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Abstract—Monte Carlo methods and simulation are often used
to estimate the mean, variance, and higher order statistical
moments of signal properties like delay and slew. The main
issues with Monte Carlo methods are the required long run time
and the need for prior detailed knowledge of the distribution of
the variations. Additionally, most of available circuit simulation
tools can run Monte Carlo analysis for Gaussian, lognormal and
uniform distribution only. In this paper, in order to estimate
these statistical moments, we propose a new method based on
the uniform sampling technique and weighted sample estimator.
The proposed method needs significantly less simulation runs,
and does not need detailed prior knowledge of the variation
distributions. Furthermore, it can be used for any type of
probability distribution irrespective of the circuit simulation
tool used for the analysis. The results obtained shows that the
proposed method needs 100x fewer simulations iterations than
Monte Carlo runs for the moments estimation of the delay for
standard cells in 45nm and 32nm technologies.

I. INTRODUCTION

The delay of a logic gate strongly depends on variations in
process, voltage, and temperature (PVT). As we are moving
towards nanometre technology, the process variation is increas-
ing, causing significant uncertainty in the delay estimation [1]
and greatly impacting the yield [2], [3]. As a consequence,
the accuracy of the conventional static timing analysis (STA)
with corner based approach for estimation of digital circuit
performance in advance technology processes is a serious
concern [4]. Due to these PVT variations, the delay is a
statistical parameter instead of a deterministic one. The process
of estimating the delay of a data path with PVT variation is
known as Statistical STA (SSTA) [5], [6], [7], [8].

In SSTA, the standard cell delay and signal slew are stochas-
tic parameters, and their parameters are often specified with
their statistical moments. Practically, Monte Carlo (MC) is the
dominant method of choice for statistical moment estimation
of these parameters [9], [10]. However, the standard Monte
Carlo has the following two limitations.

First, due to the underlying principle of MC analysis, a
large number (thousands) of simulation iterations are required
for moment estimation with a high confidence bound. Due to
the large number of cells in standard cell libraries and long
simulation times for advanced transistor models, the necessity
of thousands of simulation iterations results into very long
circuit simulation run times. Practically, the high run times
required for SSTA library characterization, limits its usefulness
for large scale circuits.

Second, due to the nature of semiconductor manufacturing
processes and circuit behaviours, the PTV parameters typically

do not follow a Gaussian distribution [4]. Furthermore, their
non-linear relation with delay and slew may result into non-
Gaussian distribution of the delay and slew. However, the state
of the art circuit simulation tools (e.g. Cadence Spectre [11])
can only run MC with Gaussian, lognormal and uniform
distributions, and, unfortunately, forcing any non-Gaussian
PVT into these distributions can lead to large errors. To
deal with this issue, several non-Gaussian SSTA methodolo-
gies have been proposed [12]. These methodologies require
higher order moments for accurate modelling of the variations.
Additionally, the higher order moments further increase the
simulation iterations required in MC iterations.

Several research efforts have been made to speedup the stan-
dard Monte Carlo method by improving the random sampling
method of the parameters, e.g. Latin Hypercube Sampling
(LHS) [13], Quasi Monte Carlo (QMC) [14], and Stratification
+ Hybrid QMC (SH-QMC) [15]. However, the parameters
sampling in the circuit simulations are still their distributions
dependent and not applicable for various types of probability
density function.

In this paper, we propose a fast statistical moment estima-
tion (FSME) method, which provides two major advantages
over standard MC: first, the FSME method can use any prob-
ability density function (pdf) irrespective of the simulation
tools, and second, for the same accuracy as MC, the FSME
method requires two orders of magnitude fewer simulation
iterations which results into 100x speedups in the library
characterization. The application of the FSME method is not
only limited to digital circuit design and SSTA; it is equally
applicable in analog circuit design.

