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Abstract— Recently, serial linear equalizers (SLEs) and serial
decision feedback equalizers (SDFEs) have been proposed to mit-
igate doubly-selective channel effects. To design the SLE/SDFE
and to model the doubly-selective channel, a so-called finite
impulse response basis expansion model (FIR-BEM) is used. Ini-
tially, the FIR-BEM coefficients of the SLE/SDFE were designed
based on the exact knowledge of the FIR-BEM coefficients of
the doubly-selective channel. In practice, we can use a direct
SLE/SDFE design procedure, which avoids an intermediate
channel estimation step. In this paper, we describe this idea
for the SLE and focus on direct semi-blind design of the FIR-
BEM coefficients of the SLE. Simulation results demonstrate the
validity of the proposed approach.

I. INTRODUCTION

The quest for high data rates and high mobility in future
mobile wireless systems comes with the burden of distortive
time- and frequency-selective (doubly-selective) channel ef-
fects. To mitigate these effects, serial linear equalizers (SLEs)
and serial decision feedback equalizers (SDFEs) have recently
been proposed to equalize doubly-selective channels [1]–[3]. A
so-called finite impulse response basis expansion model (FIR-
BEM) [4]–[6] is used to design the SLE/SDFE and to model
the doubly-selective channel. Note that these SLEs and SDFEs
differ from the ones proposed in [7], [8], in the fact that they
fully exploit the FIR-BEM structure of the channel and do not
view it as a frequency-selective channel with multiple inputs.

Many possibilities exist to design the FIR-BEM coefficients
of the SLE/SDFE. First of all, we can assume exact knowledge
of the FIR-BEM coefficients of the doubly-selective channel
to design the FIR-BEM coefficients of the SLE/SDFE, as
done in [1]–[3], which is of course not very realistic. In
practice, we can use training-based [9], blind [10], or even
a combination of both, labeled semi-blind, channel estimation
to estimate the FIR-BEM coefficients of the doubly-selective
channel, which can then be used to design the FIR-BEM
coefficients of the SLE/SDFE. However, we can also avoid this
intermediate channel estimation step and directly design the
FIR-BEM coefficients of the SLE/SDFE in a training-based,
blind, or semi-blind fashion. In this paper, we illustrate this
procedure for the SLE and focus on the semi-blind method,
which encompasses the training-based and blind method as
special cases.

Notation: We use upper (lower) bold face letters to denote
matrices (column vectors). Superscripts ∗, T , and H represent

conjugate, transpose, and Hermitian, respectively. Further, �
denotes the convolution and ⊗ the Kronecker product. We
represent the Dirac delta by δ(t) and the Kronecker delta by
δ[n]. We write the N ×N identity matrix as IN , the M ×N
all-zero matrix as 0M×N , and the M × N all-one matrix as
1M×N . Finally, diag{x} represents the diagonal matrix with
x on the diagonal.

II. CHANNEL MODEL

We consider a baseband description of a wireless system
with 1 transmit and M receive antennas. For the mth receive
antenna, the symbol sequence x[n] is filtered by the transmit
filter gtr(t), distorted by the physical channel g

(m)
ch (t; τ), cor-

rupted by additive noise v(m)(t), and finally filtered by the
receive filter grec(t). With a symbol period of T , the received
signal at the mth receive antenna y(m)(t) can then be written
as

y(m)(t) =
∞∑

n=−∞
g(m)(t; t − nT )x[n] + w(m)(t),

where w(m)(t) := grec(t) � v(m)(t) and g(m)(t; τ) := gtr(τ) �

grec(τ)�g
(m)
ch (t; τ) (if the variation of g

(m)
ch (t; τ) over the span

of grec(t) is negligible).
Sampling the mth receive antenna at rate S/T with S ≥

1, we obtain a rate-S/T received sequence, which can be
split into S rate-1/T received sequences. The sth rate-1/T
received sequence at the mth receive antenna y(mS+s)[n] :=
y(m)((nS + s)T/S) can be written as

y(mS+s)[n] :=
∞∑

ν=−∞
g(mS+s)[n; ν]x[n − ν] + w(mS+s)[n],

where w(mS+s)[n] := w(m)((nS + s)T/S) and
g(mS+s)[n; ν] := g(m)((nS + s)T/S; (νS + s)T/S).
Hence, we obtain a symbol rate single-input multiple-output
(SIMO) system with A = MS outputs, which are obtained
by multiple receive antennas and/or fractional sampling.

