
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Distributed Computation Particle Filters on GPU
Architectures for Real-Time Control Applications

Mehdi Chitchian, Andrea Simonetto, Alexander S. van Amesfoort, and Tamás Keviczky

Abstract— We present the design, analysis, and real-time
implementation of a distributed computation particle filter on
a graphic processing unit (GPU) architecture that is especially
suited for fast real-time control applications. The proposed filter
architecture is composed of a number of local subfilters that can
share limited information among each other via an arbitrarily
chosen abstract connected communication topology. We develop
a detailed implementation procedure for GPU architectures
focusing on distributed resampling as a crucial step in our
approach, and describe alternative methods in the literature.
We analyze the role of the most important parameters such
as the number of exchanged particles and the effect of the
particle exchange topology. The significant speedup and increase
in performance obtained with our framework with respect to
both available GPU solutions and standard sequential CPU
methods enable particle filter implementations in fast real-time
feedback control systems. This is illustrated via experimental and
simulation results using a real-time visual servoing problem of
a robotic arm capable of running in closed loop with an update
rate of 100 Hz, while performing particle filter calculations that
involve over one million particles.

Index Terms— Distributed algorithms, distributed computation
particle filters, graphic processing unit (GPU) architectures,
visual servoing.

I. INTRODUCTION

LONG after their first appearance [1], particle filters
still represent an active area of research. Because of

their generality and simplicity, they have become a topic
of constantly growing interest, development, and numerous
applications. Particle filters, together with unscented Kalman
filters [2] and moving horizon estimators [3], can provide
a general framework for state estimation in nonlinear and
non-Gaussian dynamical systems. Moreover, provided that the
number of particles is high enough, they can easily out perform
other estimation methods. Their main drawback is the required
computational load. The necessary computational time for an
accurate result is, in most cases, prohibitive for real-time
applications and this can seriously limit the applicability of
particle filters.

Manuscript received April 19, 2012; revised November 2, 2012; accepted
December 3, 2012. Manuscript received in final form December 13, 2012.
Recommended by Associate Editor G. De Nicolao.

M. Chitchian and A. S. van Amesfoort are with the Parallel and Distributed
Systems Group, Delft University of Technology, Delft 2628BX, The Nether-
lands (e-mail: mehdi.chitchian@gmail.com; a.s.vanamesfoort@tudelft.nl).

A. Simonetto and T. Keviczky are with the Delft Center for Systems and
Control, Delft University of Technology, Delft 2628BX, The Netherlands
(e-mail: a.simonetto@tudelft.nl; t.keviczky@tudelft.nl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2012.2234749

Recent developments aimed at overcoming this difficulty
could lead to faster yet accurate algorithms. Most notably,
the rise of general-purpose graphics processing unit hardware
(GPU) is making massive parallelization of algorithms pos-
sible by distributing independent tasks over many computing
units leading to significant improvements in execution time.
This trend is reflected in reasonably priced desktop supercom-
puters hitting the market featuring a few thousand processing
units. At the same time, clusters of these systems are becoming
available to many researchers. Hence, the development of soft-
ware frameworks that take advantage of massive parallelism is
essential to enable novel applications in computational science
and engineering.

In this paper, we focus on devising an algorithm for imple-
menting particle filters on GPU architectures. The proposed
method considers a particle filter as a network of smaller
filters, where each of them exchanges data locally based on
the network topology. The resulting algorithm relies on the
local communication of the computing units (i.e., the smaller
filters) and their distributed computations. In particular, we
devise a distributed computation particle filter and demonstrate
its performance through experimental and numerical tests.
Besides its distributed nature, our method (in contrast to those
available in the literature) provides the users with different
tuning parameters to adapt the algorithm to their specific appli-
cation. The mentioned characteristics enable us to implement
on a robotic arm setup a real-time feedback controller running
at 100 Hz based on the estimate of a distributed computation
particle filter with over one million particles. To the best of our
knowledge, this is one of the first real-time implementation of
a feedback controller with these characteristics using particle
filters, which supports the idea of fast yet accurate nonlinear
estimation.

Our main contribution in this paper is the proposed dis-
tribution of the computations among the different computing
units.1 This proposed idea will be shown to outperform
standard implementations based on parallel computing (instead
of distributed ones). In particular, we will be able to increase
the number of particles, the sampling frequency, and the state
dimension often by orders of magnitude with respect to state-
of-the-art GPU solutions. Furthermore, we will show that our
scheme has comparable accuracy with centralized sequential
particle filters (with the same number of total particles), which

1In this respect, even though we have implemented our solution on a
GPU architecture, we could envision the same solution to be implemented
in multicore systems or a combination of both, thus the idea is not hardware-
specific.

1063–6536/$31.00 © 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

require 10–100 times more computational time (when using
a high number of particles) than our proposed distributed
implementation.

The remainder of this paper is organized as follows. In
Section II we introduce the concept of particle filters, and
define the problem setup and the main research question,
namely, the distribution of the computations among different
computing units. Some background information on distributed
techniques and the formal definition of distributed computation
particle filters are given in Section III, whereas in Section IV
we survey the available methods to solve the presented
problem. We propose our algorithm in Section V, analyzing
in detail its different parts, its capabilities, and the effect
of the user-tunable parameters. Experimental and simulation
results are described in Section VI to assess the validity of
the approach and show that nonlinear estimation can be run
efficiently and at a relatively high sampling frequency. Finally,
in Section VII we draw our conclusions and recommendations
for future research studies.

II. PROBLEM SETUP AND RESEARCH QUESTION

We consider the nonlinear time-invariant dynamical system

x(k) = f (x(k − 1), w(k − 1)) (1)

z(k) = h(x(k),µ(k)) (2)

where f and h are nonlinear functions, x(k) is the state
vector at discrete time k, the inputs w and µ are the process
and measurement noise terms, respectively, and z(k) is the
measurement vector. We assume the initial condition x(0) to
be known or estimated, while we also assume the noise terms
to be independent random variables with probability density
function (pdf) πw(w) and πµ(µ), respectively.

We are interested in estimating the state x(k) via the
noisy measurements z(k). To solve this problem, we consider
particle filter estimators. Particle filters estimate the state x(k)
via the a posteriori pdf p(x(k)|z(k)). Since, in most cases, this
a posteriori pdf cannot be evaluated because of the complexity
of the underlying dynamical system (1), the basic idea is to
draw m random samples, or particles, {x(k) j } j=1,...,m , from a
given proposal distribution q(x(k)|z(k)) with the same support
as p(x(k)|z(k)). Often, this proposal distribution is chosen
to be the a priori distribution p(x(k)|x(k − 1)), as is done
in sample importance resample (SIR) filters. Adopting this
choice, the random samples can be computed recursively as

x(k) j = x(0), for j = 1, . . . , m

x(k) j = f (x(k − 1) j , w(k − 1) j) (3)

where x(k − 1) j is the j th sample at the discrete time k − 1
and w(k − 1) j is randomly drawn from the process noise pdf,
i.e., w(k − 1) j ∼ πw(w). These samples are then weighted
recursively via [4]

w(0) j = 1
m

, for j = 1, . . . , m

w(k) j = p(x(k) j |z(k))

q(x(k) j |z(k))

p(x(k) j |z(k))

p(x(k) j |x(k − 1) j)

= w(k − 1) j p(z(k))|x(k) j) (4)

where p(z(k))|x(k) j) is the likelihood that the measure z(k)
is observed given the sample x(k) j . If the measurement noise
µ is additive and its pdf πµ(µ) is Gaussian with zero mean
and " as covariance matrix, then (4) can be simplified (up to
a normalization) into

w(k) j = w(k − 1) j exp
(
−||z(k) − h(x(k) j)||2"

)
(5)

where, for a vector v, the notation ||v||2A = v# Av.
Given the couples (x(k) j , w(k) j), we can approximate the

a posteriori pdf p(x(k)|z(k)) by the use of Dirac’s deltas, δ, as

p (x (k) |z (k)) ≈ p̂ (x (k) |z (k))

= 1
$ (k)

m∑

j=1

w (k) j δ
(

x (k) − x (k) j
)

(6)

with $(k) = ∑
j w(k) j . Finally, the a posteriori pdf gives

the means to estimate x(k) as x̂(k), which was our objective.
For example, we can choose x̂(k) to be the particle with the
highest weight.

In addition, after the weight determination, the particle
population is typically resampled and the new weights are set
to be identical. This resampling step is a crucial component of
particle filter algorithms. Resampling is necessary since it can
provide the chance for good particles to amplify themselves
and produce better and more accurate results. Moreover, it
overcomes the degeneracy phenomenon, where, after a few
iterations, all but one particle will have negligible weights.
However, it also introduces other practical issues that need
careful attention. First, it limits the opportunity to parallelize
since all the particles must be combined. Second, the particles
that have high weights are statistically selected many times.
This leads to a loss of diversity among the particles as the
resultant samples contain many repeated points. Therefore
the choice of the number of particles and of the resampling
procedure fundamentally determines the properties of the
particle filter.

We can summarize a prototypical SIR particle filter algo-
rithm as follows [4]:

1) draw m samples x(k) j from the a priori distribution
p(x(k)|x(k − 1)), using (3);

2) compute the importance weight w(k) j for each j ,
using (4);

3) compute the state estimate according to the approxi-
mated a posteriori pdf (6);

4) resample the set of particles according to their weight;
5) set w(k) j = 1/m for all particles j .

Typically, when the state dimension is larger than 5, a
high number of particles is required to capture the nonlinear
underlying dynamics and measurement equations (1) and (2)
and to obtain accurate estimates. Often, this endangers the real-
time capabilities of particle filters in usual single-core CPU
systems, and it is a fundamental drawback when accurate yet
fast algorithms are needed, for example, for high-frequency
feedback control purposes. With the rise of reasonably priced
GPU hardware, these disadvantages could be overcome by
distributing the computation among the different computing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHITCHIAN et al.: DISTRIBUTED COMPUTATION PARTICLE FILTERS ON GPU ARCHITECTURES 3

z

PFi

PFi

(xj
i , w

j
i)

PFi

PFi

PFi

zi

(x̂, P̂)

zi
zi

zi

zi

PFi

PFi

(x̄
i,

P̄
i)

PFi

PFi

PFi

z

PF (xj, wj)

(a) (c)(b)

Fig. 1. Distributed particle filter classes along with the standard centralized approach. In the distributed sensing setting, the exchange of information and
the distributed estimation process is done at the level of the sensors that share typically the local means and covariances of the state estimates (x̄i , P̄i). Via
some consensus mechanism [5], they agree on a common couple (x̂, P̂). In the distributed computation setting, the distribution and communication is done
at the level of computing units with particle-weight couples. The final outcome is a number of different a posteriori distributions represented via (x j

i , w
j
i).

The fact that these distributions are different means that the different local particle filters do not necessarily have to agree on a common one. (a) Standard
centralized approach. (b) Distributed sensing approach. (c) Distributed computation approach.

units, making accurate yet fast particle filters realizable. The
main question we pose as a research problem is the following.

(Q) Can particle filters be run efficiently enough, for exam-
ple, by the use of GPU architectures, and deliver accurate
estimates to be implemented in high-sample-rate real-time
feedback control applications?

III. DISTRIBUTED COMPUTATION PARTICLE FILTERS

Distributed algorithms for estimation have been receiving
increased attention from the research community. The reason
is twofold. First, a large amount of data that comes from
several sensors has to be processed. This could easily turn out
to be very time consuming, for instance, if a central processor
unit has to deal with several cameras sending high-bandwidth
videos simultaneously. In this respect, the aim would be to
have different processor units that cope with the sensors in a
distributed way. Second, computing the estimate using particle
filters even with a few sensors can be computationally too
intensive for a single-core CPU. Therefore the question of how
to distribute this computation among different units becomes
relevant.

In order to avoid a possible source of confusion given that
the literature in this area can be less explicit and rather diverse,
we believe it is important to distinguish the above two concepts
in a clear way. We define two main classes of distributed
particle filters as follows.

We call distributed sensing particle filter the class of algo-
rithms that cope with a potentially large number of different
sensors. Thus we assume that there is a particle filter running
on each of these sensors and is using local measurements.
The situation is depicted in Fig. 1(b), which shows a sensor
network that processes the measurements and sends them to
local particle filters. These filters cannot exchange information
with each other and they can only send back to the sensors
their local estimates with some meaningful parameterization of
the a posteriori distribution (e.g., the mean and covariance of
the estimate). Since, in general, the local particle filters have
different particle population and measurements, they do not
speak the same language. The exchange of information and
the distributed estimation is done at the level of the sensor

network, whose sensors do speak the same language (e.g.,
state estimates and their covariances). Examples for this class
of approaches can be found in [6]–[11].

We refer to the second class of algorithms as distributed
computation particle filters, which have access to all sensor
measurements but use only a subset of particles in each
computing unit. The different units where the distributed
particle filters are running are depicted in Fig. 1(c). Since the
different local filters have the same measurement vector, their
language is compatible with each other and therefore they
can exchange information, i.e., the particle-weight couples
(x j , w j). The distributed estimation is done in this case at
the level of the filters, whereas the sensors are only a means
through which the measurements become available. This is the
class of algorithms that we will study in this paper.

In the next section we will review the body of algorithms
that can be considered a distributed computation particle filter.
It is somewhat surprising that the exploitation (and design) of
the communication network among the units, as sketched in
Fig. 1(c), is a concept that is rather absent in the reviewed
literature. This concept, which is extensively used in the sensor
network community, is one of the main ingredients that will
enable us to devise more efficient particle filters.

IV. RELATED WORK

In the past decade, with the rise of the massive paralleliza-
tion made possible by GPUs, many researchers have analyzed,
studied, and designed versions of distributed computation
particle filters. These algorithms differ in the number of
particles they can handle, the specific parallelization, and the
degree of communication between the computing units. In the
next paragraphs we will examine a number of strategies to
implement distributed and parallel particle filters.

To the best of our knowledge, the first work dealing with
parallelism in particle filters is [12]. In this paper, the particle
population is partitioned into several subsets, each assigned
to a separate processor. Sampling, weight calculations, and
resampling are performed independently and locally for each
subset. The authors consider the weighted sum of all the
particles as the estimate. This estimation is achieved by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

calculating for each subset a local estimate and a local sum
of weights, which are, subsequently, gathered centrally and
combined into a global estimate. The authors show that local
resampling is comparable with global resampling, in terms of
estimation error.

In [13], three methods are proposed to implement distrib-
uted computation particle filters: 1) global distributed particle
filter (GDPF); 2) local distributed particle filter (LDPF); and
3) compressed distributed particle filter (CDPF). With GDPF,
only the sampling and weight calculation steps run in parallel
on different processors, while resampling is performed cen-
trally. All particle data is transferred to a central unit for the
resampling step, and the new particles are sent back to each
processor. The central unit calculates the global estimate from
the particle data. With LDPF, resampling is also performed
locally on each processor without any communication with
other processors. Aggregated particle data is sent to a central
unit in order to calculate the global estimate similar to the
algorithm of [12]. In CDPF, similar to GDPF, resampling and
the calculation of the global estimate are performed centrally,
but only a small representative subset of the particles of each
processor is sent to the central unit. This paper concludes
from a number of simulations that LDPF provides both better
estimation and performance.

Two distributed computation particle filter algorithms are
proposed in [14]: 1) resampling with proportional allocation
(RPA), and 2) resampling with nonproportional allocation
(RNA). Both algorithms perform the sampling and weight cal-
culation stages in parallel. In the RPA method, the resampling
stage involves centralized communication, whereas in the RNA
method it is performed completely locally. Different particle
exchange mechanisms are discussed to improve the perfor-
mance of this local resampling step, but it is rather unclear
how these particles are selected. Furthermore, the number of
particles that are exchanged among the cores is a significant
ratio of the total population (at least 25% of all particles of
each processing element). In both cases (RPA and RNA), the
estimate is calculated as the weighted average of all particles
from all processing elements. It is argued that RPA provides
a better estimation, while RNA has a simpler design. In a
later work [15], the authors compare a standard particle filter
with a Gaussian particle filter on a field-programmable grid
array (FPGA). The presented results indicate that the Gaussian
particle filter, while being faster than a standard particle filter,
is equally accurate for (near-) Gaussian problems.

A number of the previously presented algorithms (GDPF,
RNA, RPA, Gaussian particle filter) are compared using a
parallel implementation on a multicore CPU for a bearings-
only tracking experiment in [16]. The comparison goes only
until 10 000 particles. As expected, the Gaussian particle filter
outperforms (in terms of accuracy over computational time)
all other algorithms, since the estimation problem is Gaussian.
The other particle filter algorithms (GDPF, RNA, RPA) exhibit
similar estimation accuracy. In terms of runtime performance,
both RNA and the Gaussian particle filter achieve near-linear
speedup with respect to the number of cores for a large number
of particles, while GDPF and RPA exhibit only sublinear
speedup.

An interesting particle filter implementation is presented
in [17], where the authors exploit GPU-specific hardware
features. In this paper, first, a parallel approach for sampling
and weight calculations is proposed, and then the resampling
step is performed using a specific hardware feature of GPUs
called the rasterizer. In practice, this step is close to the
RNA algorithm of [14] but, since pseudorandom numbers are
generated on the host CPU and successively transferred to
the GPU, the performance of the filter is severely reduced. In
fact, about 85% of the total runtime is spent on generating
pseudorandom numbers and transferring them to the GPU,
making this implementation unsuitable for real-time estimation
in complex problems.

The GPU implementation described in [18] consists of
parallel sampling, parallel weight calculations, and resampling
performed locally on the different computing units. For the
sampling step, the authors propose to use the finite-redraw
importance-maximizing (FRIM) method, which checks the
weight of the drawn particle and redraws until a particle
with a reasonable weight is constructed. We note that the
FRIM method is known to reduce the required total number of
particles, but a fixed number for maximum number of redraws
has to be imposed to limit the iterations. The generation of
random numbers is performed on the host CPU, as in [17], and
subsequently copied into the GPU. This makes their presented
implementation rather limited. In fact, with the use of a low-
performance laptop-GPU, they are able to run experiments
only up to 4000 particles with execution times around 200 ms
in the best case. It is unclear how the estimate is calculated
from the weighted particle set and whether it is executed on
the GPU.

A recent study [19] investigates a particle filter for local-
ization and map matching for vehicle applications on a CPU
using OpenMP and on a GPU using CUDA. The state dimen-
sion is only four, and the estimation does not benefit from
more than 32 000 particles, but the application is nevertheless
an interesting and well-explained case for particle filters.
Experiments show that, with 128 000 particles, a CPU is
4.7 times faster on six cores than sequentially, while a GPU is
another 16 times faster. The proposed algorithm runs parallel
sampling and weight calculations but the resampling step
is done on the host CPU in a centralized fashion. How-
ever, the resampling is performed only when the particle
variance is above a threshold. This scheme seems to be
faster on average than the other mentioned algorithms, but
it suffers from high peaks of computation time when the
resampling is performed, which is undesirable for real-time
applications.

Another recent study [20] applies a GPU-accelerated parti-
cle filter for visual tracking. The particle filter is only partially
executed on the GPU (and therefore this algorithm will not be
used for comparison with other methods). The GPU is used for
accelerating the image processing steps of the application. The
sampling, estimation, and resampling stages are performed
on the host CPU and only the weights are calculated on
the GPU. They use a standard SIR particle filter implemen-
tation. The experiments go up to 4000 particles achieving
around 40 f/s.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHITCHIAN et al.: DISTRIBUTED COMPUTATION PARTICLE FILTERS ON GPU ARCHITECTURES 5

TABLE I

AVAILABLE METHODS TO IMPLEMENT DISTRIBUTED COMPUTATION PARTICLE FILTERS

Refs. Sampling + Weight Resampling Estimation Particles State Dimension Runtime [ms]

[12] Local Local Central 32 000 3 1–100

[13]
GDPF Local Central Central 5000 5 100
LDPF Local Local Central 5000 5 10
CDPF Local Central§ Central§ 5000 5 10

[14]
RPA Local Central§ Central 50 000 3 1
RNA Local Local Central 50 000 3 0.1–1∗

[17] Local Central§ Central 1 000 000 2 1000
[18] Local Local Unknown 4000 3 200
[19] Local Central Central 130 000 4 10
§ only part of the particles are sent to a few specific coordinating computing units.
∗ these are theoretical limits based on the considered hardware rather than a measured performance.

Table I summarizes the surveyed methods and highlights
the degree of centralization still presented in many of them.
In particular, the resampling stage is performed either in a
centralized fashion (where all or a significant part of the
particles of each core are sent to some specific coordinating
computing unit), or locally, without exchange of particles. This
way of operating is typical from a parallel perspective.

We note, however, that these ways to resample the particle
population can degrade the performance of the filter (in
terms of computational time and accuracy) rather significantly.
In order to address this problem, we will introduce in the
next section the concept of distributed resampling, which
will enable us to overcome these difficulties and achieve an
improvement over the aforementioned methods. Furthermore,
we will explain how the different (user-tunable) parameters
can affect performance.

V. PROPOSED APPROACH

In this section we present our proposed approach to imple-
ment distributed computation particle filters. First we give a
brief introduction to GPU architectures and we introduce the
concept of topology. Then, we describe the distributed resam-
pling techniques, which is the core of our method. Finally,
after presenting our algorithm, we analyze the selection of its
(user-tunable) parameters.

A. GPU Architecture and Topology

GPUs are programmed to exploit their inherent parallelism
to execute a significant number of tasks at the same time.
In this paper, we utilize CUDA [21] as a programming
interface. A CUDA application is divided into a host side and
a device side. The host refers to the CPU that is connected
to one or more devices (i.e., the GPUs). The host manages
device memory, initiates data transfers, and launches kernels
on the device. Kernels are special functions executed on the
device in parallel. Each kernel typically consists of numerous
threads grouped into thread blocks. Limited fast-access shared
memory is available to all threads from a single block for local
communication, while slower access global device memory
is available to all threads. The thread groups and the host
can access the global device memory and this is typically the
way the data is shared (although it is also the main cause of
bottlenecks in standard implementations).

Fig. 2 depicts the terminology and the architecture. For our
implementation, each thread corresponds to a single particle,
while each thread block relates to a local particle filter.

In Fig. 2, we also illustrate the concept of topology, which
will be important for our implementation. Since the access
to the global device memory is usually a bottleneck, it is
important to limit this operation and group the data that each
thread block needs to read. Our idea is to map the global
device memory into a specified topology that formally defines
this grouping procedure. Using graph theory terminology [22],
each thread block is a node, while if two nodes can access each
other’s data we say that there is an edge between them. The set
of nodes V and the set of edges E define a graph G = (V, E)
with a specified topology. Since for a given graph G the
topology is fixed, we often use the symbol G to refer to both
interchangeably. In this context, each thread block has a set
of neighbors, i.e., the thread blocks it can share the data with.

We consider each kernel to consist of N thread blocks (later
local filters) labeled with the index i = 1, . . . , N , whereas
each thread block has m threads (later particles), labeled with
the index j = 1, . . . , m. The number of neighbors of each
thread block is indicated with Ni .

Moreover, as a further abstraction of the hardware/software
level, we refer to the thread blocks as computing units that are
able to send and receive data from the neighboring computing
units, via the graph G. Since the access to global device
memory is often a bottleneck and since the local shared
memory is limited by the hardware, the communication among
the computing units cannot grow arbitrarily.

B. Distributed Resampling

In typical implementations of distributed computation par-
ticle filters, the sampling and weight computation steps are
done locally (in parallel) in a rather straightforward fashion.
We also follow this standard strategy. The resampling step is
however more delicate.

Resampling is a critical step in particle filters. On one side, it
is necessary since it can provide the chance for good particles
to spread themselves and it overcomes the degeneracy phe-
nomenon, where after a few iterations, all but one particle will
have negligible weights. However, on the other side, it intro-
duces practical (and often application-specific) issues, notably
the impossibility to run the code in parallel, since all the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

host

device
thread block

Global device memory

kernel

Topology mapping

Fig. 2. Basic concept of GPU architectures as available in CUDA. The global device memory is mapped into a specific topology representing data exchange
between thread blocks.

particles must be combined, and the loss of diversity among
the particles as the resultant samples contain many repeated
points. In this context, it is rather crucial to devise carefully
the resampling stage and give to the user tunable parameters
to overcome the mentioned application-specific issues.

As surveyed in Section IV, the resampling step is often
performed with a degree of centralization. Typically, all the
particles or (a significant) part of them are sent to a limited
number (often one) of coordinating computing units (i.e.,
thread groups) that are in charge or performing all the
calculations.

In contrast with these methods, we propose a distributed
approach to the resampling stage. Our idea is rather simple yet
extremely effective; it is based on the consideration that there
is no need to have specific coordinating computing units that
collect particles and perform calculations. In fact, each of the
already present computing units (the local particle filters) can
do the calculation themselves. Furthermore, there is no need
to send all the particles to all the units; in fact, only a few
are necessary to the resampling step. In our approach, each
computing unit sends to its neighbors only t representative
particles (the ones with locally the highest weights) and
performs the resampling stage on its resulting m+t Ni particles
(we recall that Ni is the number of neighbors a computing unit
has). We note that this simple idea is extremely powerful. In
fact, we note the following.

(P1) The number of shared particles is a small part of the
population, since typically t Ni & m. However, as we
will see in the experimental and simulation tests of
Section VI, the fact that the method is not completely
local (meaning t > 0, in contrast with local methods
where t = 0, for example [12], [14], [18]) increases
significantly the accuracy of the filter.

(P2) There is no need for centralized data collection, making
the resampling step fast and efficient.

(P3) Both the topology and the number of shared particles t
are user parameters that can be adjusted to the appli-
cation at hand. In some cases (for example, in high
process noise setting), we will see that having an all-
to-all topology (similar to the centralized collection unit
in the CDPF algorithm of [13]) could lead to worse
performance than a ring topology. As we will explain in
Sections V-E and VI, this is due to the loss of diversity
introduced by the resampling stage.

This idea of distributed resampling has been presented
in [23]. A similar approach is also presented in [24], whose
authors propose a modification of the distributed resampling
idea of [23] on a ring topology, where the local computing
units substitute their highest weight particles with the ones of
the neighboring units. Both these works show in simple numer-
ical simulations the similar performance of the distributed
strategy with a standard single-core CPU implementation that
uses the same number of particles Nm, in terms of estimation
quality.

In contrast and in addition to the aforementioned works, in
this paper we implement the distributed resampling scheme
on a GPU architecture and test it on a real hardware platform.
Furthermore, we analyze the effect of the parameters of
algorithm, namely, the number of shared particles t and the
topology G on the quality of the estimate.

C. Proposed Algorithm

Our proposed algorithm consists of the following high-level
steps.

1) Sampling and Weight Calculation: this step is done
locally on each computing unit.

2) Distributed Resampling Step: this step is done in
a distributed computation fashion as explained in
Section V-B.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHITCHIAN et al.: DISTRIBUTED COMPUTATION PARTICLE FILTERS ON GPU ARCHITECTURES 7

Algorithm 1 Distributed Computation Particle Filter: High-
Level Description on Each Computing Unit i

Input: {xi(k − 1) j } j=1,...,m, z(k)

1. Local Filter:
for j = 1: m

1.1: sampling: xi (k) j ∼ p(xi (k)|xi(k − 1) j)

1.2: weight_calculation: wi (k) j = p(z(k)|xi(k) j)

end
2. Sorting: sort {xi (k) j } j=1,...,m according to
{wi (k) j } j=1,...,m

3. Estimation: local_estimation: pick xi (k) j with maximal
wi (k) j

4. Particle Exchange:
foreach neighbor do

send and receive t particle-weight couples to/from
neighbors

end
5. Resampling: resample the m + Ni t particles into m
particles

6. Reset: set wi (k) j = 1/m for all j

Output: {xi(k) j } j=1,...,m

3) Local Estimation: this step is done locally on each
computing unit, picking the local particle with maximum
weight.

4) Global Estimation: in addition to local estimation, we
provide to the user a global estimate which is selected
as the best particle among the local estimates. This
selection is also done in parallel via a parallel reduction
on the winners from each block. In our experiments we
have noted that the extra run-time spent in the global
estimation kernel is extremely limited and completely
justifiable. However, we remark that local estimation is
already sufficient to obtain accurate results.

Algorithm 1 describes more in detail how these three high-
level phases are translated into high-level commands, while
high-level implementation details are presented next. For more
hardware- and implementation-related details, the reader is
referred to [25].

D. High-Level Implementation Details

The details of how Algorithm 1 has been implemented on
real hardware platforms is fully reported in [25]. Nonetheless,
the next paragraphs give an account of these implementation
details from a high-level perspective.

First of all, as mentioned in Sections V-A and V-C, each
particle is processed by a single GPU thread and each local
particle filter by a thread block. The particle filter operations
of Algorithm 1 along with the important, but often overlooked,
pseudorandom number generation are mapped to the following
CUDA kernels.

1) Pseudo-Random-Number Generation: Particle filters
rely heavily on (pseudo-random) number generators

(which are needed for both the sampling as well as
resampling calculations). The generation is done on the
GPU at the start of each filter iteration using a GPU-
optimized variant of Mersenne–Twister [26], which is
a highly popular pseudo-random-number generator for
Monte Carlo simulations.

2) Sampling and Importance Weight Calculation: This ker-
nel is rather standard, see, for example, [16].

3) Local Sorting: All particles within each local filter are
also sorted according their weights, in order to facilitate
particle exchange and local estimation. This procedure
is implemented with a bitonic sorting network, for an
efficient parallel execution on the GPU.

4) Local/Global Estimate: We select the particle with the
highest weight for each block, which has already been
calculated by the previous kernel. Moreover, we provide
to the user a global estimate which is selected as the best
particle among the local estimates.

5) Particle Exchange: The exchange topology (G) deter-
mines whom each filter exchange particles with.

6) Resampling: The resampling step generates a new parti-
cle set by drawing randomly (with replacement) from the
original set according to particle weights. This kernel is
implemented in two stages. First, the cumulative (prefix)
sum of all the weights is computed. Second, for each
particle a previously drawn uniform random number
from U(0,

∑
j wi (k) j) is matched to a new particle

using a binary search over the cumulative sum of the
weights.

E. Analysis of the Algorithm

In this section we provide some insights in the selection of
the parameters t and G of Algorithm 1, while, in general, the
selection of N and m are dictated by hardware limitations.

Let p̂i(x(k)|z(k)) be the local approximation of the
a posteriori pdf, different for each local filter, which can be
written as

p̂i (x (k) |z (k)) = 1
$i (k)

m∑

j=1

wi (k) j δ
(

x (k) − xi (k) j
)

(7)

where the subscript i indicates that weights and particles are
referred to the local filter i , and $i (k) = ∑m

j=1 wi (k) j .
Let w̃i (k) j be the weight of particle j of filter i after the
communication step but before resampling. Let m̃i = m + Ni t
be the total number of particles of filter i before resampling,
and let $̃i (k) = ∑

j w̃i (k) j .
First of all, we support the intuitive claim that the most

representative particles of the p̂i (x(k)|z(k)) in (7) are the
ones with highest weights, which justifies the communication
strategy in Algorithm 1. In order to show this, we utilize the
Kullback–Leibler (KL) divergence [27] which measures the
distance between two pdfs. In particular, the smaller the KL
divergence, the closer the two pdfs. Consider the approximated
a posteriori p̂(t)

i (x(k)|z(k)) computed using only t < m

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

particles, as

p̂(t)
i (x (k) |z (k)) = 1

$(t)
i (k)

t∑

j=1

wi (k) j δ
(

x (k) − xi (k) j
)

(8)
with $(t)

i (k) = ∑t
j=1 wi (k) j ; then the claim that the t

particles with highest weights are the most representative
for (7) is formally expressed as follows.

Proposition (From [24]): The KL divergence between (7)
and its approximation (8), which employes only t < m
particles, i.e., D(p̂i , p̂(t)

i), can be written as

D(p̂i , p̂(t)
i) = − log

t∑

j=1

wi (k) j

$i (k)

 = − log

(
$(t)

i (k)

$i (k)

)

(9)

and it is minimal when we use for (8) the t particles with the
highest weights.

We can distinguish two main aspects that affect the perfor-
mance of Algorithm 1. First, we have to analyze how well
each of the local a posteriori p̂i (x(k)|z(k)) represents the
global p̂(x(k)|z(k)). This aspect dictates the estimation quality
of the distributed computation particle filter with respect
to a classical sequential single-core CPU implementation.
Second, it is important to study how distorted each of the
local p̂i (x(k)|z(k)) becomes after the resampling step. This
distortion is a measure of the distance between the resampled
and the initial population. In particular, high values of dis-
tortion generally mean that the filter will be affected by the
degeneracy/loss of diversity phenomenon, where only a few
particles have nonzero weight.

In order to analyze the quality of each local a poste-
riori p̂i(x(k)|z(k)) with respect to the global p̂(x(k)|z(k)),
we make use of Proposition 1 applied to these distribu-
tions and we define the cumulative sum of the local KL
divergences as

N∑

i=1

D(p̂, p̂i) = −
N∑

i=1

log

m̃i∑

j=1

wi (k) j

$(k)

= −
N∑

i=1

log

$i (k)

$(k)
+

m+Ni t∑

j=m+1

wi (k) j

$(k)

 (10)

where we recall that $(k) = ∑Nm
j=1 w(k) j .

Let W = ∑m+Ni t
j=m+1 wi (k) j . By the fact that we are sharing

the t particles with highest weight, we could approximately
consider wi (k) j to be the same for each j , i.e., wi (k) j ≈
w̄i (k), and approximate W as

W ≈ w̄i (k)Ni t .

Consider the derivative of the cumulative sum (10) with
respect to W (and therefore with respect to Ni t since w̄i (k)
is constant) as

∂

∂W

N∑

i=1

D(p̂, p̂i) = − $(k)

$i (k) + W
(11)

which is a minimum for W = 0.
From (10) and (11), we can infer the following.

(S1) The higher the Ni t , the closer the local and global
a posteriori pdfs are. This follows from (10) with
W →∞ (or in the approximated sense, with Nit →∞).
Therefore, increasing the communication leads to an
increase of estimation quality for a given time step k
(note that the effect on the time step k + 1 depends
also on the resampling, which is analyzed next). In
particular, if we choose all-to-all communication and
t = m, then each local population is comprised at least
of the m particles with highest weight, which are the
most representative to describe p̂(x(k)|z(k)).

(S2) The gain in increasing Ni t , or for a given Ni , in
increasing the number of shared particles t , is maximum
when W = 0 ≈ Ni t . In other words, we can expect
a more significant increase in the estimation quality
passing from t = 0 to t = 1 than passing from t = 1 to
t = 2.

Besides choosing t and Ni (and therefore the topology G) to
minimize the KL divergence between the local p̂i (x(k)|z(k))
and the global p̂(x(k)|z(k)) while maintaining Ni t as small
as possible to limit the communication effort, the effect of
the resampling stage is also an important aspect to consider.
Assume that Ni t & m and thus consider the local particle
population to be uncorrelated among the local filters i . Define
the distortion [28] of p̂i (x(k)|z(k)) after the resampling step
as its KL divergence with the global a posteriori p̂(x(k)|z(k)).
We note that this measure is different from the one in (10),
since we use for p̂i (x(k)|z(k)) the resampled weights (before
resetting them). The dependence of the distortion on the local
weights before resampling w̃i (k) j can be approximated as [28]

Dw̃ ≈
N∑

i=1

$i (k)
m̃i∑

j=1

⌈
w̃i (k) j

$i (k)

⌉
log

(⌈
w̃i (k) j

$i (k)

⌉)
. (12)

In order to avoid distortion and, therefore, to maximize the
estimation quality, Dw̃ has to be minimized, which is achieved
when the different w̃i (k) j within the same local filter i have
similar values. On the contrary, when only few particles have
the highest weights, the distortion is close to its maximum and,
therefore, degeneracy can be expected to occur. In particular,
we can distinguish two extreme cases.
(S3) Relatively low process noise but high measurement

noise. In this case, the particles have similar weights
and, therefore, the resampling step does not cause high
levels of distortion, even for Ni t)= 0.

(S4) Relatively high process noise but low measurement
noise. In this case, few particles have the highest weight
and, therefore, the resampling step causes high levels of
distortion. In particular, given t , the higher the Ni , the
higher the distortion.

In the next section we will illustrate in practice the insights
on the selection of the parameters t and Ni , which we have
presented in this section.

VI. NUMERICAL AND EXPERIMENTAL RESULTS

A. Setup

In order to test, verify, and benchmark our distributed
computation particle filter implementation, we use the realistic

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHITCHIAN et al.: DISTRIBUTED COMPUTATION PARTICLE FILTERS ON GPU ARCHITECTURES 9

y

L2

z

x

L3

L1

θ2

θ1

θ0

θ3

(a) (b)

Fig. 3. Robotic arm used for the experimental test. (a) Real testbed. (b) Schematic representation showing the camera at the end tip, marked with a grey
circle, and the monitor on which a moving object are displayed.

industrial application of a robotic arm. The main reason for
such a choice is that the measurement equations of this
application are highly nonlinear and extremely challenging for
standard estimation techniques both in terms of accuracy and
computational time.

The robotic arm in this experiment has a number of joints,
J = 3, which can be controlled independently. It has one
degree of freedom per joint plus the rotation of the base. Each
joint has a sensor to measure its angle. There is a camera
mounted at the end of the arm. This camera is used for tracking
an object which is moving on a monitor on a fixed yz plane.
The real robotic arm as well as a schematic representation is
shown in Fig. 3.

Let θi (k) be the angle of the joint i at the discrete time
k (i = 0 represents the rotational degree of freedom of the
base). Let pw(k) = (x(k), y(k), z(k))# ∈ R3 be the position
of the object to be tracked at the discrete time step k in
the fixed reference system of the robotic arm, as indicated in
Fig. 3, while let (vx (k), vy(k), vz(k))# ∈ R3 be its velocity.
We consider x(k) to be known a priori and vx(k) to be zero
for all k. Denote by

x(k) = (θ0(k), . . . , θJ (k), y(k), z(k), vy(k), vz(k))#

the state of the arm and object dynamics. We model the angle
dynamics as discrete-time single integrators and the object
dynamics as a discrete-time double integrator,

θi (k) = θi (k − 1) + wθi (k − 1), i = 0, . . . , J (13a)

y(k) = y(k − 1) + vy(k − 1)'t + wy(k − 1) (13b)

z(k) = z(k − 1) + vz(k − 1)'t + wz(k − 1) (13c)

vy(k) = vy(k − 1) + wvy (k − 1) (13d)

vz(k) = vz(k − 1) + wvz (k − 1) (13e)

where the terms w model the process noise and 't is
the sampling time. The system of dynamical equations (13)
will represent our a priori distribution p(x(k)|x(k − 1)), as
explained in Section II, (3).

The camera mounted at the end effector of the robotic arm
detects the object displayed on the monitor in its own frame

of reference. Let ps(k) = (xc(k), yc(k))# be the position of
the object in the camera moving frame at the discrete time
k. This position is measured in pixels. To relate ps(k) to the
actual coordinates of the object in the robot fixed frame, first,
we have to use a camera model that translates pixels into
meters, and then perform a chain of translations and rotations
to change the reference frame. The camera is modeled by the
traditional pinhole projection with added radial lens distortion,
see [29]–[31] for details. The model for the measured obser-
vations of the moving object is composed of three classes of
maps: rigid body transformations, projections, and “distortion”
maps. We emphasize the first two, since the lens distortion
is known, i.e., the camera is calibrated a priori. Let p′ =
(x ′, y ′, z′)# be a 3-D point described in generic coordinates.
Let ϕ : SE(3) × R3 → R2 be the standard rigid body
transformation

ϕ(R, p′, q) = Rp′ + q

where R and q are the traditional rotation matrix and transla-
tion vector, respectively. The camera pinhole projection model
is realized by the projection map π : R3 → R2

π(p′) = 1
z′

(
x ′

y ′

)
.

The composition of the maps is described graphically by the
informal diagram

ϕ π ψ

pw ←→ pc −→ pp ←→ ps
world camera plane sensor

where ψ describes the lens distortions. The full sensor model
is described by

ps = ψ ◦ π ◦ ϕ(R, pw, q) + µs (14)

with µs an additive noise term. We note that the couple (R, q)
depends nonlinearly on the configuration of the robotic arm
and, thus, on the angles θi and on the geometry, i.e., the length
and the number J of the joints. Hence the model (14) can be
translated into the compact measurement equation

ps(k) = hs(x(k)) + µs(k) (15)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

where hs is the nonlinear function that represents the compo-
sition of the three maps in the sensor model (14). In order
to complete our measurement model, we add the independent
measurements of the angles

θ̃i (k) = θi (k) + µθi (k), i = 0, . . . , J (16)

(with µθi sensor noise). Denote the measurement vector by
z = (p#

s , θ̃0, . . . , θ̃J)# and the measurement noise vector
with µ = (µ#

s , µθ0, . . . , µθJ)
#. We can write the complete

measurement equation for the robotic arm setup as

z(k) = h(x(k)) + µ(k). (17)

We note that (17) is a special case of (2) with additive
measurement noise, from which we derive the a posteriori
distribution p(z(k)|x(k)).

In the next subsections we will analyze several experimental
and simulation results. The first aim of the experiments is
to show the performance of the proposed Algorithm 1 in
estimating the state x given the noisy observation z. In
particular, we will focus only on a part of the state, namely,
the position of the object in the world coordinates, i.e., (y, z).
We will describe the dependences of the estimation error on
the different parameters of the algorithm, as well as its runtime
performances. We will show its scalability with respect to
the dimension of the state vector (arbitrarily varied in the
simulation runs changing the number of joints J , therefore
augmenting the number of θi to consider in (13a) and changing
the geometry, i.e., the rigid body transformation ϕ in (14)).

The second aim of the experiments is to demonstrate one of
the main contributions of this paper—fast real-time feedback
control based on the proposed algorithm is possible and can
achieve satisfactory results, in contrast with traditional single-
core CPU implementations. The control objective is to track
a moving object with the robotic arm while it traverses the
screen, as described next.

For experimental and simulation purposes, we use the
commercially available GTX 580 GPU and, unless differently
stated, we choose a ring topology for the underlying communi-
cation graph, and we select t = 1 for the number of exchanged
particles among the computing units.

B. Experimental Results

We use the robotic arm platform of Fig. 3 for the experi-
ments throughout this section in order to examine the filter
behavior under different conditions. The parameters of the
platform and the particle filter are listed in Table II (Experi-
ments column), where all noise terms are modeled as Gaussian
(since this turns out to be a rather realistic model for the noise
of the setup).

In the experiments, the robotic arm is directed to follow
a moving object (a white dot) while it traverses the monitor.
The robotic arm pose is controlled so that the camera keeps
the object in view while staying at about 2 cm from the
monitor itself (thus the camera does not have a view of the
whole monitor), see Table II. The implemented controller is a
discrete-time proportional-integral-differential (PID) controller
based on the estimated position and the estimated joint angles

TABLE II

EXPERIMENT AND SIMULATION PARAMETERS

Experiments High-Noise Simulations

Process Noise∗

wθi 0.015 rad 0.075 rad
wy , wz 0.001 m 0.005 m
wvy , wvz 0.05 m/s 0.25 m/s

Measurement Noise∗

µs 10 px 10 px
µθi 0.01 rad 0.01 rad

Other Parameters

't 0.01s 0.01s
Tf

∗∗ 200s 200s
Velocity of the Target / 0.03 m/s / 0.03 m/s
Camera View Area

Total Area
12% −

∗ both process noise and measurement noise are chosen to be Gaussian
with zero mean and indicated standard deviation.

∗∗ corresponding to 10 complete trajectory loops.

with the sampling rate of 100 Hz. This update rate is close to
the hardware limit.

The performance metric we consider is the estimation error
of the position of the target.2 In particular we define the
average error e as

e = 1
T f

T f∑

k=1

||p̂w(k) − pw(k)|| (18)

where p̂w(k) is the estimated position by the filter and pw(k)
is the true position, while Tf is the final discrete time step of
the experiment and || · || represents the 2-norm. We remark
that, by definition, e is always positive, i.e., e > 0.

Fig. 4 illustrates the estimation of the position (y, z) super-
imposed on the actual trajectory of the object in low particle
and high particle settings. In Fig. 4(a) we have selected
N = 32 and m = 64, and we note that the robotic arm
loses track of the object and it cannot complete the trajectory.
On the contrary, In Fig. 4(b), in the setting N = 2048 and
m = 512, we can achieve better estimation which translates
into the accomplishment of the object following the task. In
Fig. 4(a), we have also indicated the dimensions of the camera
view area (empty rectangle).

Fig. 5 shows the average estimation error e for different
settings (the standard deviation is not displayed but is around
1 mm for all the considered settings). We note the general
(expected) trend that a higher number of filters increases the
accuracy. Moreover, we achieve an average error of 3 mm
for the best setting (with 1M particles at 100 Hz), which is
considered a remarkable result given the experimental setup.

2This metric has been chosen because it provides an intuitive and physical
interpretation of the average error in terms of distances, which is our primary
focus for control purposes. Other metrics that could offer valuable insights
in the performance of the algorithm are, for example, the total error metric
based on the whole state error, considered in [25], or a weighted metric based
on an estimation of the covariance matrix of the a posteriori distribution.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHITCHIAN et al.: DISTRIBUTED COMPUTATION PARTICLE FILTERS ON GPU ARCHITECTURES 11

−0.1 −0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

y [m]

z
[m
]

(a)

−0.1 −0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

y [m]

z
[m
]

(b)

Fig. 4. Estimated position (y, z) (in grey dots) superimposed on the actual trajectory of the object. (a) Setting is N = 32 and m = 64, which does not allow
the robotic arm to follow the object. (b) Setting is N = 2048 and m = 512, which allows the robotic arm to follow the object very well. Both experiments
have been run at 100 Hz. The empty rectangle on the left figure represents the camera view area.

128 256 512 1024 2048
2

3

4

5

6

7

8

Number of local filters N

Av
er
ag
e
Er
ro
r
[m
m
]

m = 64
m = 128
m = 256
m = 512

Fig. 5. Averaged estimation error e in a number of experiments with different
(N, m) settings. The standard deviation (not shown) is around 1 mm.

C. High-Noise and Large-Scale Simulation Results

In order to further assess our implementation in different
scenarios, we simulate the filtering problem under high process
noise and in large-scale settings. Both cases serve to illustrate
the performance of the algorithm in situations that might be
encountered in real-life applications.

First of all, we increase the noise parameters as expressed
in Table II and perform 100 simulation runs for each (N, m)
setting (therefore the average error is also averaged on the
100 simulation runs). Figs. 6–7 show the results for different
topology choices G, and thus for different Ni , and for a
different number of exchanged particles t . Although we have
performed simulations with several different G and t , we report
here only the most indicative ones, while the interested reader
is referred to [25]. In Figs. 6 and 7, the standard deviation
of the averaged error is not depicted for readability but it
varies between 40% of the average value, for cases in which

e 0 10 mm, and less than 10% of the average value when
e < 10 mm (this will be also the case in Fig. 10).

As we may note from Fig. 6 (where we use t = 1),
in this high-noise setting, the ring topology performs in
general better than the all-to-all topology. This is in contrast
with the design choice of the available algorithms, e.g. [13],
where only all-to-all communication is considered. We remark
that this effect is due to the lack of diversity in the resampling
stage, and expected from our statement (S4) in Section V-E.

Furthermore, from Fig. 7 (where only the ring topology
is used) and Fig. 6(a) we see that even a small number of
exchanged particles can make a significant difference com-
pared to the no-communication choice (t = 0). Moreover, as
expected from statement (S2) in Section V-E, we note that
this difference is not so marked when passing from t = 1 to
t = 4, meaning that the real improvement is in communicating
itself and not in the number of exchanged particles.3 This is
in contrast with the design choice of some of the available
methods, e.g. [12], [14], [18], where either no communication
is chosen or 25% of the total particles are shared.

As a second variation on the experimental results, we
increase the number of state dimensions augmenting4 the
number of joints J with the setting N = 2048, m = 512.
This case illustrates the scalability of the algorithm, in terms
of runtime, with respect to the state dimension. As we see from
Fig. 8 the particle exchange step, as well as resampling and
(global) estimate, requires a relatively limited runtime and they
scale better than the sampling step. This was to be expected
because, when the state dimension increases, the sampling is
the most affected task.5

3Which is also good news for limiting the communication because, the
lower the t , the less communication is required per local filter, for a given
Ni .

4We remark that this augmentation of the state dimension is done by
increasing the number of angles to consider in the state equation (13a), and by
changing the rigid body transformation ϕ (14), to accommodate the modified
geometry of the arm.

5As seen in Section V-D, the other kernels are pseudo-random-number
generation, sorting, and local and global estimation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

 2 32 256 2048 16384

 10

100

 1K

Number of local filters N

Av
er
ag
e
Er
ro
r[
m
m
]

m = 8
m = 16
m = 32
m = 64
m = 128
m = 256
m = 512

tRing Topology, = 1

(a)

 2 32 256 2048 16384

 10

100

 1K

Number of local filters N

Av
er
ag
e
Er
ro
r[
m
m
]

m = 8
m = 16
m = 32
m = 64
m = 128
m = 256
m = 512

All-to-all Topology, t = 1

(b)

Fig. 6. Average error (e averaged over the 100 simulation runs) for different (N, m) settings varying the communication topology G. (a) Setting: ring
topology, t = 1. (b) Setting: all-to-all topology, t = 1.

 2 32 256 2048 16384

 10

100

 1K

Number of local filters N

Av
er
ag
e
Er
ro
r
[m
m
]

m = 8
m = 16
m = 32
m = 64
m = 128
m = 256
m = 512

Ring Topology, t = 0

(a)

 2 32 256 2048 16384

 10

100

 1K

Number of local filters N

Av
er
ag
e
Er
ro
r[
m
m
]

m = 8
m = 16
m = 32
m = 64
m = 128
m = 256
m = 512

Ring Topology, t = 4

(b)

Fig. 7. Average error (e averaged over the 100 simulation runs) for different (N, m) settings varying the number of exchanged particles t . (a) Setting: ring
topology, t = 0. (b) Setting: ring topology, t = 4.

D. Comparison With a Centralized Sequential Implementation

As a final set of simulation runs, we use the high-noise set-
tings (Table II) and compare the proposed distributed particle
filter implementation with a sequential centralized implemen-
tation (i.e., a standard particle filter that runs sequentially on
a single-core architecture).

First of all, we consider in Fig. 9 the runtime [ms] for
the distributed implementation and the centralized one (the
centralized implementation has been implemented on a Intel
Core i7-2820QM processor running at 2.3 GHz). We set
m = 512 and we vary N . As we note from Fig. 9, the runtime
of the centralized algorithm scales worse than the proposed
distributed method (increasing N). Furthermore, for a high
particle setting (Nm >16 K), the distributed algorithm is
10–>100 times faster than the sequential centralized imple-
mentation. The opposite, i.e., the distributed particle filter is
slower than the centralized implementation, is instead reason-

able with a low number of particles (Nm < 1K), since the
single core is more powerful computation-wise than the local
cores of the GPU architecture and there is no communication
involved.

Fig. 9 can also be used for a comparison with the methods
presented in the literature. With reference to Table I, we can
report in Table III the performance of the proposed method.

As we see from Table III, the presented method outper-
forms in terms of the number of particles, state dimension,
and/or runtime state-of-the-art methods employing GPU archi-
tectures. Furthermore, Algorithm 1 increases the achievable
performances often by orders of magnitude.

In Fig. 10 we report the estimation error in both the
distributed implementation and the centralized one. As we
notice, the estimation error for cases in which m ≥ 128 is
comparable with the centralized setting. Furthermore, in the
case of m = 512 and N ≥ 1024, the distributed algorithm
delivers better estimates than the centralized one. This has to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHITCHIAN et al.: DISTRIBUTED COMPUTATION PARTICLE FILTERS ON GPU ARCHITECTURES 13

8 12 16 20 24 28 32 36 40 44 48 52 56
0

2

4

6

8

10

12

State dimension

Ru
nt
im
e
[m
s]

Total
Sampling
Resampling
Exchange

Fig. 8. Runtime of the some of the kernels of the distributed computation
particle filter implementation varying the state dimension in the setting
N = 2048 and m = 512.

TABLE III

PERFORMANCE OF THE PROPOSED APPROACH

Ref. Sampling +
Weight

Resampling Estimation Particles State
Dimension

Runtime
[ms]

Algorithm 1 local distributed local
64 000 8 0.3

1M 8 2.3

4M 8 4.6

 256 1K 4K 16K 64K 256K 1M 4M

0.015

 0.25

 4

 64

 1024

Number of particles Nm

Ru
nt
im
e
[m
s]

Distributed Implementation

Sequential Centralized Implementation

Fig. 9. Runtime comparison of the proposed distributed implementation
and a sequential centralized implementation. In the distributed one, we fix
m = 512 and we vary N .

do with the loss of diversity in the centralized implementation.
Fig. 10 gives also extra insights on the selection of m and N
given a total number of particles Nm. In fact:

(I1) for high values of Nm, it appears better, in terms of
estimation error, to choose a high value for m. This
configuration leads to a small number of accurate filters;

(I2) for low Nm settings, the opposite seems to be more
recommendable. This leads to a high number of less
accurate filters (but yet with more particle diversity).

 256 1K 4K 16K 64K 256K 1M 4M

 10

100

Number of particles Nm

Av
er
ag
e
Er
ro
r
[m
m
]

m = 8
m = 16
m = 32
m = 64
m = 128
m = 256
m = 512
Centralized

Fig. 10. Comparison of the estimation error between distributed and
centralized sequential algorithms.

VII. CONCLUSION

A. Summary

In this paper, we showed that fast yet accurate nonlinear esti-
mation is realizable and can be used in relatively high sample
rate real-time feedback controllers. In particular, we designed,
analyzed, and implemented a distributed computation particle
filter that can handle over a million particles at 100 Hz with
remarkable estimation accuracy. This was one of our goals
as formulated in question (Q) in Section II, which has been
therefore answered positively.

The results obtained were made possible by the use of a
novel distributed resampling technique that is based on the
exchange of particles via specified topologies that link local
filters. This has several advantages, among which are (P1),
(P2), and (P3), as discussed in Section V-B. In particular, it
is crucial in limiting the number of exchanged particles and
still increasing the estimation accuracy (without the need for
centralized data collection).

Furthermore, we were able to infer some theoretical proper-
ties of the proposed algorithm, which also demonstrated why
our method performs better than available implementations.
These properties, explicitly (S1), (S2), (S3), and (S4) of
Section V-E, indicate that the choice of exchange topology
(e.g., the number of neighbors) and number of exchanged
particles are critical for the accuracy of the filter and depend on
the problem at hand. In general, a significant gain in accuracy
has to be expected passing from no-exchange to exchange of
particles among the local filters (even if the filters exchange
just one particle), while for high process noise settings it is
advisable not to choose topologies with a high number of
neighbors, which will cause high levels of distortion.

Through simulations and experiments we showed that our
proposed method outperforms other implementations that can
be found in the literature. In particular, our implementa-
tion increased the number of particles, the state dimension,
and/or the sampling frequency often by orders of magni-
tude with respect to state-of-the-art GPU solutions (typically
based on parallel algorithms instead of our distributed ones).
Moreover, we showed that the proposed scheme has compara-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

ble accuracy with centralized sequential particle filters (with
the same number of total particles), which require 10–100
times more computational time (when using a high number
of particles) than our proposed distributed implementation.

Finally, we gained further insight on the selection of some
user-tunable parameters, such as number of local filters N
and number of particles in each of them m. In particular,
we saw that the importance of choosing a higher m when
the total number of particles, Nm, is high than when Nm
is low, which has been formulated in (I1) and (I2) of
Section VI-D.

B. Future Work

As future work directions, we plan to further analyze the
proposed algorithm. We would like to use graph theoretical
notions, such as algebraic connectivity and graph diameter, to
propose metrics to decide whether a specific topology is better
than another with respect to estimation accuracy, continuing
the discussion of Section V-E. We have in mind to study the
optimal selection of the number of local filters N and the
number of local particles m to guarantee a certain level of
accuracy and sampling rate, further investigating insights (I1)
and (I2) of Section VI-D.

Finally, we envision the possibility of merging distributed
sensing particle filters with distributed computation ones to
obtain a fast and accurate nonlinear estimator that can also
work well in distributed sensing scenarios.

REFERENCES

[1] N. Gordon, D. Salmond, and A. Smith, “Novel approach to
nonlinear/non-Gaussian bayesian state estimation,” IEE-Proc.-F,
vol. 140, no. 2, pp. 107–113, Apr. 1993.

[2] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proc. IEEE, vol. 93, no. 3, pp. 401–422, Mar. 2004.

[3] C. Rao, J. Rawlings, and D. Mayne, “Constrained state estimation for
nonlinear discrete-time systems: Stability and moving horizon approx-
imations,” IEEE Trans. Automat. Control, vol. 48, no. 2, pp. 246–257,
Feb. 2003.

[4] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[5] J. Cortés, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726–737, 2008.

[6] M. Coates, “Distributed particle filters for sensor networks,” in Proc.
3rd Int. Symp. Inform. Process. Sensor Netw., Apr. 2004, pp. 99–107.

[7] X. Sheng, Y. Hu, and P. Ramanathan, “Distributed particle filter with
gmm approximation for multiple targets localization and tracking in
wireless sensor network,” in Proc. 4th Int. Symp. Inform. Process. Sensor
Netw., Apr. 2005, pp. 181–188.

[8] D. Gu and H. Hu, “Target tracking by using particle filter in sensor
networks,” Int. J. Robot. Automat., vol. 24, no. 3, pp. 171–182, 2009.

[9] S. Lee and M. West, “Markov chain distributed particle filters
(MCDPF),” in Proc. IEEE 48th Conf. Decis. Control, Dec. 2009,
pp. 5496–5501.

[10] S. Farahmand, S. I. Roumeliotis, and G. B. Giannakis, “Set-membership
constrained particle filter: Distributed adaptation for sensor networks,”
IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4122–4138, Sep. 2011.

[11] A. Simonetto and T. Keviczky, “Distributed nonlinear estimation for
diverse sensor devices,” in Distributed Decision Making and Con-
trol (Lecture Notes in Control and Information Sciences). New York:
Springer-Verlag, 2012, pp. 147–169.

[12] O. Brun, V. Teuliere, and J. Garcia, “Parallel particle filtering,” J.
Parallel Distrib. Comput., vol. 62, no. 5, pp. 1186–1202, 2002.

[13] A. S. Bashi, V. P. Jilkov, X. R. Li, and H. Chen, “Distributed imple-
mentations of particle filters,” in Proc. IEEE Conf. Inform. Fusion, Jul.
2003, pp. 1164–1171.

[14] M. Bolić, P. M. Djurić, and S. Hong, “Resampling algorithms and
architectures for distributed particle filters,” IEEE Trans. Signal Process.,
vol. 53, no. 7, pp. 2442–2450, Jul. 2005.

[15] M. Bolić, A. Athalye, S. Hong, and P. Djurić, “Study of algorithmic
and architectural characteristics of Gaussian particle filters,” J. Signal
Process. Syst., vol. 61, no. 2, pp. 205–218, 2010.

[16] O. Rosén, A. Medvedev, and M. Ekman, “Speedup and
Tracking Accuracy Evaluation of Parallel Particle Filter
Algorithms Implemented on a Multicore Architecture,”
in Proc. IEEE Int. Conf. Control Appl., Sep. 2010,
pp. 440–445.

[17] G. Hendeby, R. