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Abstract
This paper presents an approach to multi-user blind space-
time equalization exploiting the constant modulus (e.g. BPSK,
m-PSK or QAM) modulation properties of the source sig-
nals. This is a problem that asks for both a blind equaliza-
tion and a blind source separation based on the modulation
properties. Previously proposed algorithms have consisted
of two steps in sequence: equalization to linear mixtures of
the source signals followed by separation of these mixtures,
or separation into constant modulus source signals at sev-
eral delays followed by assigning outputs to corresponding
users. In this paper we combine both types of properties into
a one-stage algebraic technique.

1. Introduction
Blind equalization has been an active research area during
the last few years, fueled by the growth of wireless commu-
nications and by the upcoming third generation standards of
wideband CDMA. Temporal and spatial oversampling tech-
niques (using fractional sampling and antenna arrays, re-
spectively) provide a multichannel data representation with
a rich structure enabling several leverages for blind equal-
ization [1, 2].

We consider an application wherein several co-channel
users are received over an FIR convolutive channel with a
delay spread of at most 2 symbols. The signals themselves
can be modulated by periodic CDMA codes, and we can em-
ploy multiple transmission and receiver antennas. Knowl-
edge of the codes is not assumed, in order not to confuse the
additional possibilities that this would give. We thus arrive
at a model where temporal (chiprate) and spatial oversam-
pling makes sense.

From an algebraic perspective, oversampling an FIR con-
volutive channel leads to a low-rank model for the received
data matrix. The structure present in this model (subspaces
generated by Toeplitz and Hankel matrices) enables blind
equalization in a variety of ways. Generally speaking, we
can classify algorithms into two categories: “column-span
methods” that first estimate the channel, as in [3], and “row-
span methods” that directly estimate the equalizers to re-
cover the symbols, e.g., [4, 5]. Here, we consider in partic-
ular the subspace-intersection formulation in [5], in which
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Figure 1. Mutually referenced equalizers

several shifts of the row span of the data matrix are inter-
sected. This procedure is such that only the symbol se-
quence that is present in all shifts will remain, thus removing
the ISI. As shown in [6], the algorithm is essentially identi-
cal to the “mutually referenced equalizer” (MRE) technique
by Gesbert e.a. [7]. The MRE idea is illustrated in figure
1: if the received data vector {xi} at time i is obtained by
the convolution of a source symbol sequence by a filter of
length 2, then there are two possible equalizer outputs, z

�
0 �

i

and z
�
1 �

i , one a delay of the other. By forcing this property,
the equalizers are defined blindly.

A separate class of blind algorithms are those that sepa-
rate souces based on their modulation properties, e.g., con-
stant modulus (CM) or finite alphabet. In this paper we con-
sider that the sources have a constant-modulus modulation
(e.g., BPSK or QAM or m-PSK). The algebraic constant-
modulus algorithm (ACMA) in [8] constructs a beamformer
(or equalizer) to recover such a source based on forcing the
property

sk ∈ CM ⇒ |sk|2 � 1 �
In a multi-user FIR-MIMO scenario, blind equalization

needs to be combined with blind source separation. In previ-
ous publications [4, 5], it was shown that this can be done in
two separate stages: first blind equalization, which (ideally)
reduces the problem to an instantaneous mixture of sources,
and secondly a blind instantaneous MIMO source separation
stage based on the constant modulus property.

We propose algorithms that solve this problem in a sin-
gle stage. To this end, we explore how the MRE-conditions
on the equalizer outputs can be combined with the constant

modulus condition |z
�
0 �

k |2 � 1 and |z
�
1 �

k |2 � 1.