To find a simplified model for the channel g(a)[n; ν] (a ∈
{0, 1 . . . , A − 1}), we will look at a limited time window
t ∈ [0, NT ), which corresponds to n ∈ {0, 1, . . . , N − 1}.
Assuming g(m)(t; τ) = 0 for τ /∈ [0, (L + 1)T ), the channel
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g(a)[n; ν] can be modeled for n ∈ {0, 1, . . . , N − 1} by a
so-called FIR-BEM:

h(a)[n; ν] =
L∑

l=0

δ[ν − l]
Q/2∑

q=−Q/2

h
(a)
q,l ej2πqn/K , (1)

which represents a serial filter designed to have L + 1 time-
varying taps, where the time-variation of each tap is modeled
by Q+1 complex exponentials. In this model, Q and K should
be selected such that Q/(2KT ) ≈ fmax, with fmax the overall
Doppler spread of all M channels. In addition, we need K ≥
N , since otherwise the FIR-BEM h(a)[n; ν] will be periodic
over n ∈ {0, 1, . . . , N − 1} with period K. Note that when
NT is smaller than 1/(2fmax), a good fit can generally be
obtained with Q = 2.

The FIR-BEM input-output relation for n ∈ {0, 1, . . . , N −
1} can finally be written as

y(a)[n] =
L∑

l=0

Q/2∑
q=−Q/2

h
(a)
q,l ej2πqn/Kx[n − l] + w(a)[n]. (2)

III. SYSTEM MODEL

In this section, we rewrite (2) on a block level, which
will turn out to be useful at a later stage. Defining the
(N +L)× 1 data symbol block x := [x[−L], . . . , x[N − 1]]T ,
the N × 1 received sample block at the ath output y(a) :=
[y(a)[0], . . . , y(a)[N − 1]]T can be written as

y(a) = H(a)x + w(a), (3)

where w(a) is similarly defined as y(a), and H(a) is the N ×
(N + L) matrix given by

H(a) =
L∑

l=0

Q/2∑
q=−Q/2

h
(a)
q,l DqZl, (4)

where Dq := diag{[1, ej2πq/K , . . . , ej2πq(N−1)/K ]T } and
Zl := [0N×(L−l), IN ,0N×l]. Substituting (4) in (3), we can
write

y(a) =
L∑

l=0

Q/2∑
q=−Q/2

h
(a)
q,l DqZlx + w(a). (5)

Defining y := [y(0)T , . . . ,y(A−1)T ]T , we finally obtain

y = Hx + w, (6)

where w is similarly defined as y, and H is the AN×(N +L)
matrix given by H := [H(0)T , . . . ,H(A−1)T ]T .

Based on (6), we can apply block linear equalization to
recover x from y. However, the complexity of such an
approach depends on the block size N , which can often be
very large. In this paper, we will therefore focus on serial linear
equalization, for which the complexity is basically independent
of the block size N . We focus on a non-precoded transmission,
i.e., we assume that all entries of x contain raw data symbols.
However, we will not estimate the edges of x and only estimate
the middle part of x (denoted as x�). The edges are either
estimated in a previous step (top entries of x) or will be
estimated in a next step (bottom entries of x).

IV. SERIAL LINEAR EQUALIZATION

We adopt a Serial Linear Equalizer (SLE), consisting of a
serial filter f (a)[n; ν] for the ath output, in order to find an
estimate of x[n − d] (see Figure 1):

x̂[n − d] =
A−1∑
a=0

∞∑
ν=−∞

f (a)[n; ν]y(a)[n − ν],

where d represents the synchronization delay. Since for the
doubly-selective channel, the FIR-BEM of (1) was applied,
it is also convenient to use a FIR-BEM for the serial fil-
ter f (a)[n; ν]. In other words, we design each serial filter
f (a)[n; ν] to have L′ + 1 time-varying taps, where the time-
variation of each tap is modeled by Q′ + 1 complex expo-
nentials with frequencies on the same grid as the one for the
channel:

f (a)[n; ν] =
L′∑

l′=0

δ[ν − l′]
Q′/2∑

q′=−Q′/2

ej2πq′n/Kf
(a)
q′,l′ .

