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Iterativeconstantmodulusalgorithmshavebeenused
to blindly separateandretrieveinterferingconstantmod-
ulus signals impinging on an antennaarray. Theseal-
gorithmshaveseveralwell-knownbut basicallyunsolved
deficiencies.In this paper, we presentanalgorithmto an-
alytically computethesolutionto the underlyingconstant
modulus(CM) factorizationproblem. With this new ap-
proach,it is possibleto detectthe numberof CM signals
presentin thechannel,andto retrieveall of themexactly,
rejectingother, non-CM signals. Only a modestamount
of samplesare required. The algorithm is robustin the
presenceof noise, and is testedon real data, collected
from an experimentalset-up.

1. INTRODUCTION

A problemin sensorarraysignalprocessingwith impor-
tantapplicationsto wirelesscommunicationsis concerned
with the casewhere thereare severalunknownconstant
modulus(CM) signalsimpinging on the array, and the
objectiveis to copy eachof them. Becauseof multipath
effects,informationonthearrayresponsevectorcannotbe
used.Mathematically, wearegivenadatamatrixX : m×n,
with xij the j-th sampleof the i-th antenna,andwe have
to find a factorizationof X, if it exists,as

X = A S = a1s1 + ����� + adsd , (1)

(A = [a1
����� ad] ∈ |Cm×d , S = [s∗

1
����� s∗

d]∗ ∈ |Cd×n) ,

such that A, S are full rank d, and all sk ∈ |Cn are CM
signals.The row vectorss1, ����� , sd containsamplesof the
d CM signals,the columnvectorsa1, ����� , ad are the cor-
respondingarrayresponsevectors.The CM factorization
problemcanbereformulatedasfindingall weightvectors
w suchthatwX = s, for asmanylinearly independentCM
signalss as possible. This formulation is more general:
not all d signalspresentin X needto be CM signals,but
only δ ≤ d, say.

TheCM factorizationproblemgainedmuchinterestin
the areaof communications,wheremany modulationor
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codingschemesproducesignalsthat havethe CM prop-
erty, suchasFM andphase-modulatedsignals.A reliable
solution to this problem allows to receiveand separate
multiple co-channelCM signalsimpingingon an antenna
array, without useof the structureof the array response
matrix (i.e., blindly). This leadsto a direct increasein
channelcapacity. With somesimplifyingassumptions,the
CM factorizationproblemis an appropriatemathematical
formulationof this ‘blind null-steering’scenario.

Foralongtime, theCM factorizationproblemwascon-
sideredto betoonon-linearto admita closed-formanalyt-
ical solution,andonly iterative,gradient-descentschemes
havebeendeveloped,mostlybasedonpioneeringwork by
Godard,andTreichler, AgeeandLarimore[1,2]. Despite
many efforts (we omit the references),most CMAs up
to datehaveconvergenceproblems,which seriouslylimit
their practicalandautomatedapplicability. The speedof
convergenceis highly dependenton the initialization, but
no suitabledefault initial points are known. The algo-
rithms sometimesconverge to local minima, which do
not correspondto real signals.Only onesignalat a time
is retrieved;theothersignalshaveto befoundby starting
from other initial points. Weak signalsare hard to con-
verge to in this way. The only way to detectthe number
of CM signalsis a posteriori,by countingthe numberof
independentCM signalsthat havebeenobtained.

Let n > d2, andassumethat thereis a uniquesolution
(modulocertaintrivial transformations,viz. [4]). In this
paper, we derivea new CM algorithmwith the following
properties.

– It is possibleto determinethe numberof CM signals
among all other signalspresentin X: δ equalsthe
dimensionof thekernelof acertainmatrixconstructed
from X.

– The weight vectorsandcorrespondingCM signalsin
X canbe computedexactly, from a certaineigenvalue
decomposition.

– With X distortedby additive noise, a generalization
of thealgorithmis robustin finding S, evenwhenthe
number of samplesis quite small. This is demon-
stratedwith realdata,measuredfrom anexperimental
set-up.