II. FAST STATISTICAL MOMENT ESTIMATION METHOD

The standard MC method is based on the random sampling
of the parameters of interest based on their pdf. This procedure
takes more samples around the parameter values with high
probability than around the less probable values. Since the
sampling method depends on the pdf of the parameters, a
large number (thousands) of samples are normally required to
generate enough samples for less probable values. Addition-
ally, the dependence on the pdf of the corresponding process
parameter makes it necessary to provide the statistical details
of the parameter variation before the starting of the simulation.
The circuit simulation is repeated for each set of sampled
parameters. This results into long run times and high memory
requirement to store all the data. The desired simulation output
is measured in each simulation, leading to the sample set



of measured values. The moments of the circuit simulation
outputs are calculated using standard moment estimation equa-
tions on the sample set.

In contrast, by using the FSME method, the probability
distribution of the process parameter and the circuit simulation
are decoupled. In the proposed method, instead of randomly
sampling, the space is sampled with uniform distribution.
Moreover, to accurately estimate the statistical moments, a
weighted sample estimator is utilized. The process involved
in circuit simulation and data processing are discussed below.

A. Circuit Simulation

Unlike MC method, the FSME method runs the simulation
with a uniformly spaced parameter sweep, which ensures
the required coverage of each simulation parameter, e.g. if
a parameter is following a Gaussian distribution then +30
spread around its mean value is sufficient. This implies that
the range of the parameter sweep in the simulation needs to
be close to the spread of the real parameter distribution. Note
that this is the only link required between the real parameter
distribution and the data needed to perform simulations.

Let us assume that X are the process parameters (e.g.
effective channel lenght L, channel width W, threshhold
voltage Vy,, etc.), where X is a set of vectors X;, with each
vector X; corresponding to the sampled points X;[j;] of the
it" parameters, and that Y is a vector of the simulation output
Y[k] (e.g. delay, slew, etc.). X and Y will be used in the
data processing step to estimate the statistical moments of the
output.

B. Data Processing

The statistical moments of the circuit simulation output (Y')
depend on the probability of each simulation run, which in
turn depends on the probability of each process parameter
(X;) used in the simulation. As a result, the pdf of each
process parameter is required in the data processing step. In the
proposed method, each simulation is considered as an event.
The probability of each event is estimated first, followed by
the moment estimation of the output.

In the probability space, each simulation is a discrete
random event which is associated with a probability based on
the value of the process parameters of the particular simulation
and its pdf. The process parameter X; can take any value
with an infinite number of possibilities within the spread of
the process parameter, leading to an almost zero probability in
the continuous domain. However, the simulation is carried out
only for certain values of the process parameters X;[j;], and
each sampled value of the process parameter is associated with
a certain probability. The probability of each discrete process
parameter X;[j;] is estimated from the given pdf of X;.
Followed by this, the probability of each discrete experiment
event k is estimated from the probability of the discrete process
parameter values.

1) Probability of Process Parameter: The following nota-
tion for the probability and the pdf function will be further

used in the paper

P;() — Probability of discrete variable
P.() — Probability of continuous variable
P, () — Probability of discrete simulation event

fi() — Probability density function of X;

For a stochastic process parameter X, its probability and
its pdf are related with
Xi[n]

Pu(X;[m] <Xi§Xi[n]):/ fi@de ()

Xi[m]

Let us assume that X; is a uniformly sampled process
parameter with a sampling step of AX;, under the constraint
that AX; is much smaller than the standard deviation ox,.
X [j:] are the sampled values of the X;, which are used in the
circuit simulation with uniform sampling. The vector X [j;]
can be written as:

Xilgi) =1+ ,-2AX;,-AX;,0,AX;,2AX;,---] (2
where
AX; <oy, 3)

Let us define the probability of a discrete variable X [j;]
to be equal to the probability of a continuous variable X;
varying from (X;[j;] — AX;/2) to (X;[j:] + AX;/2). Since
AX; is much smaller than ox,, piecewise constant (PWC)
approximation can be used to evaluate the integration of the

pdf
Pd(Xl[,]L]) =F (Xl[]t] - A;(Z A;(Z)

/Xi i) +AX; /2

< X; < Xilsi] +

fi(x)dx

- Xiljil-AX; /2
~ fi(Xi[:]) . AX; PWC approx.
= Pi(Xi[i]) = fi(Xalia])-AX:  ifAX; <ox, @)

Thus, the probability of the discrete process parameter
X;[ji] is equal to the integral of the pdf around X;[j;] within
the bound of +A X /2, and piecewise constant approximation
can be used to simplify the integration.

To illustrate it with the example, consider PWC approxima-
tion of a Gaussian distributed random variable Z with zero
mean and unit variance as shown in Figure la. Integration
of this pdf around some Z[l] and PWC approximation for
integration around the same Z[l] are shown with a filled bar
in Figures 1b and lc, respectively. In this approximation,
the pdf values higher than the pdf at Z[l] are decreased to
pdf (Z]l]), and the pdf values lower than the pdf at Z[l] are
increased to pdf (Z[l]). The errors introduced by these changes
are having opposite sign and this neutralization effect reduces
the error due to the approximation. The total error is reduced
by increasing number of samples during circuit simulation.

If X; is sampled from —oo to +o0, then the sum of the
probability of all discrete values will be equal to one

> Pa(Xilji]) = /jo fi(z)dz =1 (5)

all j;



0.4 T . o . : 0.4 : 0.4 . . o
—— pdf —— pdf —— pdf
- —pwe|| _. —pwe|| __ — pwc
N N N
£ 0.2 1502 £ 0.2
& o
0 - : 0 0 -
3 2 1 0 1 2 3 3 2 1 0 1 2 3 -3 -2 1 0 1 2 3
4 4 4

(a) pdf and pwc

(b) pdf integration

(c) pwec integration

Fig. 1: Piecewise constant approximation of probability density function

In our example, if Z follows the Gaussian distribution, then
+30z spread of Z around its mean covers 99.8% of the
probability space

30z
/ pdf (z)dz = 0.998 (6)
—30z
Consequently, if Z[l] is sampled within the range of +30
around its mean, then the sum of the discrete values Z[l] will
cover 99.8% of the probability space

Z Py(Z;) ~ 0.998 (7)
all 1

The range of the process parameter sweep in the simulation
can be changed based on the requirement of the probability
coverage.

2) Probability of Simulation: The probability of each dis-
crete simulation event (k) is equal to the joint probability of
all process parameters

Py(k) = Pa(X1[51], X2[jal, ) 3

In general, the process parameters are not independent. In
order to simplify the data processing step, principal component
analysis (PCA) can be used to convert the correlated process
parameters into uncorrelated simulation parameters, under
constraints of the speed-accuracy trade-off. Hence, without
loss of generality, the parameters X; used in this paper are
assumed to be independent after PCA. Assuming that the
joint probability of independent random variables is equal to
the product of the probability of each random variable, the
probability of each discrete simulation event can be rewritten
as

Py(k) = Pa(X1[i)) Pa( X)) . . ©)

Let us define P;(Y'[k]) as the probability of the output ¥ =
Y'[k] due to the experiment & only. Since the probability of
the simulation event k is Ps(k), we can define P;(Y[k]) as
follows:

Py(Y[k])
= Py(Y[k]) =

Py(k) (10)
a(X1li]). Pa(Xa[d]) ... amn

Each experiment k gives an outcome Y'[k]. The unknown
probability of obtaining this outcome, P;(Y[k]), is estimated
from the known joint probability of the process parameters in
the sample point k. Because of the assumption of indepen-
dence, this joint probability is the product of the probabilities
of each individual parameter.

Note that the P;(Y'[k]) is not the probability of ¥ = Y'[£],
as more than one experiments could produce the same value
of the output Y[k] in case of non-monotonous function of Y.
Each P;(Y'[k]) will have different probability value depending
on the probability of the experiment k.

