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Abstract— In this study, we propose a novel approach for
estimation of local activation times (LATs) in fractionated
electrograms. Using an electrophysiological tissue model, we
first formulate the electrogram array as a convolution of
transmembrane currents with a distance kernel. These currents
are more local activities and less affected by the heterogeneity
in the tissue compared to electrograms. We then deconvolve
the distance kernel with the electrograms to reconstruct the
transmembrane current. To stabilize the solution of this ill-
posed deconvolution, we use spatio-temporal total variation as
a regularization. This helps to preserve sharp spatial and tem-
poral deflections in the currents that are of higher importance
in LAT estimation. Finally, the maximum negative slope of the
reconstructed transmembrane currents are used to estimate the
LATs. Instrumental comparison to two reference approaches
shows that the proposed approach performs better in estimating
the LATs in fractionated electrograms.

I. INTRODUCTION

Cardiac activation maps (AMs) are important diagnostic
tools that are broadly used to represent depolarization wave-
front propagation patterns, used for many applications, e.g.,
to estimate the tissue conductivity, to analyze conduction
disorders, and to guide the cardiologist through ablation
therapies of atrial fibrillation. These maps are based on the
local activation times (LATs) of the underlying cells. The
most commonly used approach (from here on referred to
as standard approach) in estimating the activation time of a
normal unipolar epicardial electrogram as shown in Fig. 1(d),
is to use the maximum negative slope of the electrogram [1].
However, as shown in Fig. 1(c), electrograms can be quite
fractionated during atrial fibrillation specially in areas with
conduction disorders. In these cases, the maximum negative
slope may not coincide with the true LAT. This can make the
estimation of LATs and its further analysis quite challenging.

Various approaches have been proposed to overcome the
challenges in estimating the true activation time of a fraction-
ated electrogram. Some approaches employ the electrogram’s
morphological features to provide a better estimation of LAT.
This includes the annotation of the center of the mass of the
atrial activity as the LAT [2] or matching the recorded elec-
trogram with a library of template fractionated electrograms
[3]. In some other methods, the global activation maps are
formed by initially finding the delays between neighboring
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electrograms and then finding a global activation map that
fits these delays the best [4]. It has also been shown in
some studies that spatial processing of the multi-electrode
recordings can improve the performance of LATs estimation
in fractionated electrograms. This can be done by annotating
the maximum spatial gradient or the zero crossing of the
surface Laplacian of the electrogram array as the LATs [5].

As previously demonstrated in some studies [6], [7],
incorporating the electrophysiological model of the electri-
cal propagation can improve the performance of the LAT
estimation. According to these models, the electrogram is
a weighted summation of the transmembrane currents gen-
erated by the myocardial cells in its neighborhood. The
weights depend inversely on the cells’ distance from the
electrode. The electrogram array can thus be formulated as
a spatial convolution of the transmembrane currents and an
appropriate distance kernel [6]. The deconvolution of the
distance kernel with the electrogram array should therefore
provide more local activities that are less affected by the
heterogeneities in the tissue and can be used for a better
estimation of activation times. Since there are more current
sources in the tissue than the number of electrodes, this
inverse problem of deconvolution is ill-posed. To avoid this
problem, some earlier studies have simplified the problem by
assuming a planar wave propagation with a constant velocity
across the tissue [6]. The focus is then on the estimation
of wave travel times from a source to the electrodes. Some
other studies use data interpolation to increase the spatial
resolution of electrograms. It is then followed by spatial
filtering to enhance the local activities in each electrogram
before the deconvolution [7].

In this study we propose a novel systematic approach for
a better estimation of LATs in fractionated electrograms.
The approach stabilizes the solution of the spatial decon-
volution problem of transmembrane current estimation by
employing spatio-temporal edge-preserving regularization.
The approach effectively preserves the sharp spatio-temporal
changes of the transmembrane currents that are of importance
in activation time estimation. Moreover, we formulate the
regularized deconvolution problem in a way that it can ben-
efit from fast Fourier transformations and use the alternating
direction method of multipliers (ADMM) [8] to accelerate
the computations.