An estimate of x[n − d] is then computed as

x̂[n − d] =
A−1∑
a=0

L′∑
l′=0

Q′/2∑
q′=−Q′/2

ej2πq′n/Kf
(a)
q′,l′y

(a)[n − l′]. (7)

Again, it will be more convenient to formulate (7) on a block
level. Defining the q′th frequency-shifted and l′th time-shifted
received sequence related to the ath output as

y(a)
q′,l′ := D̄q′Z̄l′y(a),

where D̄q′ := diag{[1, ej2πq′/K , . . . , ej2πq(N−L′−1)/K ]T }
and Z̄l′ := [0(N−L′)×(L′−l′), IN−L′ ,0(N−L′)×l′ ], and intro-
ducing

x� := [x[L′ − d], . . . , x[N − d − 1]]T ,

an estimate of x� is obtained as

x̂T
� =

A−1∑
a=0

f (a)T Y(a), (8)

where f (a) is the (Q′ + 1)(L′ + 1) × 1 vector given by
f (a) := [f (a)

Q′/2,L′ , . . . , f
(a)
Q′/2,0, . . . , f

(a)
−Q′/2,0]

T , and Y(a) is

the (Q′ + 1)(L′ + 1) × (N − L′) matrix given by Y(a) :=
[y(a)

Q′/2,L′ , . . . ,y
(a)
Q′/2,0, . . . ,y

(a)
−Q′/2,0]

T .

Let us now express Y(a) as a function of the FIR-BEM
coefficients of the doubly-selective channel and the data sym-
bols. Using the property Z̄l′Dq = ej2πq(L′−l′)/KD̄qZ̄l′ , the
q′th frequency-shifted and l′th time-shifted received sequence
related to the ath output can be written as

y(a)
q′,l′ := D̄q′Z̄l′y(a)

=
L∑

l=0

Q∑
q=0

h
(a)
q,l ej2πq(L′−l′)/KD̄q′D̄qZ̄l′Zlx + w(a)

q′,l′

=
L∑

l=0

Q∑
q=0

ej2πq(L′−l′)/Kh
(a)
q,l D̄q+q′Z̃l+l′x + w(a)

q′,l′ ,
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h(A−1)[n; ν]

h(0)[n; ν]

x[n]

y(A−1)[n]

y(0)[n]

w(A−1)[n]

w(0)[n]

f (A−1)[n; ν]

f (0)[n; ν]

x̂[n − d]

Fig. 1. Serial linear equalization.

where w(a)
q′,l′ is similarly defined as y(a)

q′,l′ and Z̃k :=
[0(N−L′)×(L+L′−k), IN−L′ ,0(N−L′)×k]. Introducing k := l +
l′ and p := q + q′, and defining xp,k := D̄pZ̃kx (note that
x� = x0,d), we can also write this as

y(a)
q′,l′ =

L+L′∑
k=0

(Q+Q′)/2∑
p=−(Q+Q′)/2

ej2π(p−q′)(L′−l′)/Kh
(a)
p−q′,k−l′xp,k + w(a)

q′,l′ .

Then, defining X := [xQ/2+Q′/2,L+L′ , . . . ,xQ/2+Q′/2,0, . . . ,
x−Q/2−Q′/2,0]T , Y(a) can be expressed as

Y(a) = H(a)X + W(a),

where W(a) is similarly defined as Y(a) and H(a) is the (Q′+
1)(L′ + 1) × (Q + Q′ + 1)(L + L′ + 1) matrix given by

H(a) :=



ΩQ/2H(a)

Q/2. . .Ω
−Q/2H(a)

−Q/2 0
. . .

. . .

0 ΩQ/2H(a)
Q/2 . . .Ω−Q/2H(a)

−Q/2


 ,

with H(a)
q the (L′ + 1) × (L + L′ + 1) Toeplitz matrix given

by

H(a)
q :=




h
(a)
q,L. . . h

(a)
q,0 0

. . .
. . .

0 h
(a)
q,L. . . h

(a)
q,0


 ,

and Ω := diag{[1, ej2π/K , . . . , ej2πL′/K ]T }. Defining Y :=
[Y(0)T , . . . ,Y(A−1)T ]T , we then obtain

Y = HX + W, (9)

where W is similarly defined as Y and H is the A(Q′ +
1)(L′ +1)× (Q+Q′ +1)(L+L′ +1) matrix given by H :=
[H(0)T , . . . ,H(A−1)T ]T . Hence, (8) can be rewritten as

x̂T
� =

A−1∑
a=0

f (a)T Y(a) = fT Y = fT HX + fT W, (10)

where f is the A(L′ + 1)(Q′ + 1) × 1 vector given by f :=
[f (0)T , . . . , f (A−1)T ]T .