3) Moment Estimation: A weighted sample estimator is
used here for estimating the moments of the output parameter
Y [9]. To illustrate this process, consider the circuit simulation
run N times. Let us assume that the probability of each
simulation output Y[k], i.e. Py(Y[k]), is already estimated
in the previous step. The probability of the each output
Y'[k] implies that the output event Y[k] should repeat itself
by [N.P;(Y[k])] times. To obtain a high accuracy, each
simulation output Y'[k] should occur at least once, implying
that the lower bound of N should be defined as

1

= min(Pa(Y[R])

Now, let us define a vector R(Y'[k]) as a set of experiment
outputs Y'[k] which, repeats [ N.P,(Y[k])] times, i.e.

RY[K) = [Y[K,Y[k],...]  [N.Py(Y[k])] times (13)

12)

where the outcome (O) can be written as

O = [R(Y[1]), R(Y [2]), R(Y[3]), - ..] (14)

Once the outcomes (O) have been generated, the statistical
moments of simulation output Y can be evaluated using
standard moment estimation equations on the sample set,
where the mean (1), variation (%), and normalized nt? central
moment (u,,) are given as

1y = E(O) (15)
oy = BE((0 - pn)*) (16)
(tn)y = E((O — p)") /o™ (17)
These equations can be rewritten using (13) and (14) as
_ 2 Y[k.Pa(Y[E])
M= TS PR )
b2 _ LYIPPu(YIR)  [SYR-PYIDY o
v > Pa(Y[K]) > Pa(Y[K])
_ e ) ) YR Pa(Y )

Note that N is only used to develop the outcome O during
the illustration of the process of estimating of the moments.
When rewriting (15), (16), and (17) using (13) and (14), N
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Fig. 2: The first four moment estimation vs simulation runs for MC and FSME with one parameter (L) and two parameters

(L and W) variations in 45nm Inverter

appears in both the numerator as well as denominator, and
it cancels each other. Hence, NV is not required in the final
moment estimation equations.

Using the method described above, the statistical moments
of various non-Gaussian probability density functions can be
estimated irrespective of the simulation tool. The proposed
sampling approach of parameter values requires fewer simu-
lations leading to a much faster conversion of the moments.
Moreover, since the exact process variation distribution is not
required during the simulation run, a slight change in the
process variation spread can be analyzed without rerunning
the circuit simulation.

IIT. SIMULATION RESULTS AND COMPARISON

To evaluate the accuracy of the FSME method, extensive
Spectre circuit simulations have been carried out with the
FSME method as well as with the standard MC method. The
results of both simulation methods are reported and compared
below.

In the experimental setup, 45nm and 32nm predictive tech-
nology models (PTM) have been used for all simulations [16].
Five different circuits (Inverter, Buffer, NAND, NOR, 5 Invert-
ers Chain) have been used and all these standard cells were
sized according to their corresponding predictive technology
model [17]. The process variations are considered to be a
Gaussian distribution such that the results can be compared
with the standard MC results. The proposed method is scalable
for any number of parameters variations and various process
parameters can be used, e.g. L, W, V};,, etc. However, due to
the space limitation, only two sets of variations are discussed
here. In first set, the variation is considered in the effective
channel length (L) of the MOSFET with 30, which equals
to 20% of the nominal value of L. In addition to the first
set, the variation in the effective channel width (W) is also
considered in second set with 3oy, which is equivalent to

20% of the nominal value of W. In the output, the first
four statistical moments (mean [x], standard deviation [o],
skewness [v] and kurtosis [«]) of the delay of the standard
cell have been estimated. Cadence Spectre was used for circuit
simulation and Matlab for data processing.

The first four moments (i, o, v, and k) of the delay vs
simulation runs for the 45nm inverter with first set of variation
using MC and FSME are shown in Figures 2a. Similarly, these
moments of the delay vs simulation runs for the 45nm inverter
with second set of variations are shown in Figures 2b. It is
clear from these plots that FSME converges much faster than
MC. The scattered plot of MC is due to its random sampling
nature. As a result of the better convergence of FSME, the
best available moments estimates from the FSME are taken
as a golden reference value from both sets of variations for
FSME and MC run comparison.

