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Abstract

Monte Carlo methods and simulation are often used to estimate the mean, variance, and higher order statistical

moments of circuit properties like delay and power. The main issues with Monte Carlo methods are the required

long run time and the need for prior detailed knowledge of the distribution of the variations. Additionally, most of

available circuit simulation tools can run Monte Carlo analysis for Gaussian, lognormal and uniform distribution

only. In this paper, in order to estimate these statistical moments, we propose a new method based on a uniform

sampling technique and a weighted sample estimator. The proposed method needs significantly fewer simulation

runs, and does not need detailed prior knowledge of the variation distributions. Furthermore, it can be used for

any type of probability distribution irrespective of the circuit simulation tool used for the analysis. The results

obtained shows that the proposed method needs 100× fewer simulations iterations than Monte Carlo runs for

accurate moments estimation of delay and power for standard cells in 45nm and 32nm technologies.

Keywards - Delay, Power, STA, SSTA, Monte Carlo, Statistical Analysis
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Statistical Moment Estimation of Delay and Power

in Circuit Simulation

I. INTRODUCTION

Gate delay and power dissipation are critical issues in present day low power VLSI circuit design. The

delay and power of a logic gate strongly depend on variations in process, voltage, and temperature (PVT).

As we are moving towards nanometer technology, PVT variations are increasing, causing significant

uncertainty in the delay estimation [1] and greatly impacting the yield [2, 3]. As a consequence, the

accuracy of the conventional static timing analysis (STA) or power analysis with a corner based approach

in advanced technology processes is a serious concern [4]. Due to these PVT variations, delay and power

are statistical parameters instead of deterministic ones. The process of estimating the delay of a data path

with PVT variation is known as Statistical STA (SSTA) [5–8]. Equivalently, there is statistical power

estimation.

In SSTA, the standard cell delay and dynamic power are stochastic parameters, and these parameters

are often specified with their statistical moments. Practically, Monte Carlo (MC) is the dominant method

of choice for statistical moment estimation of these parameters [9, 10]. However, standard MC has the

following two limitations.

First, due to the underlying principle of MC analysis, a large number (thousands) of simulation iterations

are required for moment estimation with a high confidence bound. Due to the large number of cells in

standard cell libraries and long simulation times for advanced transistor models, the necessity of thousands

of simulation iterations results into very long circuit simulation run times. Practically, the high run times

required for SSTA library characterization, limits its usefulness for large scale circuits.

Second, due to the nature of semiconductor manufacturing processes and circuit behaviours, the PTV

parameters typically do not follow a Gaussian distribution [4]. Furthermore, their non-linear relation with

delay and power may result into non-Gaussian distribution of the delay and power. However, the state of

the art circuit simulation tools (e.g. Cadence Spectre [11]) can only run MC with Gaussian, lognormal and

uniform distributions, and, unfortunately, forcing any non-Gaussian PVT into these distributions can lead

to large errors. To deal with this issue, several non-Gaussian SSTA methodologies have been proposed [12].
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These methodologies require higher order moments for accurate modelling of the variations. Additionally,

the higher order moments further increase the simulation iterations required in MC iterations.

Several research efforts have been made to speedup the standard MC method by improving the random

sampling method of the parameters, e.g. Latin Hypercube Sampling (LHS) [13], Quasi Monte Carlo

(QMC) [14], and Stratification + Hybrid QMC (SH-QMC) [15]. However, the parameter sampling in the

circuit simulations is still dependent on their distribution and hence not applicable to various types of

probability density functions.

In this paper, we propose a fast statistical moment estimation (FSME) method, which provides two

major advantages over standard MC: first, the FSME method can use any probability density function

(pdf ) irrespective of the simulation tools, and second, for the same accuracy as MC, the FSME method

requires two orders of magnitude fewer simulation iterations which results into at least 100× speedup in

the library characterization. The application of the FSME method is not limited to digital circuit design

and SSTA or power analysis; it is equally applicable to MC simulation in analog circuit design.

The organization of the paper is as follows: The fast statistical moment estimation method is discussed in

Section II, followed by simulation results and comparison of FSME and MC in Section III. The conclusion

can be found in Section IV.

II. FAST STATISTICAL MOMENT ESTIMATION METHOD

The standard MC method is based on random sampling of the parameters of interest based on their

pdf . This procedure takes more samples around the parameter values with high probability than around

the less probable values. Since the sampling method depends on the pdf of the parameters, a large

number (thousands) of samples are normally required to generate enough samples for less probable values.

Additionally, the dependence on the pdf of the corresponding process parameter makes it necessary to

provide the statistical details of the parameter variation before the start of the simulation. Circuit simulation

is repeated for each set of sampled parameters. This results in long run times and high memory requirement

to store all the data. The desired simulation output is measured in each simulation, leading to a sample set

of measured values. The moments of the circuit simulation outputs are calculated using standard moment

estimation equations on the sample set.

In contrast, while using the FSME method, the probability distribution of the process parameters and

the circuit simulation are decoupled. In the proposed method, instead of randomly sampling, the space is

sampled with a uniform distribution. Moreover, to accurately estimate the statistical moments, a weighted
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sample estimator is utilized. The processes involved in circuit simulation and data processing are discussed

below.

A. Circuit Simulation

Unlike the MC method, the FSME method runs the simulation with a uniformly spaced parameter

sweep, which ensures the required coverage of each simulation parameter, e.g. if a parameter is following

a Gaussian distribution then ±3σ spread around its mean value is sufficient. This implies that the range of

the parameter sweep in the simulation needs to be close to the spread of the real parameter distribution.

Note that this is the only link required between the real parameter distribution and the data needed to

perform simulations.

Let us assume that X are the process parameters (e.g. effective channel length L, channel width W ,

threshold voltage Vth, etc.), where X is a set of vectors Xi, with each vector Xi corresponding to sample

points Xi[ji] of the ith parameters, and that Y is a vector of the simulation output Y [k] (e.g. delay, power,

etc.). X and Y will be used in the data processing step to estimate the statistical moments of the output.

B. Data Processing

The statistical moments of the circuit simulation output (Y ) depend on the probability of each simulation

run, which in turn depends on the probability of each process parameter (Xi) used in the simulation. As a

result, the pdf of each process parameter is required in the data processing step. In the proposed method,

each simulation is considered as an event. The probability of each event is estimated first, followed by

the moment estimation of the output.

In probability space, each simulation is a discrete random event which is associated with a probability

based on the value of the process parameters of the particular simulation and their pdfs. The process

parameter Xi can take any value with an infinite number of possibilities within the spread of the process

parameter, leading to an almost zero probability in the continuous domain. However, the simulation is

carried out only for certain values of the process parameters Xi[ji], and each sampled value of the process

parameter is associated with a certain probability. The probability of each discrete process parameter Xi[ji]

is estimated from the given pdf of Xi. Following this, the probability of each discrete experiment event

k is estimated from the probability of the discrete process parameter values.
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1) Probability of Process Parameter: The following notation for the probability and the pdf function

will be further used in the paper

Pd()→ Probability of a discrete variable

Pc()→ Probability of a continuous variable

Ps()→ Probability of a discrete simulation event

fi()→ Probability density function of Xi

For a stochastic process parameter Xi, its probability and its pdf are related with

Pc(Xi[m] < Xi ≤ Xi[n]) =
∫ Xi[n]

Xi[m]
fi(x)dx (1)

Let us assume that Xi is a uniformly sampled process parameter with a sampling step of ∆Xi, under

the constraint that ∆Xi is much smaller than the standard deviation σXi
. Xi[ji] are the sampled values of

the Xi, which are used in the circuit simulation with uniform sampling. The vector Xi[ji] can be written

as:

