and g(r)[n; θ] = g(r)(nT ; θT ).

III. BEM CHANNEL

In this paper, we use the basis expansion model (BEM) [11],
[12] to approximate the discrete-time baseband-equivalent
doubly-selective channel. In this BEM, the doubly-selective
channel g(r)[n; ν] is modeled as an FIR filter where the
taps are expressed as a superposition of complex exponential
basis functions with frequencies on a discrete grid. To detect
the ith OFDM block, we model each channel g(r)[n; θ] for
n ∈ {i(N + ν) + ν + d−L′, . . . , (i + 1)(N + ν) + d− 1} as:

h(r)[n; θ] =
L∑

l=0

δ[θ − l]
Q/2∑

q=−Q/2

h
(r)
q,l [i]e

j2πqn/K , (2)

where L should be selected such that LT ≥ τmax, where τmax

is the maximum delay spread of all channels, and Q and K
should be selected such that Q/(KT ) ≥ 2fmax, with fmax

the maximum Doppler spread of all channels. Note that the
parameters d and L′ represent the delay and the order of the
equalizer that we will apply to this channel later on.

In this expansion model, L represents the delay-spread
(expressed in multiples of T , the delay resolution of the
model), and Q/2 represents the Doppler-spread (expressed in
multiples of 1/(KT ), the Doppler resolution of the model).
Note that the coefficients h

(r)
q,l [i] remain invariant over a period

of length (N + L′)T , and may change from block to block.
Substituting (2) in (1), the received sample sequence at the

rth receive antenna for n ∈ {i(N + ν) + ν + d−L′, . . . , (i +
1)(N + ν) + d − 1}, can be written as:

y(r)[n] =
L∑

l=0

Q/2∑
q=−Q/2

ej2πqn/Kh
(r)
q,l [i]x[n − l] + η(r)[n]. (3)

IV. EQUALIZATION OF OFDM

In this section, we propose a novel per-tone frequency-
domain equalizer (PTFEQ). We assume the most general case,
where the TV channel order is larger than the CP (L > ν).
We obtain the proposed PTFEQ through transferring a time-
domain equalizer (TEQ) to the frequency-domain. The purpose
of this TEQ filter is to shorten the channel in the delay spread
dimension as well as in the Doppler spread dimension. We
assume a TV FIR TEQ, i.e., we apply at the rth receive
antenna the TV FIR TEQ w(r)[n; θ] to convert the doubly-
selective channel of order L > ν and fmax �= 0 into a target
impulse response (TIR) that is purely frequency-selective with
order L ≤ ν and fmax = 0. Hence, subject to some decision
delay d, the output of the TV FIR TEQ at the rth receive
antenna after removing the CP, can be written as:

z(r)[n − d] =
∞∑

θ=−∞
w(r)[n; θ]y(r)[n − θ], (4)

for n ∈ {i(N + ν) + ν + d, . . . , (i + 1)(N + ν) + d − 1}.

Since we approximate the doubly-selective channel using the
BEM, it is convenient also to model the TV FIR TEQ using the
BEM. In other words, we design the TV FIR TEQ w(r)[n; θ]
to have L′ + 1 taps, where the time variation of each tap is
modeled by Q′ + 1 time-varying complex exponentials basis
functions. Hence, we can write the TV FIR TEQ w(r)[n; θ]
for n ∈ {i(N + ν) + ν + d, . . . , (i + 1)(N + ν) + d − 1} as:

w(r)[n; θ] =
L′∑

l′=0

δ[θ − l′]
Q′/2∑

q′=−Q′/2

w
(r)
q′,l′ [i]e

j2πq′n/K , (5)

Define Ŝk[i] as the estimate of the transmitted QAM symbol
on the kth subcarrier in the ith OFDM block. This estimate
is obtained by applying a 1-tap FEQ on the TEQ output after
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the FFT-demodulation:

Ŝk[i] =
Nr∑
r=1

Q′/2∑
q′=−Q′/2

F (k)Dq′ [i]Y(r)[i]w(r)
q′ [i]/dk[i] (6a)

=
Nr∑
r=1

Q′/2∑
q′=−Q′/2

F (k) Dq′ [i]Y(r)[i]D̂∗
q′︸ ︷︷ ︸

Ỹ
(r)
q′ [i]

D̂q′w(r)
q′ [i]/dk[i]︸ ︷︷ ︸

w̃
(r,k)
q′ [i]