The error for the first set of variation after five thousand
iterations in MC and fifty iterations in FSME with respect to
the respective reference value is reported below. The error in
the mean estimation using five thousand iterations of MC with
reference value is 0.133% whereas fifty iterations of FSME
has only 0.006% of error. Similarly, the error for standard
deviation estimation using MC is 1.059% whereas the FSME
has an error of only 0.245%. The MC error in skewness
estimation is 1.598% and FSME gives an error of only 1.257%.
Lastly, kurtosis estimation has an error of 2.489% in MC
where as FSME is at 1.304% error margin.

Since two parameter variations needs more simulation iter-
ations, ten thousand iterations in MC and hundred iterations
in FSME are used to estimate the error with the respective
reference value. The error in the mean estimation using ten
thousand iterations of MC with reference value is 0.03%
whereas hundrad iterations of FSME has only 0.019% of error.
Similarly, the error for standard deviation estimation using MC
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Fig. 3: The first four moment estimation vs simulation runs for MC and FSME with one parameter (L) and two parameters

(L and W) variations in 32nm Inverter

is 1.772% whereas the FSME has an error of only 0.817%.
The MC error in skewness estimation is 4.637% and FSME
gives an error of only 4.038%. Lastly, kurtosis estimation has
an error of 4.432% in MC where as FSME is at 3.663% error
margin.

It is clear from above experimental results that MC with
five thousand iterations produce more inaccurate results in
comparison to the respective golden reference than FSME with
only fifty simulations for one parameter variations. Equally, for
two parameter variations, MC with ten thousand iterations has
more error in comparison to the respective golden reference
than FSME with only hundred simulations for one parameter
variations. Similar behaviour is observed in all the five test
circuits in both the 45nm and the 32nm technologies. The
reference value of these four moments along with the error in
the moment estimation for MC with five thousand runs and
FSME with fifty runs using 45nm and 32nm technology with
first variation set are reported in Table I. Similar table for
second set of variations is reported in Table II. The plots of
the moment estimation vs simulation runs for Inverter in 32nm
PTM using first and second set of variations are shown in
Figures 3a and 3b, respectively. Furthermore, Buffer, NAND,
NOR, and Inverter Chain have similar behaviour, thus their
plots are not included here.

In the results above, we assumed that the variations are
following Gaussian distribution only. Now, four different prob-
ability density functions (Gaussian, Lognormal, Gamma, and
Beta) with the same mean and standard deviation have been
considered for the first set of variations. The first four moments
of the delay vs simulation runs for 45nm buffer using these
probability density functions are shown in Figure 4. In the
process of these moment estimations, only the mathematical
implementation of the pdf function is changed, and rerunning
of the simulation is not required. It is clear from the figure
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Fig. 4: Moment estimation vs simulation run in 45nm Buffer
using Gaussian (N), Lognormal (L), Gamma (G), and Beta
(B) distributions.

that the higher order moments significantly vary with the
distribution of the parameters.

The above results show that the simulation iterations re-
quired in FSME to estimate the moments differ from the sim-
ulation iterations required in MC by two orders of magnitude.
This results into 100x speedup in the library characterization.
Furthermore, different parameter spread can be analyzed in
FSME only by changing the parameter of the pdf function in
the data processing stage. Moreover, any type of probability
density function can be used with FSME by changing the
implementation of the pdf function only. This extra data
processing does not require rerunning of the circuit simula-
tor, which results into faster run times and smaller memory
requirement to store all the data.