2. EXACT SOLUTION TO THE CM PROBLEM

2.1. Simultaneous quadratic equations

Denoteby
� ′(X) the subspacespannedby the rows of X

(the co-rangeof X) andby ��� the set of CM matrices.
Assumingthat thereis a uniquesolution,the CM factor-
ization problemis preciselyequivalentto the following
problem:

Problem P1. Find all linearly independent signals s
that satisfy

(A) s ∈ ��� ,
(B) s ∈

� ′(X) .

In a seriesof steps,this problemis translatedinto an
equivalentbut more tractableform. Let X = UΣV : U ∈
|Cm×m, Σ ∈ ||R m×n, V ∈ |Cn×n be a singularvaluedecompo-
sition of X: U andV areunitarymatrices,andΣ is a real
diagonalmatrix with non-negativeentries. Supposethat
rank(X) = d. We canwrite

X = ÛΣ̂V̂ ; Û ∈ |Cm×d, Σ̂ ∈ ||R d×d, V̂ ∈ |Cd×n

whereÛ, Σ̂, V̂ are submatricesof U, Σ, V, respectively,
correspondingto the non-zerosingularvaluesof X. The
rows of V̂ form an orthonormalbasisof the row spanof
X:

(B) : s ∈
� ′(X) ⇔ s = wV̂ , V̂ : d × n .

Here, the weight vector w is not preciselythe sameas
before: it is now actingon theorthogonalbasisvectorsof� ′(X), ratherthandirectlyon X. This reducesthenumber
of parametersto estimatefrom m to d, and ensuresthat
linearly independentw result in linearly independents .

To satisfy condition (A): s = wV̂ ∈ ��� , put V̂ =
[v1

����� vn], wherevi ∈ |Cd is the i-th columnin V̂. Then

(A) : s = [ (s)1
����� (s)n ] ∈ ���

⇔ [ |(s)1|2 ����� |(s)n|2 ] = [ 1 ����� 1 ]

⇔

��� �	 wv1v∗
1w∗ = 1

...
wvnv∗

nw∗ = 1
⇔ wPkw∗ = 1 , k = 1, ����� , n ,

where Pk = vkv∗
k ∈ |Cd×d, for k = 1, ����� , n. The CM

problemis thusequivalentto thesimultaneoussolutionof
n quadraticequationsin the entriesof w, corresponding
to the intersectionof n ellipsoids. To find all solutions,
theapproachis to expandtheseequationsin theentriesof
w, which givesrise to Kroneckerproducts.At this point,

we introducethe notation,for Y ∈ |Cd×d, y ∈ |Cd2

,

vec(Y) :=


������
Y11

Y12...
Y21...
Ydd


������� , vec−1(y) :=


���� (y)1
����� (y)d

(y)d+1
����� (y)2d

...
. . .

...����� (y)d2


����� .

With thesedefinitions,the quadraticexpressionwPkw∗ is
‘linearized’ as

wPkw∗ = pky ,

wherey = vec(w∗w) ∈ |Cd2×1 , pk = vec(Pk)T .
The CM problemis thus: solve
� p1...

pn


� y =


� 1
...
1


�
y = vec(w∗w) ,

i.e., we haveto find vectorsy that satisfya linear system
and can be factoredas y = vec(w∗w) as well. For each
solutionw, the correspondingCM signal is given by s =
wV̂.

A descriptionof all solutions to the linear systemhas
in generalthe form

y = α1y1 + α2y2 + ����� + αδyδ , (α1 + ����� + αδ = 1) , (2)

andcanbe constructedfrom the kernelof P̂ in

P̂ � y
−1� = 0 , P̂ =


�� p1 1
...

pn 1


 �� . (3)

Wecanarguethat,generically, there are precisely as many
linearly independent solutions as there are CM signals.
Indeed, supposethat there are δ CM signals. Vectors�

w1 , ����� wδ � are linearly independentif andonly if vec-
tors

�
vec(w∗

1w1), ����� , vec(w∗
δwδ) � are. Thesevectorssat-

isfy the linear system: it must have at least δ linearly
independentsolutions

�
y1 , ����� , yδ � . Generically, thesys-

tem is overdeterminedandwill not haveothersolutions,
unlesstherearespecificrelationsbetweenthe signals.