Xi[ji] = [· · · ,−2∆Xi,−∆Xi, 0,∆Xi, 2∆Xi, · · · ] (2)

where

∆Xi � σXi
(3)

Let us define the probability of a discrete variable Xi[ji] to be equal to the probability of a continuous

variable Xi varying from (Xi[ji] − ∆Xi/2) to (Xi[ji] + ∆Xi/2). Since ∆Xi is much smaller than σXi
,

piecewise constant (PWC) approximation can be used to evaluate the integration of the pdf

Pd(Xi[ji]) = Pc

(
Xi[ji]−

∆Xi

2
< Xi ≤ Xi[ji] +

∆Xi

2

)

=
∫ Xi[ji]+∆Xi/2

Xi[ji]−∆Xi/2
fi(x)dx

≈ fi(Xi[ji]) ·∆Xi PWC approx.

⇒ Pd(Xi[ji]) = fi(Xi[ji]) ·∆Xi if ∆Xi � σXi
(4)

Thus, the probability of the discrete process parameter Xi[ji] is equal to the integral of the pdf around

Xi[ji] within the bound of ±∆Xi/2, and piecewise constant approximation can be used to simplify the
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(a) pdf and pwc (b) pdf integration (c) pwc integration

Fig. 1: Piecewise constant approximation of probability density function

integration.

To illustrate this with an example, consider the PWC approximation of a Gaussian distributed random

variable Z with zero mean and unit variance as shown in Figure 1a. Integration of this pdf around

some Z[l] and PWC approximation for integration around the same Z[l] are shown with a filled bar in

Figures 1b and 1c, respectively. In this approximation, the pdf values higher than the pdf at Z[l] are

decreased to pdf(Z[l]), and the pdf values lower than the pdf at Z[l] are increased to pdf(Z[l]). The

errors introduced by these changes have opposite signs and this neutralization effect reduces the error due

to the approximation. The total error can be reduced by increasing the number of samples during circuit

simulation.

If Xi is sampled from −∞ to +∞, then the sum of the probability of all discrete values will be equal

to one ∑
all ji

Pd(Xi[ji]) ≈
∫ ∞
−∞

fi(x)dx = 1 (5)

In our example, if Z follows the Gaussian distribution, then ±3σZ spread of Z around its mean covers

99.8% of the probability space ∫ 3σZ

−3σZ

pdf(z)dz = 0.998 (6)

Consequently, if Z[l] is sampled within the range of ±3σZ around its mean, then the sum of the discrete

values Z[l] will cover 99.8% of the probability space

∑
all l

Pd(Zl) ≈ 0.998 (7)

The range of the process parameter sweep in the simulation can be changed based on the requirement

of the probability coverage.
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2) Probability of Simulation: The probability of each discrete simulation event (k) is equal to the joint

probability of all process parameters

Ps(k) = Pd(X1[j1], X2[j2], . . . ) (8)

In general, the process parameters are not independent. In order to simplify the data processing

step, principal component analysis (PCA) can be used to convert the correlated process parameters into

uncorrelated simulation parameters. Hence, without loss of generality, the parameters Xi used in this

paper are assumed to be independent after PCA. Assuming that the joint probability of the independent

random variables is equal to the product of the probability of each random variable, the probability of

each discrete simulation event can be rewritten as

Ps(k) = Pd(X1[j1]) · Pd(X2[j2]) . . . (9)

Let us define Pd(Y [k]) as the probability of the output Y = Y [k] due to the experiment k only. Since

the probability of the simulation event k is Ps(k), we can define Pd(Y [k]) as follows:

Pd(Y [k]) = Ps(k) (10)

⇒ Pd(Y [k]) = Pd(X1[j1]) · Pd(X2[j2]) . . . (11)

Each experiment k gives an outcome Y [k]. The unknown probability of obtaining this outcome,

Pd(Y [k]), is estimated from the known joint probability of the process parameters in the sample point k.

Because of the assumption of independence, this joint probability is the product of the probabilities of

each individual parameter.

Note that Pd(Y [k]) is not the probability of Y = Y [k], as more than one experiment could produce the

same output value Y [k] in case of a non-monotonous function of Y . Each Pd(Y [k]) will have a different

probability value depending on the probability of the experiment k.

3) Moment Estimation: A weighted sample estimator is used here for estimating the moments of the

output parameter Y [9]. To illustrate this process, consider the circuit simulation run N times. Let us

assume that the probability of each simulation output Y [k], i.e. Pd(Y [k]), is already estimated in the

previous step. The probability of the each output Y [k] implies that the output event Y [k] should repeat

itself by dN · Pd(Y [k])e times. To obtain a high accuracy, each simulation output Y [k] should occur at
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least once, implying that the lower bound of N should be defined as

N ≥ 1

min(Pd(Y [k]))
(12)

Now, let us define vector R(Y [k]) as the set of experiment outputs Y [k] which repeats dN · Pd(Y [k])e

times, i.e.

R(Y [k]) = [Y [k], Y [k], . . . ] dN · Pd(Y [k])e times (13)

where the outcome (O) can be written as

O = [R(Y [1]), R(Y [2]), R(Y [3]), . . . ] (14)

Once the outcomes (O) have been generated, the statistical moments of simulation output Y can be

evaluated using standard moment estimation equations on the sample set, where the mean (µ), variation

(σ2), and normalized nth central moment (µn) are given as

µy = E(O) (15)

σ2
y = E((O − µy)2) (16)

(µn)y = E((O − µy)n)/σny (17)

These equations can be rewritten using (13) and (14) as

µy =

∑
k{Y [k] · Pd(Y [k])}∑

k{Pd(Y [k])}
(18)

σ2
y =

∑
k{Y [k]2 · Pd(Y [k])}∑

k{Pd(Y [k])}
−
[∑

k{Y [k] · Pd(Y [k])}∑
k{Pd(Y [k])}

]2

(19)

(µn)y =
n∑

m=0

(nm)(−µy)m
∑
k{Y [k]n−m · Pd(Y [k])}

(σy)n ·
∑
k{Pd(Y [k])}

(20)

Note that N is only used to develop the outcome O during the illustration of the process of estimating of

the moments. When rewriting (15), (16), and (17) using (13) and (14), N appears in both the numerator

as well as denominator, and it cancels out. Hence, N is not required in the final moment estimation

equations.

Using the method described above, the statistical moments of various non-Gaussian probability density

functions can be estimated irrespective of the simulation tool. The proposed sampling approach of pa-

rameter values requires fewer simulations leading to a much faster conversion of the moments. Moreover,
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since the exact process variation distribution is not required during the simulation run, a slight change

in the process variation spread can be analyzed without rerunning the circuit simulation. This is very

important, as in reality the pdfs of parameter variations change while a manufacturing process matures.

III. SIMULATION RESULTS AND COMPARISON

To evaluate the accuracy of the FSME method, extensive Spectre circuit simulations have been carried

out with the FSME method as well as with the standard MC method. The results of both simulation

methods are reported and compared below.

In the experimental setup, 45nm and 32nm predictive technology models (PTM) have been used for

all simulations [16]. Five different circuits (Inverter, Buffer, NAND, NOR, 5 Inverters Chain) have been

used and all these standard cells were sized according to their corresponding predictive technology model

based Nangate technology file [17]. The process variations are considered to be Gaussian distribution

such that the results can be compared with the standard MC results. The proposed method is scalable for

any number of parameters variations and various process parameters can be used, e.g. L, W , Vth, etc.

However, due to space limitation, only two sets of variations are discussed here. In first set, the variation

considered is in the effective channel length (L) of the MOSFET with 3σL equal to 20% of the nominal

value of L. In addition to the first set, variation in the effective channel width (W ) is also considered

in the second set with 3σW equivalent to 20% of the nominal value of W . In the output, the first four

statistical moments (mean [µ], standard deviation [σ], skewness [γ] and kurtosis [κ]) of the delay and

dynamic power (rising edge) of the standard cell have been estimated. Cadence Spectre was used for

circuit simulation and Matlab for data processing.

The first four moments (µ, σ, γ, and κ) of the delay vs simulation runs for the 45nm inverter with

first set of variation using MC and FSME are shown in Figures 2a. Similarly, these four moments of

the dynamic power vs simulation runs for the 45nm inverter with first set of variations are shown in

Figures 2b. Additionally, these first four moments of the delay and dynamic power vs simulation runs for

the 32nm inverter with second set of variations are shown in Figures 3a and Figures 3b respectively. It

is clear from these plots that FSME converges much faster than MC. The scattered plot of MC is due to

its random sampling nature. As a result of the better convergence of FSME, the best available moments

estimates from the FSME are taken as a golden reference value from both sets of variations for FSME

and MC run comparison.
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The error in the statistical moment estimation of the delay for the first set of variation in the 45nm

inverter (see Figures 2a) after five thousand iterations in MC and fifty iterations in FSME with respect

to the respective reference value is reported below. The error in the mean estimation using five thousand

iterations of MC with reference value is 0.15% whereas fifty iterations of FSME give only 0.03% of error.

Similarly, the error for standard deviation estimation using MC is 0.40% whereas the FSME has an error

of only 0.26%. The MC error in skewness estimation is 3.50% and FSME gives an error of only 0.97%.

Lastly, kurtosis estimation has an error of 3.64% in MC where as FSME is at 1.28% error margin.

Similar to the delay, the error in the statistical moment estimation of the dynamic power for the first set

of variation in the 45nm inverter (see Figures 2b) with respect to the respective reference value is reported

below. It can be seen form these plots that the convergence of the power estimation needs more simulation

iterations. Therefore, ten thousand iterations in MC and hundred iterations in FSME are used for the error

comparison. The error in the mean estimation using ten thousand iterations of MC with reference value

is 0.01% whereas one hundred iterations of FSME also has only 0.01% of error. Similarly, the error for

standard deviation estimation using MC is 7.38% whereas the FSME has an error of only 2.10%. The MC

error in skewness estimation is 7.67% and FSME gives an error of only 3.47%. Lastly, kurtosis estimation

has an error of 10.35% in MC where as FSME is at 7.48% error margin.

Since two parameter variations needs more simulation iterations, ten thousand iterations in MC and

hundred iterations in FSME are used to estimate the error in the statistical moment estimation of the delay

(see Figures 3a) with the respective reference value. The error in the mean estimation of the delay using

ten thousand iterations of MC with reference value is 0.07% whereas hundred iterations of FSME has

only 0.03% of error. Similarly, the error for standard deviation estimation using MC is 0.18% whereas

the FSME has an error of 0.69%. The MC error in skewness estimation is 2.26% and FSME gives an

error of 3.82%. Lastly, kurtosis estimation has an error of 3.02% in MC where as FSME is at 4.03% error

margin.

The error in the statistical moment estimation of the dynamic power for the second set of variation in the

32nm inverter (see Figures 3b) with respect to the respective reference value is reported below. In the error

estimation for the second set of variation, forty thousand iterations in MC and four hundred iterations in

FSME are used for the error comparison. The error in the mean estimation using forty thousand iterations

of MC with reference value is 0.07% whereas four hundred iterations of FSME has only 0.06% of error.

Similarly, the error for standard deviation estimation using MC is 14.81% whereas the FSME has an error
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of 15.69%. The MC error in skewness estimation is 7.74% and FSME gives an error of only 8.38%.

Lastly, kurtosis estimation has an error of 5.99% in MC where as FSME is at 8.63% error margin.

It is clear from above experimental results that MC with five thousand iterations produce more inaccurate

results for moment estimation of the delay in comparison to the respective golden reference than FSME

with only fifty simulations for one parameter variations. Similarly, only hundred iterations of FSME

produce more accurate statistical moment estimation for the dynamic power measurement as compared

with ten thousand MC iterations for one parameter variation. For two parameter variations, MC with ten

thousand iterations has almost equal error for delay variation estimation in comparison to the respective

golden reference than FSME with only one hundred iterations. Additionally, forty thousand iterations

of MC produce almost equal error as compare to the four hundred iterations of the FSME for spread

measurement in the dynamic power estimation.

A similar behaviour is observed in all the five test circuits in both the 45nm and the 32nm technologies

for statistical moment estimation of delay and dynamic power. The reference value of these four moments

along with the error in the moment estimation of the delay for MC with five thousand runs and FSME with

fifty runs using 45nm and 32nm technology with the first variation set are reported in Table I. A similar

table for the second set of variations is reported in Table II. The error in the moment estimation of the

dynamic power using ten thousand iterations of MC and one hundred iterations of FSME for 45nm and

32nm for the first set of variation set are reported in Table III. Similarly, the error in the dynamic power

estimation for the second set of variations is reported in Table IV. The plots of the moment estimation of

the delay and dynamic power vs simulation runs for Inverter in 32nm PTM using the first set of variations

are shown in Figures 4a and 4b, respectively. Furthermore, Buffer, NAND, NOR, and Inverter Chain have

similar behaviour, thus their plots are not included here.

In the results above, we assumed that the variations are following a Gaussian distribution only. Now,

four different probability density functions (Gaussian, Lognormal, Gamma, and Beta) with the same mean

and standard deviation have been considered for the first set of variations. The first four moments of the

delay vs simulation runs for a 45nm buffer using these probability density functions are shown in Figure 5.

In the process of these moment estimations, only the mathematical implementation of the pdf function is

changed, and rerunning of the simulation is not required. It is clear from the figure that the higher order

moments significantly vary with the distribution of the parameters.

The skewness and kurtosis of the delay in above result indicates that the distribution of the delay does
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(a) 45nm Inverter - Delay - One parameter variation (b) 45nm Inverter - Power - One parameter variation

Fig. 2: The first four moment estimation of delay and power vs simulation iterations for MC and FSME
with one parameter (L) variation in 45nm Inverter

(a) 32nm Inverter - Delay - Two parameter variations (b) 32nm Inverter - Power - Two parameter variations

Fig. 3: The first four moment estimation of delay and power vs simulation iterations for MC and FSME
with two parameters (L and W ) variations in 32nm Inverter

not follow a Gaussian distribution. However, the distribution of the delay variation is close to a Gaussian

distribution. In contrast to the delay, the skewness and kurtosis of the dynamic power is very high. It

shows that the distribution of the dynamic power dissipation is significantly deviated from a Gaussian

distribution.

The above results show that the simulation iterations required in FSME to estimate the moments
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(a) 32nm Inverter - Delay - One parameter variation (b) 32nm Inverter - Power - One parameter variation

Fig. 4: The first four moment estimation of delay and power vs simulation iterations for MC and FSME
with one parameter (L) variation in 32nm Inverter

TABLE I: Error % comparison in the first four moments estimation of delay (ps) for one parameter (L)
variation using Monte Carlo (5000 runs) and proposed method (50 runs) in the 45nm and 32nm PTM
technology

Mean (µ) Standard Deviation (σ) Skewness (γ) Kurtosis (κ)
Circuits Ref MC FSME Ref MC FSME Ref MC FSME Ref MC FSME