(6b)

where F (k) is the (k + 1)st row of the FFT
matrix F , Dq′ [i] = diag{[ej2πq′(i(N+ν)+ν+d), . . . ,
ej2πq′((i+1)(N+ν)+d−1)/K ]T }, Y(r)[i] is an N × (L′ + 1)
Toeplitz matrix, with the first column [y(r)[i(N + ν) +
ν + d], . . . , y(r)[(i + 1)(N + ν) + d − 1]]T and first row
[y(r)[i(N + ν) + ν + d], . . . , y(r)[i(N + ν) + ν + d − L′]],
D̂q′ = diag{[1, . . . , ej2πq′L′/K ]T }, and dk[i] is the frequency
response of the TIR on the kth subcarrier in the ith OFDM
block (1/dk[i] represents the 1-tap FEQ). Note that the
right multiplication of Y(r)[i] with the diagonal matrix D̂q′

in (6b) is done here to restore the Toeplitz structure in
Y(r)

q′ [i] = Dq′Y(r)[i], which will simplify the analysis and
implementation as will be clear later. From (6b), we can
see that each subcarrier has its own (L′ + 1)-tap FEQ. This
allows us to optimize the equalizer coefficients w̃(r,k)

q′ [i] for
each subcarrier k separately, without taking into account the
specific relation between w̃(r,k)

q′ [i], w(r)
q′ [i], and dk[i].

Defining Ỹ(r)[i] =
[
Ỹ(r)

−Q′/2[i], . . . , Ỹ
(r)
Q′/2[i]

]
and

w̃(r,k)[i] =
[
w̃(r,k)T

−Q′/2[i], . . . , w̃
(r,k)T
Q′/2 [i]

]T

, (6b) reduces to:

Ŝk[i] =
Nr∑
r=1

F (k)Ỹ(r)[i]w̃(r,k)[i], (7)

Transferring the TEQ operation to the frequency-domain by
interchanging the TEQ with the FFT in (7), we obtain:

Ŝk[i] =
Nr∑
r=1

w̃(r,k)T [i]F(k)[i]y(r)[i], (8)

where F(k)[i] =
(
IQ′+1 ⊗ F̃ (k)

) [
D̃T

−Q′/2[i], . . . , D̃
T
Q′/2[i]

]T

,

with D̃q′ [i] = diag{[ej2πq′(i(N+ν)+ν+d−L′)/K ,

. . . , ej2πq′((i+1)(N+ν)+d−1)/K ]T }, F̃ (k)
is given by:

F̃ (k)
=




0 · · · 0 F (k)

... 0 F (k) 0

0 . .
.

. .
.

0
...

F (k) 0 · · · 0


 .

and y(r)[i] = [y(r)[i(N +ν)+ν+d−L′], . . . , y(r)[(i+1)(N +
ν) + d − 1]]T .

To implement (8), we require (Q′ + 1) sliding FFTs per
receive antenna. Each sliding FFT is applied to a modulated
version of the received sequence on that receive antenna.
The q′th sliding FFT on the rth receive antenna is shown in

Figure 1. To estimate the transmitted QAM symbol on the kth
subcarrier we then have to combine the outputs of all PTFEQs
corresponding to the kth subcarrier of all sliding FFTs on
all receive antennas. This results in a complexity of (Q′ +
1)(L′ + 1) multiply-add (MA) operations per receive antenna
per subcarrier, i.e., NrN(Q′ + 1)(L′ + 1) MA operations for
a block of N symbols.

Defining w̃(k)[i] = [w̃(1,k)T [i], . . . , w̃(Nr,k)T [i]]T and
y[i] = [y(1)T [i], . . . ,y(Nr)T [i]]T , (8) can be written as:

Ŝk[i] = w̃T
k [i]

(
INr

⊗ F(k)[i]
)
y[i]. (9)

At this point we may introduce a model for the received
sequence on the rth receive antenna y(r)[i] as:

y(r)[i] =
Q/2∑

q=−Q/2

D̃q[i]
[
O1,H(r)

q [i],O2

]
(I3 ⊗ P)(I3 ⊗ FH)

︸ ︷︷ ︸
G(r)[i]

×

s[i − 1]

s[i]
s[i + 1]




︸ ︷︷ ︸
s̃

+η(r)[i], (10)

where O1 = 0(N+L′)×(N+2ν+d−L−L′), O2 =
0(N+L′)×(N+ν−d), H(r)

q [i] is an (N + L′) × (N + L′ + L)
Toeplitz matrix with first column [h(r)

q,L[i],01×(N+L′−1)]T

and first row [h(r)
q,L[i], . . . , h(r)

q,0[i],01×(N+L′−L−1)], and P is
the CP insertion matrix given by:

P =
[
0ν×(N−ν) Iν

IN

]
.

To obtain the PTFEQ coefficients for the kth subcarrier, we
define the following mean-square error (MSE) cost function:

J = E
{∥∥∥Sk[i] − w̃(k)T [i]

(
INr

⊗ F(k)[i]
)
y[i]

∥∥∥2
}

Hence, the PTFEQ coefficients for the kth subcarrier are given
by:

w̃(k)
MMSE [i] = arg min

w̃(k)[i]
J (11)

The solution of (11) is obtained by solving ∂J /∂w̃(k)[i] = 0,
which reduces to:

w̃(k)T
MMSE [i] =

(
B[i]

(
G[i]GH [i] + Rη

)
BH [i]

)−1
B[i]G[i]e(k),

(12)

where G[i] = [G(1)T [i], . . . ,G(Nr)T [i]]T , B[i] =(
INr

⊗ F(k)[i]
)

and e(k) is the unit vector with 1 in
the position (N + k). Note that we assume white input
sequence (Rs̃ = σ2

sI).
In the next section, we show how we can further reduce the

complexity of the proposed PTFEQ by replacing the Q′ + 1
sliding FFTs by only a few sliding FFTs, the number of which
is entirely independent of Q′ but rather depends on the BEM
frequency resolution K. As will be clear later, the removed
sliding FFTs are compensated for by combining the outputs
of neighboring subcarriers on the remaining sliding FFTs.
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Fig. 1. Sliding FFT of the q′th phase shifted version of the received sequence y(r)[i]

V. EFFICIENT IMPLEMENTATION

In Section IV, we have shown that to implement the
proposed PTFEQ we basically require (Q′+1) sliding FFTs. In
this section, we show how we can further lower the complexity
of the proposed PTFEQ by exploiting the special structure of
Y(r)[i].

In general the BEM frequency resolution K is greater than
or equal to the FFT size N . In this paper, we will assume
that K is an integer multiple of the FFT size i.e., K = PN ,
where P is an integer greater than or equal to 1 (P ≥ 1). We
start by defining Q = {−Q′/2, . . . , Q′/2}, and Qp = {q ∈
Q | q mod P = p}. Based on these definitions, (6b) and (7)
can be written as:

Ŝk[i] =
Nr∑
r=1

P−1∑
p=0

∑
qp∈Qp

F (k−lp) Dp[i]Y(r)D̂p︸ ︷︷ ︸
Y

(r)
p [i]

D̂∗
pw

(r,k)
p,lp

[i]/dk[i]︸ ︷︷ ︸
w̄

(r,k)
p,lp

[i]

(13a)

=
Nr∑
r=1

P−1∑
p=0

∑
qp∈Qp

F (k−lp)Y(r)
p [i]w̄(r,k)

p,lp
[i], (13b)

where lp = qp−p
P , and w(r,k)

p,lp
[i] = w(r,k)

qp [i]. Note that (13b)
splits the Q′+1 different terms of (7) into P different groups,
with the pth group containing |Qp| terms, where |Qp| denotes
the cardinality of the set Qp for p = 0, . . . , P − 1. This
splitting will allow us to significantly reduce the complexity.
Transferring the TEQ operation to the frequency-domain, we
obtain:

Ŝk[i] =
Nr∑
r=1

P−1∑
p=0

∑
qp∈Qp

w̄(r,k)T
p,lp

[i]F̃ (k−lp)
D̃p[i]y(r)[i]︸ ︷︷ ︸

ỹ
(r)
p [i]

(14)

Defining w̄(r,k)
p [i] = [. . . , w̄(r,k)T

p,−1 [i], w̄(r,k)T
p,0 [i],

w̄(r,k)T
p,1 [i], . . . ]T , (14) can now be written as:

Ŝk[i] =
Nr∑
r=1

P−1∑
p=0

w̄(r,k)T
p [i]F̃(k)

p ỹ(r)
p [i] (15)

where F̃(k)
p = [. . . , F̃ (k−1)T

, F̃ (k)T
, F̃ (k+1)T

, . . . ]T . Let us

now define F̃(k) = diag
{
F̃(k)T

0 , . . . , F̃(k)T
P−1

}
, ỹ(r)T

p [i] =

[ỹ(r)T
p [i(N + ν) + d − L′], . . . , ỹ(r)T

p [(i + 1)(N + ν) +
d − 1]]T with ỹ

(r)T
p [n] = ej2πn/Ky(r)[n], ỹ(r)[i] =

[ỹ(r)T
0 [i], . . . , ỹ(r)T

P−1[i]]
T and ỹ[i] = [ỹ(1)T [i], . . . , ỹ(Nr)T [i]]T .

