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Iterative constantmodulusalgorithmshave beenused
to blindly separateand retrieveinterferingconstantmod-
ulus signalsimpinging on an antennaarray Theseal-
gorithms haveseveralwell-known but basicallyunsolved
deficiencies.In this paper we presentan algorithmto an-
alytically computethe solutionto the underlyingconstant
modulus(CM) factorizationproblem. With this new ap-
proach,it is possibleto detectthe numberof CM signals
presenin the channelandto retrieveall of themexactly
rejectingother non-CM signals. Only a modestamount
of samplesare required. The algorithmis robustin the
presenceof noise, and is testedon real data, collected
from an experimentaket-up.

1. INTRODUCTION

A problemin sensorarray signal processingvith impor-

tantapplicationgo wirelesscommunicationgs concerned
with the casewherethere are severalunknownconstant
modulus(CM) signalsimpinging on the array and the

objectiveis to copy eachof them. Becauseof multipath
effects,informationonthearrayresponseectorcannotbe

used.Mathematicallywe aregivena datamatrix X : mxn,

with x;; the j-th sampleof the i-th antennaandwe have
to find a factorizationof X, if it exists,as

X=AS=as + --- + Sy, (1)

A=[a --- a] OC™, S=[¢ --- &7 0o,

suchthat A, S are full rank d, andall s, 0 C" are CM
signals.The row vectorss,, - - -, § containsamplesof the
d CM signals,the columnvectorsay, - - -, a4 are the cor-
respondingarray responsevectors. The CM factorization
problemcanbe reformulatedasfinding all weightvectors
w suchthatwX = s for asmanylinearlyindependen€M
signalss as possible. This formulationis more general:
notall d signalspresentin X needto be CM signals,but
only d<d, say

The CM factorizationproblemgainedmuchinterestin
the areaof communicationswhere many modulationor
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coding schemegroducesignalsthat havethe CM prop-
erty, suchasFM andphase-modulatesignals.A reliable
solutionto this problem allows to receive and separate
multiple co-channelCM signalsimpingingon an antenna
array without use of the structureof the array response
matrix (i.e., blindly). This leadsto a direct increasein
channekapacity With somesimplifying assumptionghe
CM factorizationproblemis an appropriatemathematical
formulationof this ‘blind null-steering’scenario.

Foralongtime, theCM factorizationproblemwascon-
sideredto betoo non-linearto admita closed-formanalyt-
ical solution,andonly iterative,gradient-descerschemes
havebeendevelopedmostlybasedon pioneeringvork by
Godard,and Treichler AgeeandLarimore[1,2]. Despite
many efforts (we omit the references)most CMAs up
to datehaveconvegenceproblemswhich seriouslylimit
their practicaland automatedapplicability. The speedof
convegenceis highly dependenbn the initialization, but
no suitabledefaultinitial points are known. The algo-
rithms sometimesconvepe to local minima, which do
not correspondo real signals. Only one signalat a time
is retrieved;the othersignalshaveto be found by starting
from otherinitial points. Weak signalsare hard to con-
vergeto in thisway. The only way to detectthe number
of CM signalsis a posteriori,by countingthe numberof
independenCM signalsthat have beenobtained.

Let n> d?, and assumethat thereis a uniquesolution
(modulocertaintrivial transformationsyiz. [4]). In this
paper we derivea new CM algorithmwith the following
properties.

— It is possibleto determinethe numberof CM signals
amongall other signalspresentin X: J equalsthe
dimensiorof thekernelof a certainmatrix constructed
from X.

— The weightvectorsand correspondingCM signalsin
X canbe computedexactly from a certaineigenvalue
decomposition.

— With X distortedby additive noise, a generalization
of the algorithmis robustin finding S, evenwhenthe
number of samplesis quite small. This is demon-
stratedwith real data,measuredrom anexperimental
set-up.



2. EXACT SOLUTION TO THE CM PROBLEM
2.1. Simultaneous quadratic equations

Denoteby R'(X) the subspacespannedy the rows of X

(the co-rangeof X) andby CM the set of CM matrices.
Assumingthatthereis a uniquesolution,the CM factor

ization problemis preciselyequivalentto the following

problem:

Problem P1.  Find all linearly independent signals s
that satisfy

(A sOCM,

(B) sOR(X).

In a seriesof steps,this problemis translatednto an
equivalentbut more tractableform. Let X = UZV: U O
C™™ s OR ™ VOC™ bea singularvaluedecompo-
sition of X: U andV are unitary matrices,and is a real
diagonalmatrix with non-negativeentries. Supposehat
rank(X) = d. We canwrite

x=05V; Ooc™ Sor®d voctn
whereU, %, V are submatricesof U, Z, V, respectively
correspondingdo the non-zerosingularvaluesof X. The
rows of V form an orthonormalbasisof the row spanof
X

(B): sOR(X - s=wV, V:dxn.
Here, the weight vector w is not preciselythe sameas
before:it is now actingon the orthogonabasisvectorsof
R (X), ratherthandirectly on X. This reduceshe number
of parametergo estimatefrom m to d, and ensureshat
linearly independentv resultin linearly independens.

To satisfy condition (A): s = wV O CM, put V =
[Vi -~ vq], wherev; O c%is thei-th columnin V. Then

(A): s=[(91 - (9] O M
e [P - [enPT =21 --- 1]
wviviwt = 1
Wvﬂ\./,E\ND = 1
-  wPwi=1, k=1,.--,n,

where Py = wv! O c®™ fork =1,---,n. The CM
problemis thusequivalento the simultaneousolutionof
n quadraticequationsin the entriesof w, corresponding
to the intersectionof n ellipsoids. To find all solutions,
theapproaclis to expandtheseequationsn the entriesof
w, which givesrise to Kroneckerproducts.At this point,

we introducethe notation,for Y O €®4, y 0 c?,

Y
() I ()
. Y:12 Ay Wa+rr - (Y)ad
vedYy) = Yo, | vec-(y) = : . :
Yig SR

With thesedefinitions,the quadraticexpressiorwP,wt is
‘linearized’ as
wPw" = py,

wherey = veqww) 0C%*, p, = veqPy)".
The CM problemis thus: solve

Py 1

|y = :

Py 1
y = vedqw'w),

i.e.,, we haveto find vectorsy that satisfya linear system
and can be factoredasy = veqw-w) aswell. For each
solutionw, the correspondindCM signalis givenby s =
wV.

A descriptionof all solutiors to the linear systemhas
in generalthe form

Yy = oy tay,tectays, (ont---+as=1), (2)

and can be constructedrom the kernelof P in

p; 1
ﬁ[_yl]:o, pP=| - . 3)
Pn 1

We canarguethat,generically, there are precisely as many
linearly independent solutions as there are CM signals.
Indeed, supposethat there are § CM signals. Vectors
{wy,---ws} arelinearly independentf andonly if vec-
tors {veqwjwy), - - -, vedwsw,)} are. Thesevectorssat-
isfy the linear system: it must have at least J linearly
independensolutiors {y, , - - - ,ys}. Generically the sys-
tem is overdeterminecindwill not have other solutiors,
unlessthereare specificrelationsbetweenthe signals.

In caseX is distortedby additivenoise,d andthe basis
{y;}¢ canbe estimatedrom the approximatekernelof P,
usingan SVD.

The remaining problem is to find a changeof ba-
sis: transform{y, , - - - ,y} into a basiswith “Kronecker

structure”. We haveto find all valuesfor [a1,---, a4 in
equation(2) suchthat
y = veqw-w)
= Y=vecl(y) =w-w (rank1, symm.)
= W[\N: a1Y1+-~~+a,5Y(5. (4)



Generically there are precisely d solutions[az, - - -, ag]

that generaterank-1 symmetricmatrices. We have thus
reducedthe CM problemto a kind of generalizedcigen-
valueproblem,which canbe solvedusingstandardinear
algebratools. Indeed,if d = = 2, thentherearetwo ma-
tricesY; andY,, eachof size2 x 2, andwe haveto find

A = ao/ay suchthat Yy + AY, hasits rank reducedby one
(to becomeone). For larger o, there are more thantwo

matrices,andtherankshouldbe reducedo oneby taking

linearcombination®f all of them. This canbe viewedas
an extensionof the generalizedeigenvalueproblem. Its

solutionis betterdescribedrom the oppositeperspective,
asfollows.

Supposethat the solutions of the CM problem are
Wy, - - -, Ws Thenwe mustbe ableto write the matrix ba-
SisYi, - - - Ys in termsof therank-1basiswiwy, - - -, W5ws,
i.e,

Y, = /\11W][_\N1 +...+ /\15\N%\N5 = V\/]/\]_W
Ys = AWiwg + -+ AW, WHEA W
where
Wq Akt 0]
W= : , N = ..
Ws O Aks

Hence by the existenceof a solutionto the CM problem,
theremust be a matrix W whoseinversesimultaneously
diagonalizesYy, - - -, Ys. The rows of W, scaledto have
normnY2, arethe weightvectorsthat solvethe CM prob-
lem.

Generically Y; and Y, are d x d matricesof rank g,
andnotlessthand. In this case,a generalizeceigenvalue
decompositiorof just Y1 and Y, will alreadydetermine
W. Numerically andin the presenceof noise,it is better
to takeall Yy into account.Suchanalgorithmis described
in the next section.

2.2. Simultaneous diagonalization

Assume for themomentthatthereis nonoiseaddecdo X.
As we haveseen thereexistsa full rank matrix W O cd
suchthat

\ WA, W (A1,---,\s 0 C%°, diagona)

Ys = WALW.

5)
Bring in a QR factorizationof W™ andan RQ decomposi-
tionof W: WH= QR , W=R'ZY, whereQ, Z areunitary
dxd matricesandR 0 C%° R' 0 €% areuppertriangu-
lar. If 6<d, thenwe canmakesurethatonly theleading

0% J blocksof R andR’ are non-zero. Substituton into
(5) leadsto

QYiZ = R (Ry,---,Rs0C™Y uppertr) (6)
QYsZ = Rs
with
Ri=RMAR', -+, Rs=RAR . (7)

Only thetop-left xd block of eachRy is hon-zero.Hence,
thereexists Q, Z suchthat QYZ is uppertriangular for
k =1,.---,9 which is somekind of generalizedSchur
decompositionWith this decompositionit is seenthata
parameterector[a; --- a4 satisfies(4) if andonly if it
satisfies

R +---+asRs isrank1l. (8)

With the modelof Ry, - - -, Rs in (7), we obtain
R(aiA1+ - -+ as\s)R' isrank1.

Sinceall the A\ are diagonal,the ay are straightforward
to compute:only oneentry of the diagonalmatrix a1/A; +

-+ + as/\s can be non-zero. Settingthis entry equalto

one, all possibleparametervectors[a; --- a4 follow

by constructinga matrix whose columnsconsistof the

diagonalentriesof the Ay,

(A1) (A1) ss

N =

(As)12 (No)as

Therows of A™! aretheindependentectors[a; --- ag].
It is not necessaryto computethe factorization(7): the
a; candirectly be obtainedfrom (6), asfollows.

Proposition 1. For given Yy,---,Ys assume the de-
composition (6). All independent parameter vectors
[a1 -+ ag] such that a1Y1 + ---+ a5Ys has rank 1 are
given by the rows of A:

(R)u (R1)as

A=R1, R= ; ;
(Re)11 (Rs)ss

Factoringeachof the d rank-1matricesthatis obtained
in thisway givesdindependentectorsw, which form the
rowsof the matrix W thatwe werelooking for in equation
(5). Hence,in the noise-freecase,the computationof a
supergeneralizedSchurdecompositionj.e., two unitary
matricesQ, Z that satisfy (6), gives the solutionto the
simultaneousliagonalizatiorproblem.

When X is distortedby noise,thereis no Q, Z which
simultaneouslymakes all matrices Yy upper triangular



However we cantry to find Q, Z to make thesematri-
cesas much uppertriangularas possible,by minimizing
the Frobeniusnorm of the residuallower triangularen-
tries. One approachfor doing this goesvia an extension
to more than two matricesof the usualQZ iteration for
computingthe generalizedSchur decompositionof two
matrices,describedn the next paragraphWith Q, Z and
henceRy, - - -, Rs obtainedthis way, we can computeall
independenparametewvectors[a; - - - a5 asin proposi-
tion 1. The resultingmatricesY have approximatelythe
form Y = wHw, andeachw canbe estimatedasthe singu-
lar vector correspondingo the largestsingularvalue of
eachY. It remainsto scalew to ensurethat ||w|| = n'2.

The QZ iteration for computingthe Schurdecompo-
sition of two matrices[3] startswith settingQ© = 1,
ZO =|. At the k-th iteration step, a unitary matrix Q®
is computedsuch that Q®(Y,z*D) is upper triangular
anda unitarymatrix Z® is computedo make(Q®Y,)z®
uppertriangular As anextensiorto morethantwo matri-
ces,we proposethe following two stepiteration. Denote
by || O|.r the Frobeniusnorm of the strictly lower trian-
gular part of a matrix. ThenQ® andz® are chosento
be unitary matricessolving

QW = argmin] QUAZID) 7 + -+ [ AVZ)
20 = agmin]| (QWYZ 2 + -+ | (QOYZ 7

Each of thesestepsis a leastsquaresproblem with an
exactsolution, which can be obtainedusing SVDs. We
omit the details. The resultingQZ iterationis observed
to convege fast, usually quadraticallyin 3-5 iterations.
Becausethe inner loop consistof SVDs, the schemeis

only practicalif d is small, which is certainlythe casefor

the currentlyenvisionedapplicationqd < 6, say).

3. EXPERIMENTAL EVALUATION

To assessthe performanceof the algorithm, we have
appliedit to a numberof test matrices, basedboth on
computergeneratedlataand on real datacollectedfrom
an experimentalset-up. In this paper we will report
on only one such example,using measuremendlata col-
lectedfrom a rooftopantennaset-upat ArgoSystemsinc
(Sunnyvale,CA). In this experiment,thereare m = 6
receiverantennas, arrangedn a certainnondescrippat-
tern,andd = 4 FM transmittersmarkedA-D, broadcast-
ing music, speech,and modulatedtones. The anglesof
the transmitterswith respectto the array broadsidewere
-15°,0°,7.1°,426, for A, B,C,D, respectivelyand their
signal-tebackgroud noiselevelswere 19.1dB, 17.6dB,
17.9dB, 16.7 dB. In a secondexperimentthe power of
B wasloweredto 7.6 dB.

In figure 1 (a) and (b), the singularvaluesof X and
the condition matrix P in (3) are shown. For n = 100

and n = 50 samplesi,it is clear that there are 4 signals,
andthatin this exampleall of themhaveconstantmodu-
lus. Figure1(c) showsthe moduluserror of the solutiors,

dist(s, CM) = S21(I(S)k? — 1) In orderto assesshe opti-
mality of the solutionsin the presenceof noise,we apply
the Gerchbeg-Saxtonalgorithm[4] to the obtainedsig-

nals, takingd = 4 and d = 4, for n = 25 samples. (The
GS-algorithmis a block-iterative CM algorithm,which al-

ternatinglyprojectsan approximatesolutions ontoR'(X)

and onto CM.) The solid lines show the moduluserror
that result when the iterationsare startedfrom the 5 = 4

analyticallycomputedweight vectors,the dashedinesis

the error whenwe startwith a numberof randomly se-
lected weight vectors. The Gerchbeg iterationimprove
theanalyticallycomputedveightvectorsonly mamginally:

they are alreadycloseto optimal. For n = 50, straight
lines occurred(not shown).

In a secondexperiment,the power of signal B was
loweredto 7.6 dB. As the spacingof the B-antennao the
A-antennds still only 1.5°, thisis a challengingestof the
algorithm. The resultsare depictedin 2. The detection
of the other three signalsfrom the singularvaluesof P
remainedthe same,but the fourth singularvalue (appar
ently correspondingo B) is raisedandnow somewherén
the middle of the gap betweenthe large and small singu-
lar values. The detectionthat thereare four independent
signalsfrom the singularvaluesof X is alsomoredifficult
now, evenfor n = 100.

4. CONCLUDING REMARKS

In this paper we have describedan analytic methodfor
solving the constantmodulusfactorizationproblem. The
methodcondensesll conditionson the weightvectorsw
into asinglematrix P, andfindsall independentectorsin
the kernel of this matrix that havea certain(Kronecker)
structure. This problem,in turn, is shownto be a si-
multaneousliagonalizatiorproblem,or supergeneralized
eigenvalueroblem,which may be formulatedin termsof
a supergeneralizedSchurdecomposition:for given ma-
trices Yy, - - -, Yg, find Q, Z (unitary) suchthat
QY1Z =Ry, QYsZ =Rs,

whereRy, - - -, Rs are as much uppertriangularas possi-
ble. We have proposeda modified QZ iteration which
treatsall Yk equally convegesto uppertriangularmatri-
cesR in the absenceof noise,and usuallyhasquadratic
convegence. Other interestingiterations might be de-
visedaswell. Thereare otherapproacheso the general-
ized eigenvalueproblem(4): Cardosq[5], and Papadias
andSlock][6] solvesimilar problems usingiterativetech-
nigues.

Importantadvantagesf the analyticapproachare



(©

Figure 1. Experimentwith d = 4 FM broadcasterandan
arrayof m = 6 receivingantennas. (a) svd(x),
(b) svd(P), (c) dist(s,CM)/n during Gerchbeg
iterations,with analyticallycomputedandran-

1. It is lessblind: the numberof CM signalscan be
detectedbeforehandfrom the close-to-zerasingular
valuesof P. Not all signalshaveto be CM signals.

Thesetwo propertiesmake the algorithm more reliable,
sothatit canoperatewith alower numberof samplesand
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Figure 2. Sameexperimentasin figure 1, but now with
SNR() loweredto 7.6 dB.
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