Notation T denotes a matrix transpose, ∗ the matrix com-
plex conjugate transpose, 0 a vector of all 0s, 1 a vector of
all 1s, vec � A � a stacking of the colums of a matrix A, ⊗ a



Kronecker� product, and 	 a Khatri-Rao product: A 	 B : �

a1 ⊗ b1 a2 ⊗ b2 · · · ��� We will use the property, for vec-

tors a, b, c, d,

a∗bc∗d � � c ⊗ b � ∗ � d ⊗ a � (1)

2. Data model
We first consider a single source, and subsequently general-
ize to Q sources.

A digital symbol sequence


si � is transmitted through a

medium and received by an array of M ≥ 1 sensors. The re-
ceived signals are sampled P ≥ 1 times faster than the symbol
rate, here normalized to T � 1. Hence, during each symbol
period, a total of MP measurements are available, which can
be stacked into MP-dimensional vectors xi

� 
 x1
i  · · ·  xMP

i � T .
Assuming an FIR channel, we can model xi as the output
of an MP-dimensional vector channel with impulse response

h0  h1  · · ·  hL−1 � , where L denotes the channel length. In the

noise free case, xi is then given by

xi
� L−1

∑
k � 0

hksi−k � (2)

Although it is not hard to generalize this, we assume from
now on a simplified case where the channel has length L � 2
symbols, since this situation applies to CDMA systems after
some preprocessing. Thus consider a finite block of data and
define the MP × N data matrix

X
�
i � ��� xi xi � 1 ����� xi � N−1 � �

From (2), X
�
i � has a factorization as X

�
i � � HS

�
i � , where H

is an MP ×2 channel matrix and S
�
i � is a 2×N signal matrix,

H � � h0 h1 �
S
�
i � � � si si � 1 · · · si � N−1

si−1 si · · · si � N−2 � � (3)

We will assume that H is tall and full column rank 2, and S
�
i �

is wide and full row rank 2, so that this is a low rank factor-
ization. (If H is not tall, then it can be made tall by shift-
ing and stacking rows of X [5].) A low-rank factorization is
essential because it ensures the existence of (zero-forcing)
equalizers w that can reconstruct rows of S via w∗X.

The above model is readily extended to Q sources:

xi
� Q

∑
q � 1

L−1

∑
k � 0

hq
ksq

i−k (4)

X
�
i ��� Q

∑
q � 1

HqSq
�
i ����� H1  · · ·  HQ ���� S1

�
i �

...
SQ
�
i � �!

where q indicates a source index, and with obvious defini-
tions of Hq and Sq

�
i � . X

�
i � has a low-rank factorization en-

abling ZF equalization if MP ≥ 2Q. A low-rank factorization

can be obtained by shifting and stacking whenever MP " Q
and sufficiently large N [5].

To avoid equalizers in the null space of X, in all algo-
rithms to follow a preprocessing is necessary, consisting of a
prewhitening and dimension reduction to the rank of X. The
processing consists of computing a singular value decompo-
sition of X � UΣΣΣV, and replacing X by the first 2Q rows of
V. Refer to [8, 5, 7] for further details.

3. Algorithm derivation
3.1. Mutually referenced equalizers

We consider Q � 1 for now, and drop the index q for read-
ability. An equalizer can be viewed as a vector w acting on
X
�
i � to produce an output sequence z � w∗X

�
i � . Since S

�
i �

has two rows, there are two different equalizers, w0 and w1,
to recover the source symbols at different delays, viz.#

w∗
0X
�
i � � 


si si � 1 · · · si � N−1 �
w∗

1X
�
i � � 


si−1 si · · · si � N−2 �
or

w∗
0xk
� w∗

1xk � 1 � (5)

Taking two delays of the inputs, we can write

w∗
1X
�
1 ��� 
 s0 s1 · · · sN−1 � � w∗

0X
�
0 � (6)

Thus, the equalizer outputs can be paired, which is the idea
behind the MRE technique. The equalizers can be found in
various ways, adaptively or using subspace intersections, cf.
[6], essentially by solving

min
w0 $w1 % 
w∗

0 w∗
1 � � X

�
0 �

−X
�
1 � � % 2

with a suitable norm constraint on


w∗

0 w∗
1 � . The solution is

given by the left singular vector corresponding to the small-

est singular value of � X & 0 '
−X & 1 ' � . The corresponding right singu-

lar vector is the source sequence α


s0 s1 · · · sN−1 � , where α

is an indetermined scaling.
With Q users, we similarly find a basis of Q row vectors

in the intersection, with each vector an arbitrary linear com-
bination of the Q symbol sequences. Identification of the Q
source symbol sequences from this basis cannot be done us-
ing blind equalization, but only using the constant modulus
property.

3.2. Forcing the constant-modulus property

The constant-modulus property can be expressed as

|sk|2 � 1  k � 0  · · ·  N − 1 �
In this equation we can substitute the equalizer outputs
z
�
0 �

k
� w∗

0xk and z
�
1 �

k
� w∗

1xk and require z
�
0 �

k z
�
0 � ∗

k
� 1 and

z
�
1 �

k z
�
1 � ∗

k
� 1, i.e.#

w∗
0



xkx∗

k � w0
� 1  k � 0  · · ·  N − 1

w∗
1



xkx∗

k � w1
� 1

(7)



Using( property (1), we can rewrite this as# 

xk ⊗ xk � ∗ � w0 ⊗ w0 � � 1  k � 0  · · ·  N − 1

xk ⊗ xk � ∗ � w1 ⊗ w1 � � 1

These expressions can be written more compactly using
Khatri-Rao products,

P0 $ 0 : � � X � 0 � 	 X
�
0 � � ∗

: � �)� 

x0 ⊗ x0 � ∗

...

xN−1 ⊗ xN−1 � ∗ �+*!

which gives #
P0 $ 0 � w0 ⊗ w0 � � 1
P0 $ 0 � w1 ⊗ w1 � � 1

(8)

This leads to the ACMA technique [8] where the problem is
solved in two steps. First solve the unstructured problem

P0 $ 0y � 1 ⇔


1 P0 $ 0 � � −1

y � � 0 � (9)

There is a two-dimensional subspace of solutions, since
w0 ⊗ w0 and w1 ⊗ w1 are solutions, but also linear com-
binations of these two vectors (with proper scaling). In par-
ticular, let {y0  y1} be a basis of the solution subspace of (9),
then

yi
� λi $ 0 � w0 ⊗ w0 �-, λi $ 1 � w1 ⊗ w1 �  i � 0  1 �

The second step is to identify the structured vectors from this
basis. This is done by reshaping the vectors yi into square
matrices Yi such that vec � Yi � � yi. Using (1), we can write

Yi
� λi $ 0w0w∗

0 , λi $ 1w1w∗
1� 


w0 w1 � � λi $ 0
λi $ 1 � 
w0 w1 � ∗

Thus, we have two matrices Y0 and Y1 with structure

Y0
� WΛΛΛ0W∗  Y1

� WΛΛΛ1W∗

where W � 
w0 w1 � is the solution of interest, and ΛΛΛi is
diagonal. This is a joint diagonalization problem that can
be solved using various techniques, in this case e.g. via an
eigendecomposition of Y0Y−1

1 .
Note that the ACMA technique produces two equalizers,

but does not tell which is w0 and which is w1: they are not
related, and both solve the same system of equations (8). To
identify which equalizer is which, we have to compare the
corresponding output sequences to see which one is a delay
of the other, cf. equation (6).

For Q " 1 users, the ACMA technique can still be used.
We form the same equations (9), but in this case, we find
a subspace of 2Q solution vectors. After solving the joint
diagonalization problem for 2Q matrices, we obtain an
unordered set of 2Q equalizers. The correct pairing into
{ � wq

0  wq
1 � } follows from solving a combinatorial problem

that involves correlating all 2Q output sequences with their
shifts.

3.3. Combining both parts

We now show how the MRE equations (5) can be combined
with the CM conditions (7), so that they are automatically re-
lated and the combinatorial problem can be avoided. We de-
rive several versions, beginning with a simple solution and
extending it to involve more relations.

Version 1 Let us start with (7), w∗
0



xkx∗

k � w0
� 1  and com-

bine with (5), viz. w∗
0xk
� w∗

1xk � 1. This produces

w∗
0


xkx∗

k � 1 � w1
� 1  k � 0  · · ·  N − 2 (10)

As before, we can rewrite this equation as

xk � 1 ⊗ xk � ∗ � w1 ⊗ w0 � � 1  k � 0  · · ·  N − 2

and collect the equations compactly by defining

P1 $ 0 : �.� X � 1 � 	 X
�
0 � � ∗

: � �)� 

x1 ⊗ x0 � ∗

...

xN−1 ⊗ xN−2 � ∗ �+*!

which gives
P1 $ 0 � w1 ⊗ w0 � � 1 (11)

As before, this is solved as

P1 $ 0y � 1  y � w1 ⊗ w0

For Q � 1 user, the linear equation has a single unique solu-
tion y. To factor it into y � w1 ⊗ w0, we construct a square
matrix Y such that vec � Y � � y, which is such that

Y � w0w∗
1

Thus, Y is a rank-1 matrix and we can easily find the factors
w0 and w1, e.g. via a singular value decomposition.

For Q " 1 users, this immediately generalizes. We form
the linear system P1 $ 0y � 1 and compute a basis {y1  · · ·  yQ}
of the subspace of solutions. Each yi is an arbitrary lin-
ear combination of the desired structured solutions wq

1 ⊗wq
0,

q � 1  · · ·  Q. We unstack the yi into matrices Yi, with struc-
ture

Yi
� Q

∑
q � 1

λq $ iwq
0wq∗

1
� W0ΛΛΛiW∗

1  i � 1  · · ·  Q
where W0

� 
w1
0 · · ·wQ

0 � , W1
� 
w1

1 · · ·wQ
1 � . This is a joint

diagonalization problem of the Q matrices Yi, and can be
solved using the same techniques as in [8]. Note that, unlike
in ACMA, the matrices Yi are non-symmetric. A Gauss-
Newton optimization procedure for problems of this type is
considered in [9].

After solving, we have all equalizers available in W0 and
W1, and moreover we know for each user which equalizer
is wq

0 and wq
1: the equalizers are automatically paired and no

combinatorial search is needed. Moreover, the matrix P1 $ 0
has the same size as in ACMA, but we have to find and de-
couple only Q solutions from it. From a complexity point of
view, it is thus more attractive.



Version/ 2 To obtain improved accuracy, we can extend the
system with additional equations. Similar to (5), consider
w∗

0xk � 1
� w∗

1xk � 2. From this we can derive

w∗
0


xk � 1x∗

k � 1 � w1
� w∗

1


xk � 2x∗

k � w0

Along with the conjugate of this equation, and the conjugate
of (11), we obtain the set#

w∗
0



xkx∗

k � 1 � w1
� 1  k � 0  · · ·  N − 2

w∗
1



xk � 1x∗

k � w0
� 1#

w∗
0



xk � 1x∗

k � 1 � w1
� w∗

1



xk � 2x∗

k � w0

w∗
1



xk � 1x∗

k � 1 � w0
� w∗

0



xkx∗

k � 2 � w1

⇔
�))� P1 $ 0 0

0 P0 $ 1
P1 $ 1 −P0 $ 2

−P2 $ 0 P1 $ 1 � **! � w1 ⊗ w0
w0 ⊗ w1 � � �))� 110

0

� **! (12)

where Pa $ b : � � X � a � 	 X
�
b � � ∗

.

This is again a linear system of the form Py � e and for
Q users we expect a subspace of Q solutions. After solving
for the subspace, we can split each basis vector yi into two
components yi $ 0 and yi $ 1, unstack to obtain Yi $ 0 � W0ΛΛΛiW∗

1
and Yi $ 1 � W1ΛΛΛiW∗

0, and combine both parts to Yi
� Yi $ 0 ,

Y∗
i $ 1. For this to work we have to ensure that ΛΛΛi is real, which

can be done by playing with the conjugate structure in (12)
which allows to map it to an equation with real entries. (We
omit the details.)

Version 3 Continuing along these lines, we can introduce
equations involving all variants of the parameter vectors,
w0 ⊗ w0, w1 ⊗ w1, w0 ⊗ w1 and w1 ⊗ w0. This leads to the
following linear system of equations:�))))))))))))))�

P0 $ 0 0 0 0
0 P1 $ 0 0 0
0 0 P0 $ 1 0
0 0 0 P0 $ 0

P1 $ 0 0 0 −P2 $ 1
P0 $ 1 0 0 −P1 $ 2

0 −P1 $ 1 P0 $ 2 0
0 −P2 $ 0 P1 $ 1 0

P1 $ 0 −P2 $ 0 0 0
0 0 −P0 $ 2 P1 $ 2

�+**************!
�))� w0 ⊗ w0

w1 ⊗ w0
w0 ⊗ w1

w1 ⊗ w1

�+**! �
�))))))))))))))�

1
1
1
1
0
0
0
0
0
0

�+**************!
This system is again of the form Py � e  and for Q users it
has a basis of Q solutions {yi}. As before, we reshape these
into square matrices Yi, satisfying

Yi
� Q

∑
q � 1

λq
i
� wq

0
wq

1 � 
wq∗
0 wq∗

1 � � WΛΛΛiW∗  i � 1  · · ·  Q
where

W : �10 w1
0 · · · wQ

0
w1

1 · · · wQ
1 2  ΛΛΛi : � diag



λ1

i  · · ·  λQ
i �
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Figure 2. Single user, SINR after equalization

W is obtained as the joint diagonalizer of the Yi. The joint
diagonalization problem is a bit different than before, be-
cause the Yi have size 2Q × 2Q but only rank Q. A Gauss-
Newton optimization procedure for problems of this type is
considered in [9].

4. Simulations
We first illustrate the performance of the algorithms for the
single user case, with MP � 2 antennas/oversampling. We
used a random channel of length L � 2 and a conditioning
of about 7. The second path was about 3 dB weaker than
the first. We compare to the MRE followed by ACMA to
separate the users (section 3.1), and to ACMA followed by
a combinatorial search to relate the equalizers (section 3.2).
We also show the performance of the Wiener equalizer com-
puted from known symbols.

Figure 2 shows the resulting SNR at the output after
equalization, for the best equalizer among � w1  w2 � , for
varying number of samples N and input SNR. The results
indicate that for N ≥ 20 all algorithms perform about equally
well and converge towards the Wiener equalizer in samples
or SNR. Usually, the performance of CM+MRE version 1
is a bit worse than the others, and ACMA can be somewhat
better, especially if the second path is much weaker than the
first.

Figure 3 shows the results for Q � 2 users and MP � 4
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Figure 3. Two users, worst user SINR after equalization

antennas or oversampling. The channel was selected ran-
domly, but the second paths of each user were a factor 10
weaker than the first paths. The resulting conditioning of H
was about 65. We plot the SINR performance of the best
equalizer of the worst user. In most cases, the performance
of MRE is the best and of ACMA is worst, especially for
small number of samples. CM+MRE version 1 is usually
close to ACMA, whereas the version 3 is similar to that of
MRE.

Similar conclusions are obtained for a higher user load.
Figure 4 shows a case with Q � 4, MP � 12, and ran-
dom channels. A moderate performance gain over ACMA
(which asymptotically converges to the Wiener solution) is
observed for low SNR and for small number of samples,
and similar performance to the combination of MRE and
ACMA.

5. Conclusions
Combination of blind equalization and source separation in
a single stage is possible, and we have derived three ver-
sions of an algorithm to do so. The simplest version is
the most elegant, has a complexity similar to ACMA (but
omits the combinatorial search to find equalizer pairs at the
end), and also similar performance unless the second path
is much weaker than the first. The other two versions are
significantly more complex, and their performance for the
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Figure 4. Four users, worst user SINR after equalization

multi-user case is almost never better than that of MRE fol-
lowed by ACMA. We observed that all algorithms converge
asymptotically to the Wiener solution. Further research is
needed to assess the performance under non-ideal channel
conditions.
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