In caseX is distortedby additivenoise,δ andthebasis�
yi � δ

1 canbe estimatedfrom theapproximatekernelof P̂,
usingan SVD.

The remaining problem is to find a changeof ba-
sis: transform

�
y1 , ����� , yδ � into a basiswith “Kronecker

structure”.We haveto find all valuesfor [α1 , ����� , αδ] in
equation(2) suchthat

y = vec(w∗w)

⇔ Y = vec−1(y) = w∗w (rank 1, symm.)

⇔ w∗w = α1Y1 + ����� + αδYδ . (4)



Generically� , there are preciselyδ solutions[α1 , ����� , αδ]
that generaterank-1 symmetricmatrices. We have thus
reducedthe CM problemto a kind of generalizedeigen-
valueproblem,which canbesolvedusingstandardlinear
algebratools. Indeed,if d = δ = 2, thentherearetwo ma-
tricesY1 and Y2, eachof size2 × 2, andwe haveto find
λ = α2/α1 suchthat Y1 + λY2 hasits rank reducedby one
(to becomeone). For larger δ, thereare more than two
matrices,andtherankshouldbereducedto oneby taking
linearcombinationsof all of them. This canbeviewedas
an extensionof the generalizedeigenvalueproblem. Its
solution is betterdescribedfrom theoppositeperspective,
asfollows.

Supposethat the solutions of the CM problem are
w1, ����� , wδ. Thenwe mustbeableto write thematrix ba-
sisY1, ����� Yδ in termsof therank-1basisw∗

1w1, ����� , w∗
δwδ,

i.e.,

Y1 = λ11w∗
1w1 + ����� + λ1δw∗

δwδ = W∗Λ1W
...

...
Yδ = λ1δw∗

1w1 + ����� + λδδw∗
δwδ = W∗ΛδW

where

W =


�� w1
...

wδ


 �� , Λk =


�� λk1 0
. . .

0 λkδ


 ��
Hence,by theexistenceof a solutionto theCM problem,
theremust be a matrix W whoseinversesimultaneously
diagonalizesY1, ����� , Yδ. The rows of W, scaledto have
normn1/2, aretheweightvectorsthatsolvetheCM prob-
lem.

Generically, Y1 and Y2 are d × d matricesof rank δ,
andnot lessthanδ. In this case,a generalizedeigenvalue
decompositionof just Y1 and Y2 will alreadydetermine
W. Numerically, and in the presenceof noise,it is better
to takeall Yk into account.Suchanalgorithmis described
in the next section.

2.2. Simultaneous diagonalization

Assume,for themoment,thatthereis nonoiseaddedto X.
As we haveseen,thereexistsa full rankmatrixW ∈ |Cδ×d

suchthat

Y1 = W∗Λ1W
...

Yδ = W∗ΛδW .

(Λ1, ����� , Λδ ∈ |Cδ×δ, diagonal)

(5)
Bring in a QR factorizationof W∗ andan RQ decomposi-
tion of W: W∗ = Q∗R′ , W = R′′Z∗ , whereQ, Z areunitary
d×d matrices,andR′ ∈ |Cd×δ, R′′ ∈ |Cδ×d areuppertriangu-
lar. If δ < d, thenwe canmakesurethatonly the leading

δ × δ blocksof R′ and R′′ arenon-zero.Substitution into
(5) leadsto

QY1Z = R1...
QYδZ = Rδ

(R1, ����� , Rδ ∈ |Cd×d, uppertr.) (6)

with
R1 = R′Λ1R′′ , ����� , Rδ = R′ΛδR′′ . (7)

Only thetop-leftδ×δ blockof eachRk is non-zero.Hence,
thereexistsQ, Z such that QYkZ is uppertriangular, for
k = 1, ����� , δ, which is some kind of generalizedSchur
decomposition.With this decomposition,it is seenthat a
parametervector[α1

����� αδ] satisfies(4) if andonly if it
satisfies

α1R1 + ����� + αδRδ is rank 1. (8)

With the modelof R1, ����� , Rδ in (7), we obtain

R′(α1Λ1 + ����� + αδΛδ)R′′ is rank 1.