Further defining w̄(r,k)[i] = [w̄(r,k)T
0 [i], . . . , w̄(r,k)T

P−1 [i]]T and
w̄(k)[i] = [w̄(1,k)T [i], . . . , w̄(Nr,k)T [i]]T , (15) can finally be
written as:

Ŝk[i] = w̄(k)T [i](INr
⊗ F̃(k))ỹ[i] (16)

To implement (15), we require P sliding FFTs per receive
antenna rather than Q′+1 sliding FFTs per receive antenna as
in Section IV (in practice and in our simulations P 
 Q′+1).
Each sliding FFT is applied to a modulated version of the
received sequence. This reduction in the number of sliding
FFTs per receive antenna is compensated for by combining
|Qp| neighboring subcarriers on the pth sliding FFT. Notice
here, that apart from the reduction in the number of sliding
FFTs, the implementation complexity remains the same as in
Section IV, i.e., NrN(Q′ + 1)(L′ + 1) MA operations for a
block of N symbols.

Similar to (11), we can construct the MSE cost function as:

J = E
{∥∥∥Sk[i] − w̄(k)T [i]

(
INr

⊗ F̃(k)
)
ỹ[i]

∥∥∥2
}

(17)

Note the solution of the minimization of (17) is given by a
formula similar to (and equivalent to) the one obtained in (12).

We can further simplify the computational complexity asso-
ciated with the proposed PTFEQ by replacing each sliding FFT
by only one full FFT and L′ difference terms that are common
to all subcarriers [13]. To explain this, we will consider only
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one sliding FFT. Let us consider the kth subcarrier of the pth

sliding FFT, i.e., F̃ (k)
ỹ(r)

p [i]. Define Ỹ
(r,k)
p = F (k)[ỹ(r)

p [i(N+
ν)+ν+d], . . . , ỹ(r)

p [(i+1)(N +ν)+d−1]]T as the frequency
response of the pth phase shifted version of the received
sequence on the rth receive antenna on the kth subcarrier.
It can then easily be shown that:

F̃ (k)
ỹ(r)

p [i] = T(k)

[
Ỹ

(r,k)
p

∆ỹ(r)
p [i]

]
� L′ × 1 (18)

where T(k) is an (L′ +1)× (L′ +1) lower triangular Toeplitz
matrix given by:

T(k) =




1 0 · · · 0

β
. . .

. . .
...

...
. . .

. . . 0
β(k−1)L′ · · · β 1


 (19)

with β = e−j2π/N . The difference terms ∆ỹ(r)
p [i] are given

by ∆ỹ(r)
p [i] = [ỹ(r)

p [i(N + ν) + ν + d− 1]− ỹ
(r)
p [(i + 1)(N +

ν) + d − 1], . . . , ỹ(r)
p [i(N + ν) + ν + d − L′] − ỹ

(r)
p [(i +

1)(N +ν)+d−L′−1]]T . In a similar fashion, we can obtain
an expression for the neighboring subcarriers on the same
sliding FFT by replacing the subcarrier index. The symbol
estimate (16) can then be written as follows. We first define
u(r,k)T

p,lp
[i] = w̄(r,k)T

p,lp
[i]T(k+lp) and also define the following

(|Qp|(L′ + 1)) × (|Qp| + L′) selection matrix:

Sp =




1 01×(|Qp|+L′−1)

0L′×|Qp| IL′

0 1 01×(|Qp|+L′−2)

0L′×|Qp| IL′

...


 .

Introducing u
(r,k)T
p [i] = [. . . ,u

(r,k)T
p,−1 [i],u

(r,k)T
p,0 [i],u

(r,k)T
p,1 [i], . . . ]T

and v(r,k)T
p [i] = u(r,k)T

p [i]Sp, (16) can then be written as:

Ŝk[i] =
Nr∑
r=1

P−1∑
p=0

v(r,k)T
p [i]




...

Ỹ
(r,k−1)
p [i]
Ỹ

(r,k)
p [i]

Ỹ
(r,k+1)
p [i]

...

∆ỹ(r)
p [i]




��|Qp| × 1

� L′ × 1

=
Nr∑
r=1

P−1∑
p=0

v(r,k)T
p [i]




...
...