V. DIRECT SEMI-BLIND EQUALIZER DESIGN

We can design the BEM-FIR coefficients of the SLE based
on the exact knowledge of the BEM-FIR coefficients of the
doubly-selective channel. Focusing on the MMSE SLE this
results into

fT
MMSE = eT (HHR−1

W H + R−1
X )−1HHR−1

W , (11)

where RX := E{XXH} is the data covariance matrix, RW =
E{WWH} is the noise covariance matrix, and e is the (Q +
Q′ + 1)(L + L′ + 1) × 1 unit vector with a 1 in position
(Q + Q′)(L + L′ + 1)/2 + d + 1.

Assuming the data sequence and the additive noises are
mutually uncorrelated and white with variance σ2

x and σ2
v ,

respectively, the data and noise covariance matrices are given
by

RX = σ2
xJQ+Q′+1 ⊗ IL+L′+1,

RW = σ2
vIM

⊗




JQ′+1 ⊗ ΦL′+1,0 · · ·JQ′+1 ⊗ ΦL′+1,P−1

...
...

JQ′+1 ⊗ ΦL′+1,−P+1· · · JQ′+1 ⊗ ΦL′+1,0


 ,

where JI is the I × I matrix defined as

[JI ]i,i′ =
N−L′−1∑

n=0

ej2π(i−i′)n/K ,

and ΦI,p is the I × I matrix defined as

[ΦI,p]i,i′ :=

∞∫
−∞

grec(τ)grec(τ + (i′ − i)T + pT/P )dτ.

In this paper, however, we aim at the direct semi-blind
design of the FIR-BEM coefficients of the SLE, thereby
avoiding the intermediate channel estimation step. The pro-
posed approach consists of a combination of the training-
based least-squares (LS) method [11] and the blind mutually
referenced equalizers (MRE) method [12], both well-known
for frequency-selective channels, but here applied to doubly-
selective channels. The basic idea is that we consider different
SLEs that detect different time- and frequency-shifted versions
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of the transmitted sequence. While during training periods, the
training symbols are used to train all equalizers, during data
transmission periods, each equalizer output is used to train the
other equalizers.

In the noiseless case, suppose that fp,k collects the FIR-
BEM coefficients of the SLE aiming at the pth frequency-shift
and kth time-shift of x�, where p ∈ {−P/2, . . . , P/2} with
P ≤ Q + Q′, and k ∈ {−K1, . . . ,K2} with K1 ≤ d and
K2 ≤ L + L′ − d (note that f0,0 corresponds to the f we used
before). We can then write

fT
p,kYZ̆T

−kD̆
T
−pe

−j2πp(K1+k)/K = xT
• ,

where Z̆k = [0(N−L′−K1−K2)×(K1−k), IN−L′−K1−K2 ,

0(N−L′−K1−K2)×(K2+k)], and D̆p = diag{[1, ej2πp/K , . . . ,

ej2πp(N−L′−K1−K2−1)/K ]T } and x• = Z̆0x� = [x[L′ −
d + K1], . . . , x[N − d − 1 − K2]]T . Defining Yp,k =
YZ̆T

−kD̆
T
−pe

−j2πp(K1+k)/K , we thus obtain

fT
p,kYp,k = xT

• . (12)

Suppose now that Nt symbols in x• are training symbols and
the remaining Nd = N − L′ − K1 − K2 − Nt symbols in
x• are data symbols. Let us then collect the training symbols
of x• in x(t) and the data symbols of x• in x(d). Let us
further collect the corresponding columns of Yp,k in Y(t)

p,k

and Y(d)
p,k, respectively. Splitting (12) into its training and data

part, stacking the results for p ∈ {−P/2, . . . , P/2} and k ∈
{−K1, . . . ,K2}, and defining R = (P + 1)(K1 + K2 + 1)
as the total number of time- and frequency-shifts taken into
account, we then obtain

fT [Y(t),Y(d)] = [x(t)T INt
,x(d)T INt

],

where f = [fT
−P/2,−K1

, . . . , fT
−P/2,K2

, . . . , fT
P/2,K2

]T ,

Y(t) =




Y(t)
−P/2,−K1

. . .

Y(t)
−P/2,K2

. . .

Y(t)
P/2,K2




,

Y(d) =




Y(d)
−P/2,−K1

. . .

Y(d)
−P/2,K2

. . .

Y(d)
P/2,K2




,

and

INt
= 11×R ⊗ INt

,

INd
= 11×R ⊗ INd

.