II. METHODS
A. Convolutive Electrogram Model

When the depolarization wave-front propagates through
the tissue and the action potentials are triggered, each cell
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acts as a current source, generating the so called transmem-
brane current. Since it is complicated and not practical to
model all cells we employ source clamping by replacing
each group of cells in the 3D tissue with a modeled cell
in a 2D mono layer grid. We denote the transmembrane
current of a modeled cell located at xn and at the time
sample t by Itm(xn, t), where n ∈ 1,2, ..,Nc is the cell index
and Nc = rc × cc is the total number of modeled cells or
the elements of the grid with rc rows and cc columns. The
electrogram Φm(t) is a record of changes in the electrical
potential of the (many) cells in the electrode neighborhood,
where m ∈ 1,2, ...,M is the electrode index. The electrogram
can be formulated based on the transmembrane currents
using

Φm(t) =
1

4πσe

Nc

∑
n=1

Itm(xn, t)
rm,n

∆x2, (1)

where ∆x is the cell-to-cell distance on the assumed uniform
grid. Assuming that the electrode array is also located on
a two-dimensional grid parallel to the tissue surface at a
height that equals z0, the cell-to-electrode distance rm,n will

be rm,n =
√
‖ym−xn‖2 + z2

0, where ym is the electrogram’s
location.

Eq. (1) can be expressed as a spatial convolution of
transmembrane currents with the appropriate distance kernel
R. We first introduce matrix I(t) of size rc × cc as the
transmembrane current map containing all per cell currents
at time sample t. Note that in this paper map refers to the
2D data structures containing the discretized per cell or per
electrode values of a signal at a single temporal sample.
Likewise, matrix Φ′(t) of size rc× cc is the full resolution
electrogram map containing all per cell electrograms. The
spatial convolutive model is then

Φ′(t) = cR∗ I(t), (2)

where all the constants are collected in c = ∆x2/4πσe
which will be omitted in the subsequent analysis for sim-
plification purposes. The matrix R has a limited sup-
port of size (2b + 1)× (2b + 1) and its element at the
ith row and jth column can be calculated as [R]i, j =(
(|i−b|∆x)2 +(| j−b|∆x)2 + z2

0
)−1/2.

To rewrite the convolution in Eq. (2) as a matrix-
vector multiplication we first introduce vector i =
[vec(I(0)),vec(I(1)), ...,vec(I(T − 1))]T as the matrix con-
taining all per cell currents at all time samples t ∈
0,1, ..,T − 1, where vec(·) stacks the columns of the
argument matrix to form a vector. Likewise, φφφ

′ =
[vec(Φ′(0)),vec(Φ′(1)), ...,vec(Φ′(T − 1))] contains all the
resulting per cell electrograms. However, in clinically
recorded data, we do not have access to electrograms
recorded at all grid elements of the modeled tissue, but only
to those with an electrode on top. Moreover, there can be
some broken or faulty electrograms whose data cannot be
used. To take this into account, instead of interpolating the
unknown electrograms, we use a row selection matrix S to
select the cells with available electrograms denoted by φφφ .
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Fig. 1. The transmembrane current map (a) as well as the lower resolution
electrogram map (b) of the same tissue at the same time instance. The
simulated electrograms and the transmembrane currents at electrode location
1 and 2 denoted by *, are also shown in (c) and (d), respectively.

The matrix-vector multiplication model of the electrogram
is then

φφφ = SR̃ i , (3)

where matrix R̃ implements the convolution in Eq. (2).
Fig. 1(a) shows an example of transmembrane current

map at a single time sample on a 2D simulated tissue. The
conductivity map and the complete activation map through
one atrial beat of the same tissue are shown in the first
column of Fig. 2, more details on the simulation can be found
in Section III. In the simulated tissue, there is a conduction
block in the middle, where the wavefront is delayed. Fig. 1(b)
shows the low resolution electrogram map of the same data
recorded by an array whose inter-electrode distances are 3
times the cell-to-cell distances. As can be seen, the wavefront
in the transmembrane current map is more distinct and the
borders of the block are more clear.