01×L′ F (k−1)

01×L′ F (k)

01×L′ F (k+1)

...
...

ĪL′ 0L′×(N−L′) −ĪL′




︸ ︷︷ ︸
F̃

(k)
p

ỹ(r)
p [i]

(20)

where ĪL′ is the anti-diagonal identity matrix of size L′ ×
L′. Defining v(r,k)[i] = [v(r,k)T

0 [i], . . . ,v(r,k)T
P−1 [i]]T , v(k)[i] =

[v(1,k)T [i], . . . ,v(Nr,k)T [i]]T and F̃ = diag
{
F̃T

0 , . . . , F̃T
P

}
,

(20) can finally be written as:

Ŝk = v(k)T [i](INr
⊗ F̃(k))ỹ[i] (21)

Note that, due to the fact that the difference terms are common
to all subcarriers in a particular sliding FFT, the implemen-
tation complexity is P (L′ + 1) + Q′ + 1 MA operations per
receive antenna per subcarrier, compared to (Q′ + 1)(L′ + 1)
per receive antenna per subcarrier in Section IV. In Figure 2,
we show how (21) can be realized for the pth sliding FFT on
the rth receive antenna. Note that replacing the sliding FFT
with one full FFT and L′ difference terms in Section IV, will
not reduce the implementation complexity. This is due to the
fact that we only consider a single PTFEQ output for each
sliding FFT to estimate a particular symbol.

We can also show that our approach unifies and extends
many existing frequency-domain approaches. For the case of
a TIV channel (Q = 0) with delay spread larger than the CP,
the proposed PTFEQ with Q′ = 0 comes down to the per-tone
equalizer of [10]. On the other hand, for a TIV channel with
delay spread smaller than or equal to the CP, the proposed
PTFEQ with Q′ = 0 comes down to the well-known MMSE
equalizer [14]. For the case of a TV channel with delay spread
smaller than or equal to the CP, the proposed PTFEQ comes
down to the MMSE FEQ proposed in [3] for P = 1 and to
the MMSE FEQ proposed in [15] for an arbitrary P .

VI. SIMULATION RESULTS

In this section, we show some simulation results for the
proposed ICI mitigation technique. We consider a SISO system
as well as a SIMO system with Nr = 2 receive antennas.
The channel is assumed to be doubly-selective of order
L = 6 with a maximum Doppler frequency of fmax =
100Hz. The channel taps are simulated as i.i.d., correlated
in time with a correlation function according to Jakes’ model
E{h(r)[n1; l1]h(r′)∗[n2; l2]} = σ2

hJ0(2πfmaxT (n1−n2))δ[l1−
l2]δ[r − r′], where J0 is the zeroth-order Bessel function of
the first kind and σ2

h denotes the variance of the channel. We
consider N = 128 subcarriers, and a cyclic prefix of length
ν = 3. The sampling time is T = 50µsec, the total OFDM
symbol duration is 6.6 msec. QPSK signaling is assumed. We
define the SNR as SNR = σ2

h(L+1)Es/σ2
η , where Es is the

QPSK symbol power.
We use the BEM to approximate the channel. The BEM

coefficients of the approximated channel are used to design
the MMSE equalizer. The BEM resolution is determined by
K = PN where P = 1, 2. The number of TV basis functions
of the channel is chosen such that Q/(2KT ) ≥ fmax, which
results into Q = 2 for P = 1, and Q = 4 for P = 2. The
TV FIR TEQ is modeled using the BEM with Q′ = 14 and
L′ = 14 for Nr = 1 receive antenna, and Q′ = 8 and L′ = 8
for Nr = 2 receive antennas. The decision delay d is always
chosen as d = �(L + L′)/2� + 1. The proposed equalizer is
used to equalize the true Jakes’ channel.
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As shown in Figure 3, the performance of the proposed
equalizer is significantly improved using P = 2 over P = 1,
where the latter suffers from an early error floor (4×10−1 for
Nr = 1 and 10−2 for Nr = 2).

VII. CONCLUSION

A frequency-domain equalizer for OFDM over doubly-
selective channels has been proposed, where the channel delay
spread is larger than the CP. The devised PTFEQ is obtained by
transferring a TV FIR TEQ operation to the frequency-domain.
We also show how we can efficiently implement the proposed
PTFEQ. A key role in the performance of the proposed PTFEQ
is the BEM frequency resolution. We show that by choosing
the BEM frequency resolution equals twice the FFT resolution
(FFT size), the performance is significantly improved.
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