In the noisy case, we then have to solve

min
f ,x(d)

{‖fT [Y(t),Y(d)] − [x(t)T INt
,x(d)T INd

]‖2}. (13)

The solution for x(d) is given by

x̂(d)T = fT Y(d)R−1IT
Nd

. (14)

Substituting (14) into (13), we obtain

min
f

{‖fT [Y(t),Z(d)] − [x(t)T INt
,01×NdR]‖2}, (15)

where Z(d) is given in (16) on the top of the next page. In
this equation, the left and right part respectively correspond to
the training-based LS method [11] and the blind MRE method
[12], applied to doubly-selective channels.

Note that we could use (14) to find an estimate of the
unknown data symbols. However, in this case, the weak
performing equalizers fp,k contained in f might pull down the
overall performance. A better approach is to select the best
performing equalizer fp,k contained in f . However, this will
be computationally expensive. We therefore simply select the
equalizer f0,0 from f (remember that f0,0 corresponds to the
f we used before) and apply this to Y in order to find an
estimate of x�. Identifiability results can be derived along the
lines of those for purely frequency-selective channels, and will
be presented elsewhere.

VI. SIMULATION RESULTS

In this section, we illustrate the proposed approach with
some simulation results. We generate M = 2 channels con-
sisting of 5 unit-power clusters with delays 0, T/2, T , 3T/2,
and 2T , all modeled using Jakes’ model with a Doppler spread
of fmax = 1/(400T ). Assuming that gtr(t) and grec(t) are
rectangular functions over [0, T ) with height 1/T , we can take
L = 3. We further consider fractional sampling with a factor of
S = 2. Hence, we obtain a SIMO system with A = MS = 4
outputs. The modulation we use is QPSK. We assume the data
sequence and the additive noises are mutually uncorrelated and
white. The SNR is defined as SNR = 5σ2

x/σ2
v , where σ2

x and
σ2

v are the variances of the data sequence and the additive
noises, respectively. The factor 5 is due to the fact that we
consider 5 unit-power clusters.

We consider a time-window of NT = 200T . As already
mentioned, when NT ≤ 1/(2fmax), which is the case here,
an accurate channel model can be obtained by taking Q = 2.
To satisfy Q/(2KT ) ≈ fmax = 1/(400T ), we then take K =
400. Although optimal training for channel estimation has been
developed for the case K = N [9], it is not easy to extend it
to the case K > N . Moreover, optimal training for channel
estimation probably does not correspond to optimal training
for direct equalizer design, which is a much more complicated
problem. For all these reasons, we simply use pilot symbol
assisted modulation (PSAM) [13] in this work and insert a
pilot symbol after every three data symbols. We consider three
SLE designs: the ideal design (see below), the direct training-
based design, and the direct semi-blind design. For all designs,
we assume Q′ = 2, L′ = 3, and d = (L + L′)/2 = 3. For
the ideal design, we first fit a FIR-BEM to the true doubly-
selective channel over the time window of NT = 200T , and
use the obtained FIR-BEM coefficients to design the FIR-BEM
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Z(d) = R−1




(R − 1)Y(d)
−P/2,−K1

. . . −Y(d)
−P/2,K2

. . . −Y(d)
P/2,K2

...
...

...

−Y(d)
−P/2,−K1

. . . (R − 1)Y(d)
−P/2,K2

. . . −Y(d)
P/2,K2

...
...

...

−Y(d)
−P/2,−K1

. . . −Y(d)
−P/2,K2

. . . (R − 1)Y(d)
P/2,K2




(16)
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Fig. 2. Comparison of different SLE designs for doubly-selective channels.

coefficients of the SLE as in (11). For the direct training-based
design, we consider the proposed approach with P = K1 =
K2 = 0. For the direct semi-blind design, we consider the
proposed approach with P = 2 and K1 = K2 = 1. From
Figure 2, we can observe that the direct semi-blind design
clearly outperforms the direct training-based design, and is
not too far from the performance of the ideal design.

VII. CONCLUSIONS

In this paper, we have focused on equalizing a doubly-
selective channel by means of an SLE, where both the SLE
and the doubly-selective channel are modeled by an FIR-BEM.
We have derived a direct semi-blind design method for the
FIR-BEM coefficients of the SLE, thereby avoiding the inter-
mediate step of estimating the FIR-BEM coefficients of the
doubly-selective channel. Simulation results have shown that
the direct semi-blind design outperforms the direct training-
based design, and approaches the performance of the ideal
design using exact channel knowledge.
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