Sinceall the Λk are diagonal,the αk are straightforward
to compute:only oneentryof thediagonalmatrix α 1Λ1 +����� + αδΛδ can be non-zero. Setting this entry equal to
one, all possibleparametervectors [α1

����� αδ] follow
by constructinga matrix whosecolumnsconsistof the
diagonalentriesof the Λk,

Λ =


�� (Λ1)11
����� (Λ1)δδ

...
...

(Λδ)11
����� (Λδ)δδ


 �� .

The rows of Λ−1 arethe independentvectors[α1
����� αδ].

It is not necessaryto computethe factorization(7): the
αi candirectly be obtainedfrom (6), as follows.

Proposition 1. For given Y1, ����� , Yδ, assume the de-
composition (6). All independent parameter vectors
[α1

����� αδ] such that α1Y1 + ����� + αδYδ has rank 1 are
given by the rows of A:

A = R−1 , R =


�� (R1)11
����� (R1)δδ

...
...

(Rδ)11
����� (Rδ)δδ


 �� .

Factoringeachof theδ rank-1matricesthatis obtained
in thisway givesδ independentvectorsw, which form the
rowsof thematrix W thatwe werelookingfor in equation
(5). Hence,in the noise-freecase,the computationof a
super-generalizedSchurdecomposition,i.e., two unitary
matricesQ, Z that satisfy (6), gives the solution to the
simultaneousdiagonalizationproblem.

When X is distortedby noise,thereis no Q, Z which
simultaneouslymakes all matrices Yk upper triangular.



However� , we can try to find Q, Z to make thesematri-
cesas muchuppertriangularaspossible,by minimizing
the Frobeniusnorm of the residuallower triangularen-
tries. Oneapproachfor doing this goesvia an extension
to more than two matricesof the usualQZ iteration for
computingthe generalizedSchur decompositionof two
matrices,describedin the next paragraph.With Q, Z and
henceR1, ����� , Rδ obtainedthis way, we can computeall
independentparametervectors[α1

����� αδ] as in proposi-
tion 1. The resultingmatricesY haveapproximatelythe
form Y = w∗w, andeachw canbeestimatedasthesingu-
lar vector correspondingto the largestsingularvalue of
eachY. It remainsto scalew to ensurethat � w � = n1/2.

The QZ iteration for computingthe Schurdecompo-
sition of two matrices [3] starts with setting Q (0) = I,
Z(0) = I. At the k-th iterationstep,a unitary matrix Q (k)

is computedsuch that Q(k)(Y1Z(k−1)) is upper triangular,
anda unitarymatrix Z(k) is computedto make(Q(k)Y2)Z(k)

uppertriangular. As anextensionto morethantwo matri-
ces,we proposethe following two stepiteration. Denote
by � ⋅ � LF the Frobeniusnorm of the strictly lower trian-
gular part of a matrix. Then Q(k) and Z(k) are chosento
be unitarymatricessolving

Q(k) = argmin
Q

� Q(Y1Z(k−1)) � 2
LF + ����� + � Q(YδZ(k−1)) � 2

LF ,

Z(k) = argmin
Z

� (Q(k)Y1)Z � 2
LF + ����� + � (Q(k)Yδ)Z � 2

LF .

Each of thesestepsis a least squaresproblem with an
exactsolution,which can be obtainedusing SVDs. We
omit the details. The resultingQZ iteration is observed
to converge fast, usually quadraticallyin 3–5 iterations.
Becausethe inner loop consistof SVDs, the schemeis
only practicalif d is small,which is certainlythecasefor
the currentlyenvisionedapplications(d ≤ 6, say).

3. EXPERIMENTAL EVALUATION

To assessthe performanceof the algorithm, we have
applied it to a numberof test matrices,basedboth on
computergenerateddataandon real datacollectedfrom
an experimentalset-up. In this paper, we will report
on only onesuchexample,usingmeasurementdatacol-
lectedfrom a rooftopantennaset-upat ArgoSystems,Inc
(Sunnyvale,CA). In this experiment,there are m = 6
receiverantenna’s, arrangedin a certainnondescriptpat-
tern,andd = 4 FM transmitters,markedA–D, broadcast-
ing music, speech,and modulatedtones. The anglesof
the transmitterswith respectto the array broadsidewere
−1.5°, 0°, 7.1°, 42.6°, for A, B, C, D, respectively, andtheir
signal-to-background noiselevelswere19.1dB, 17.6dB,
17.9 dB, 16.7 dB. In a secondexperiment,the powerof
B wasloweredto 7.6 dB.