TABLE I: Error % comparison in the first four moments estimation for one parameter (L) variation using Monte Carlo (5000
runs) and proposed method (50 runs) in the 45nm and 32nm PTM technology

Mean (u) Standard Deviation (o) Skewness () Kurtosis (k)
Circuits Ref (ps) [ MC % [ New % || Ref (ps) [ MC % [ New % Ref [ MC % [ New % Ref [ MC % [ New %
45nm PTM Technology
Inverter 18.004 0.133 0.006 2.210 1.059 0.245 -0.759 1.598 1.257 3.786 2.489 1.304
Buffer 21.570 0.167 0.001 3.338 0.991 0.173 -0.305 1.853 1.359 || 2.958 2.128 0.674
NAND 25913 0.103 0.004 2.473 1.093 0.267 || -0.682 2.015 1.381 3.685 3.218 1.336
NOR 20.773 0.127 0.020 2.369 1.176 0.304 || -0.804 3.659 1.384 || 3.997 5.659 1.506
Inverter Chain 37.558 0.158 0.001 5.530 1.055 0.207 || -0.253 2.176 1.144 || 2.981 2.622 0.775
32nm PTM Technology
Inverter 16.019 0.148 0.005 2.187 0.915 0.233 -0.773 0.117 0.811 3.704 0.527 0.824
Buffer 18.082 0.203 0.003 3.409 0.922 0.215 -0.186 3.481 0.743 2.729 2.125 0.452
NAND 23.624 0.115 0.004 2.513 0.999 0.251 -0.607 0.836 1.154 || 3.580 1.165 1.041
NOR 17.723 0.141 0.006 2.298 1.158 0.310 || -0.875 2.817 1.203 || 4.100 4.490 1.413
Inverter Chain 29.928 0.184 0.005 5.155 0.986 0.189 || -0.231 3.324 0.418 2.864 2.097 0.591

TABLE II: Error % comparison in the first four moments estimation for two parameters (L and W) variation using Monte
Carlo (10000 runs) and proposed method (100 runs) in the 45nm and 32nm PTM technology

Mean () Standard Deviation (o) Skewness () Kurtosis (k)
Circuits Ref (ps) [ MC % [ New % || Ref (ps) [ MC % [ New % Ref [ MC % [ New % Ref [ MC % [ New %
45nm PTM Technology
Inverter 18.042 0.030 0.019 2.328 1.772 0.817 -0.633 4.637 4.038 3.656 4.432 3.663
Buffer 21.592 0.001 0.010 3.374 1.445 0.692 -0.290 4.593 3.689 2.976 3.492 2.134
NAND 25.965 0.022 0.011 2.653 1.813 0.810 -0.523 5.476 4.875 3.535 5.099 3.831
NOR 20.810 0.031 0.033 2477 1.982 0.983 -0.699 8.667 5.072 3.880 9.717 4.932
Inverter Chain 37.598 0.006 0.007 5.574 1.500 0.700 -0.247 4.332 3.114 3.001 4.181 2422
32nm PTM Technology
Inverter 16.056 0.029 0.027 2.293 1.530 0.635 -0.655 1.512 2.055 3.581 1.371 2.306
Buffer 18.104 0.018 0.030 3.447 1.311 0.638 -0.167 2.425 3.535 2.753 2.985 1.758
NAND 23.691 0.013 0.008 2.713 1.659 0.769 -0.410 1.232 4.072 3.463 2.283 2.744
NOR 17.761 0.039 0.017 2.398 1.992 0.897 -0.764 6.888 4.936 3.968 8.065 4.895
Inverter Chain 29.972 0.012 0.008 5.205 1.397 0.649 -0.219 2.070 1.448 2.882 3.118 1.907

IV. CONCLUSION

This paper proposes a simulation and analysis method based
on the uniform sampling technique and weighted sample
estimator, which requires fewer simulation runs for statisti-
cal moment estimation. The number of simulation iterations
required by this fast statistical moment estimation (FSME)
method is at least two orders of magnitude lower than the
number of simulation runs required in the Monte Carlo
method. This results into 100x speedup in the SSTA library
characterization. Along with this, changes in parameter spread
and/or probability density function do not require rerunning of
the circuit simulations, which results into faster run time and
smaller memory requirement. The state of the art circuit sim-
ulation tools can run Monte Carlo with Gaussian, lognormal
and uniform distribution only whereas any distribution can be
used in the proposed method.
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