B. Transmembrane Current Estimation

Our aim in this section is to estimate the unknown trans-
membrane currents i based on the recorded electrograms φφφ .
Since the number of measured electrograms M is less than
the number of modeled cells Nc, a cost function that employs
only a data-fitting term is highly ill-posed and results in
an unstable solution. Adding a regularization function that
employs some prior knowledge on the data helps to stabilize
the solution and penalizes impractical solutions.

In this paper, we propose the application of the edge
preserving spatio-temporal total variation (TV) regularization
due to the following criteria: (1) It does not employ any spe-
cific assumption that may only be applicable to homogeneous
tissues, like assuming a stereotype transmembrane current for
all cells, or planar wave propagation with constant velocity,
(2) it preserves the main features of the transmembrane
currents that are of higher importance for LAT estimation
which, as demonstrated in previous studies [5], are fast
spatial and temporal changes, and (3) it can be solved using
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computationally efficient fast approaches and is practical for
large amount of clinical data [9]. The TV regularization
function is given by

ψ(Di) =
NcT

∑
i=1

√
|[Dvi]i|2 + |[Dhi]i|2 + k|[Dt i]i|2 (4)

where Dv, Dh, and Dt of size NcT × NcT are the first
order vertical, horizontal, and temporal forward difference
operators respectively, and k properly scales time derivatives
with respect to spatial derivatives. We define operator D :=
[DT

v ,DT
h ,kDT

t ]
T to denote the concatenation of the three oper-

ators. The final regularized objective function for estimation
of i is then given by

1
2
‖φφφ −SR̃ i‖2

2 +λψ(Di), (5)

where λ is the regularization parameter. The regularization
term is used to obtain solutions where edges and disconti-
nuities are preserved.

C. Implementation
A variety of numerical approaches can be implemented to

solve the optimization problem in Eq. (5), among which we
opt for ADMM. This algorithm solves a convex optimization
problem by breaking it into smaller problems which are sim-
pler to solve. Furthermore, ADMM has a fast convergence
rate to a reasonable precision in practice. In this study we
employ the ADMM framework proposed in [10] to solve
the optimization problem in Eq. (5). In this approach two
auxiliary variables u1 = R̃i and u2 = Di are introduced to
separate the distance kernel and the selection matrix. The
new augmented Lagrangian (AL) function is

L (i,u1,u2,d1,d2) =
1
2
‖φφφ −Su1‖2

2 +
µ1

2
‖u1− R̃i−d1‖2

2

+λψ(u2)+
µ2

2
‖u2−Di−d2‖2

2, (6)

where µ1 and µ2 are AL penalty parameters, and d1 and
d2 are Lagrange multipliers. We then solve the optimiza-
tion problem by alternatively estimating one variable (by
minimizing its corresponding objective function) at each
step, while the other parameters are fixed. This procedure is
repeated until some stopping criteria are met. The fast con-
vergence speed of the proposed approach arises firstly from
the employed ADMM approach and secondly from replacing
all large matrix multiplications (convolutions and derivatives)
in each step with discrete Fourier transforms (DFTs) by
assuming periodic boundary conditions for convolution.

D. Activation Time Estimation
The per cell estimated transmembrane currents are by

definition more local activities than the electrograms, and
less affected by heterogeneities in the conductivities of
their neighboring cells. Therefore, they can be used for a
more accurate estimation of the activation times compared
to electrograms. For each electrode, we use the maximum
negative slope of the transmembrane current (as presented for
electrograms) of the closest cell on the grid as its estimated
activation time.
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Fig. 2. The first row represents the normalized isotropic conductivity map
of three different types of 2D simulated tissues. The second row shows
the true activation maps, in all cases the tissue is stimulated from the left
bottom corner. The third to fifth row represent the estimated activation maps
using the proposed approach, the gradient based approach, and the standard
approach, respectively.

III. RESULTS

We do not have access to ground truth LATs in clinically
recorded electrograms. To demonstrate the performance of
the model and to compare its results with other approaches,
we therefore use simulated 2D tissues. The monodomain
action potential propagation model [11] with the Courte-
manche atrial cellular model [12] is employed to simulate
the wavefront propagation in 2D atrial tissue of size 129×
129 cells. The modeled cell size is ∆x = 2/3 mm which
is one third of the inter-electrode distances used in our
clinical measurements. Three electrical conductivity maps
with different patterns of blocks and slow conductions are
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used to simulate electrograms and to insure generation of
fractionated electrograms with different patterns. The maps
are denoted by T1, T2 and T3 and are shown in the first
row of Fig. 2. The isotropic tissues, are stimulated with a
stimulation current injected to the cell at the left bottom
of the tissue. The initial sampling period for modeling
propagation is Ts =0.02 ms, but the final electrograms are
down-sampled to have a sampling period of Ts =0.2 ms.
A more detailed description of the simulation steps and
parameters can be found in [13]. The employed conductivity
maps and the resulting true activation maps are shown in
the first and second row of Fig. 2. Notice that the plots
only show the 31×31 central cells where the electrode array
of size 11×11 electrodes is positioned. The inner-electrode
distance is 3∆x. The size of the distance kernel for generating
the data is 2b+ 1 = 129∆x (the same size as the grid), but
it was reduced to 2b+ 1 = 11∆x in the inverse problem to
reduce computational complexity.

The proposed approach (from here on referred to as PA)
is employed on the simulated electrograms. First the atrial
activities of all modeled cells in i, are estimated using
Eq. (6) and then the LATs are estimated. The results are
demonstrated in the third row of Fig. 2. To evaluate the
performance, we use two other references: the gradient based
approach (GA) and the standard approach (SA), implemented
based on the methods presented in [5] and [1], respectively.
GA annotates the maximum of the spatial gradient of the
electrogram array as the estimated activation time, whereas
SA annotates the maximum negative temporal slope of the
electrogram. The results of these two approaches are demon-
strated in the fourth and fifth row of Fig. 2, respectively.
Moreover, Table I shows the root mean square error (RMSE)
in ms between the true LATs and the estimated LATs of
fractionated electrograms for each tissue using the proposed
and reference approaches. The fractionated electrograms
were selected as those having multiple deflections (only
deflections with amplitudes higher than 30% of the maximum
negative slope were considered). This resulted in selecting
15, 17 and 26 fractionated electrograms from T1, T2, and
T3 respectively.

As can be seen in Fig. 2 and Table I, our approach provides
a better LAT estimation than the standard approach. While
the gradient based approach and proposed approach preserve
the sharp changes in the activation times, the standard
approach provides LATs that change (too) smoothly across
the map where the blocks in the middle might be missed.
On the other hand, the gradient based approach provides
non smooth results in smooth areas of the tissue which can
complicate the further analysis of activation map isochrones
by a cardiologist. In tissue T3, the blocks force the wave
to follow a zigzag path which results in highly fractionated
electrograms and all approaches perform comparably bad
providing large errors in LATs estimation.

IV. CONCLUSION

In this paper we proposed a new approach for estimation
of the activation times in electrograms employing the electro-

TABLE I
RMSE (MS) IN LATS ESTIMATION OF THE SIMULATED FRACTIONATED

ELECTROGRAMS OF THE SIMULATED TISSUES DEMONSTRATED IN FIG. 2

PA GA SA
T1 3.1 8.2 8.7
T2 9.2 11.5 13.2
T3 24.1 24.7 33.8

gram convolutive model. The approach uses spatio-temporal
TV regularization to stabilize the ill-posed deconvolution
problem and to preserve the sharp deflections in the data. The
results show that the approach can improve the performance
of LATs estimation in fractionated electrograms. The TV
regularization preserves the sharp deflection in the estimated
per cell transmembrane currents in the spatial and temporal
domain which coincides with the true activation time of
the cell. This can improve the performance of automatic
approaches that aim to detect blocks and discontinuities in
the tissue.
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