45nm PTM Technology
Inverter 21.34 0.15 0.03 2.99 0.40 0.26 -0.71 3.50 0.97 3.75 3.64 1.28
Buffer 21.58 0.18 0.01 3.34 0.43 0.18 -0.31 2.66 1.05 2.96 1.80 0.74
NAND 22.22 0.15 0.00 3.13 0.37 0.25 -0.77 3.68 1.62 3.85 4.13 1.68
NOR 32.83 0.13 0.01 3.84 0.54 0.28 -0.39 5.03 1.72 3.29 2.66 1.15
Inverter 41.16 0.18 0.01 6.44 0.50 0.24 -0.29 4.07 1.45 3.02 1.94 0.82

32nm PTM Technology
Inverter 17.62 0.19 0.01 3.12 0.31 0.26 -0.68 2.63 1.21 3.53 2.97 1.14
Buffer 18.10 0.22 0.02 3.42 0.44 0.24 -0.19 3.84 1.32 2.71 1.43 0.40
NAND 18.15 0.19 0.03 3.24 0.37 0.32 -0.74 3.54 1.08 3.78 3.99 1.38
NOR 30.16 0.18 0.00 4.65 0.58 0.33 -0.27 5.72 0.85 3.10 2.07 0.99
Inverter 31.85 0.23 0.01 6.25 0.49 0.20 -0.23 3.53 0.88 2.89 1.71 0.67

differ from the simulation iterations required in MC by two orders of magnitude. Furthermore, different

parameter spread can be analyzed in FSME by only changing the parameters of the pdf function in

the data processing stage. Moreover, any type of probability density function can be used with FSME

by changing the implementation of the pdf function only. This extra data processing does not require

rerunning of the circuit simulator, which results into faster run times and smaller memory requirement to

store all the data.
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TABLE II: Error % comparison in the first four moments estimation of delay (ps) for two parameters
(L and W ) variation using Monte Carlo (10000 runs) and proposed method (100 runs) in the 45nm and
32nm PTM technology

Mean (µ) Standard Deviation (σ) Skewness (γ) Kurtosis (κ)
Circuits Ref MC FSME Ref MC FSME Ref MC FSME Ref MC FSME

45nm PTM Technology
Inverter 21.36 0.06 0.01 3.03 0.22 0.78 -0.70 2.86 5.09 3.76 3.76 4.92
Buffer 21.60 0.06 0.02 3.38 0.10 0.70 -0.30 1.30 2.95 2.98 1.94 1.92
NAND 22.23 0.06 0.03 3.17 0.27 0.84 -0.76 3.23 5.74 3.87 4.26 6.44
NOR 32.86 0.05 0.01 3.90 0.20 0.79 -0.37 3.10 5.83 3.31 3.13 3.99
Inverter 41.18 0.06 0.02 6.47 0.16 0.71 -0.29 2.74 3.59 3.04 2.20 2.84

32nm PTM Technology
Inverter 17.63 0.07 0.03 3.16 0.18 0.69 -0.66 2.26 3.82 3.54 3.02 4.03
Buffer 18.12 0.07 0.03 3.45 0.08 0.51 -0.17 4.91 3.30 2.74 1.51 2.07
NAND 18.16 0.08 0.03 3.27 0.30 0.95 -0.73 3.05 6.27 3.81 4.06 5.95
NOR 30.20 0.06 0.01 4.73 0.22 0.73 -0.23 2.79 9.12 3.12 2.55 3.34
Inverter 31.87 0.09 0.02 6.28 0.11 0.63 -0.23 2.34 2.25 2.91 1.88 2.31

TABLE III: Error % comparison in the first four moments estimation of dynamic power (µW/GHz) for
one parameter (L) variation using Monte Carlo (10000 runs) and proposed method (100 runs) in the 45nm
and 32nm PTM technology

Mean (µ) Standard Deviation (σ) Skewness (γ) Kurtosis (κ)
Circuits Ref MC FSME Ref MC FSME Ref MC FSME Ref MC FSME