In figure 1 (a) and (b), the singularvaluesof X and
the condition matrix P̂ in (3) are shown. For n = 100

and n = 50 samples,it is clear that thereare 4 signals,
andthat in this exampleall of themhaveconstantmodu-
lus. Figure1(c) showsthemoduluserrorof thesolutions,
dist(s, ��� ) = � n

1(|(s)k|2 − 1)2. In orderto assessthe opti-
mality of thesolutionsin thepresenceof noise,we apply
the Gerchberg-Saxtonalgorithm [4] to the obtainedsig-
nals, taking d = 4 and δ = 4, for n = 25 samples. (The
GS-algorithmis a block-iterativeCM algorithm,whichal-
ternatinglyprojectsan approximatesolutions onto

� ′(X)
and onto ��� .) The solid lines show the moduluserror
that resultwhen the iterationsare startedfrom the δ = 4
analyticallycomputedweight vectors,the dashedlines is
the error when we start with a numberof randomlyse-
lectedweight vectors. The Gerchberg iteration improve
theanalyticallycomputedweightvectorsonly marginally:
they are alreadyclose to optimal. For n = 50, straight
lines occurred(not shown).

In a secondexperiment,the power of signal B was
loweredto 7.6 dB. As thespacingof theB-antennato the
A-antennais still only 1.5°, this is a challengingtestof the
algorithm. The resultsare depictedin 2. The detection
of the other threesignalsfrom the singularvaluesof P̂
remainedthe same,but the fourth singularvalue (appar-
entlycorrespondingto B) is raisedandnow somewherein
the middle of the gapbetweenthe largeandsmall singu-
lar values. The detectionthat thereare four independent
signalsfrom thesingularvaluesof X is alsomoredifficult
now, evenfor n = 100.

4. CONCLUDING REMARKS

In this paper, we havedescribedan analytic methodfor
solving the constantmodulusfactorizationproblem. The
methodcondensesall conditionson the weightvectorsw
into a singlematrix P̂, andfindsall independentvectorsin
the kernelof this matrix that havea certain(Kronecker)
structure. This problem, in turn, is shown to be a si-
multaneousdiagonalizationproblem,or super-generalized
eigenvalueproblem,whichmaybeformulatedin termsof
a super-generalizedSchurdecomposition:for given ma-
tricesY1, ����� , Yδ, find Q, Z (unitary)suchthat

QY1Z = R1 , ����� QYδZ = Rδ ,

whereR1, ����� , Rδ are as much uppertriangularas possi-
ble. We have proposeda modified QZ iteration which
treatsall Yk equally, convergesto uppertriangularmatri-
cesRk in the absenceof noise,andusuallyhasquadratic
convergence. Other interestingiterationsmight be de-
visedaswell. Thereareotherapproachesto the general-
ized eigenvalueproblem(4): Cardoso[5], andPapadias
andSlock[6] solvesimilar problems,usingiterativetech-
niques.

Importantadvantagesof the analyticapproachare
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Figure 1. Experimentwith d = 4 FM broadcastersandan
arrayof m = 6 receivingantenna’s. (a) svd(X),
(b) svd(P̂), (c) dist(s, ��� )/n during Gerchberg
iterations,with analyticallycomputedandran-
dom initial starts.

1. It is less blind: the numberof CM signalscan be
detectedbeforehand,from the close-to-zerosingular
valuesof P̂. Not all signalshaveto be CM signals.

2. It is deterministic: it doesnot rely on lucky initial
choicesof w. All CM signalsare found. It does
not lock on othersignals(local minima). The only
parametersthat haveto be set are the total number
of signals,andthe numberof CM signals.

Thesetwo propertiesmake the algorithm more reliable,
sothatit canoperatewith a lower numberof samplesand
at a lower SNR.
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Figure 2. Sameexperimentas in figure 1, but now with
SNR(B) loweredto 7.6 dB.
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