45nm PTM Technology
Inverter 1.31 0.01 0.01 0.02 7.38 2.10 7.85 7.67 3.47 88.06 10.35 7.48
Buffer 1.26 0.02 0.01 0.04 7.01 2.15 7.03 9.98 4.34 78.35 13.05 8.89
NAND 1.31 0.01 0.00 0.02 7.36 2.50 7.47 9.03 3.21 84.88 11.66 6.93
NOR 1.48 0.01 0.00 0.01 5.02 1.92 3.23 26.29 19.47 39.17 28.20 31.15
Inverter 2.46 0.02 0.01 0.05 10.76 3.48 10.37 5.80 4.80 153.57 3.33 9.67

32nm PTM Technology
Inverter 1.21 0.06 0.02 0.07 14.10 5.44 13.74 1.98 5.97 263.05 7.13 11.30
Buffer 1.20 0.26 0.08 0.22 18.72 8.53 19.43 8.95 4.95 486.06 30.88 8.80
NAND 1.22 0.05 0.02 0.06 14.65 5.44 14.27 0.60 5.22 277.66 9.57 9.85
NOR 1.32 0.08 0.02 0.07 19.46 8.20 20 12.11 3.57 494.79 35.53 6.63
Inverter 2.00 0.35 0.12 0.47 20.30 9.80 21.72 14.16 4.23 588.56 41.50 7.46

IV. CONCLUSION

This paper proposes a simulation and analysis method based on a uniform sampling technique and a

weighted sample estimator, which requires fewer simulation runs for statistical moment estimation. The

number of simulation iterations required by this fast statistical moment estimation (FSME) method is at

least two orders of magnitude lower than the number of simulation runs required in the Monte Carlo

method. This results into 100× speedup in the SSTA library characterization. Along with this, changes in

parameter spread and/or probability density function do not require rerunning of the circuit simulations,



15

TABLE IV: Error % comparison in the first four moments estimation of dynamic power (µW/GHz) for
two parameters (L and W ) variation using Monte Carlo (40000 runs) and proposed method (400 runs) in
the 45nm and 32nm PTM technology

Mean (µ) Standard Deviation (σ) Skewness (γ) Kurtosis (κ)
Circuits Ref MC FSME Ref MC FSME Ref MC FSME Ref MC FSME

45nm PTM Technology
Inverter 1.31 0.01 0.01 0.03 4.92 4.62 5.00 16.31 13.83 53.06 23.21 23.21
Buffer 1.26 0.01 0.02 0.05 6.30 5.76 6.73 13.84 12.91 79.04 20.41 22.44
NAND 1.31 0.01 0.01 0.03 4.39 4.01 3.89 19.15 17.36 39.42 25.86 27.37
NOR 1.48 0.01 0.01 0.03 1.50 1.47 0.27 45.91 58.44 4.32 18.02 29.31
Inverter 2.46 0.03 0.02 0.10 2.98 2.94 1.56 31.67 33.88 15.90 32.09 41.35

32nm PTM Technology
Inverter 1.21 0.07 0.06 0.08 14.81 15.69 14.83 7.74 8.38 308.65 5.99 8.63
Buffer 1.21 0.29 0.29 0.26 20.74 23.33 21.08 2.02 1.53 555.79 12.40 8.5
NAND 1.22 0.06 0.05 0.06 14.92 15.35 14.92 6.91 8.02 310.40 4.18 7.79
NOR 1.32 0.09 0.08 0.08 19.74 21.32 19.89 1.08 2.42 506.17 11.47 4.98
Inverter 2.00 0.40 0.41 0.57 22.45 25.85 22.93 5.05 2.62 642.99 18.23 13.48

Fig. 5: Moment estimation vs simulation run in 45nm Buffer using Gaussian (N), Lognormal (L), Gamma
(G), and Beta (B) distributions.

which results into faster run time and smaller memory requirement. State of the art circuit simulation tools

can run Monte Carlo with Gaussian, lognormal and uniform distribution only whereas any distribution

can be used in the proposed method.
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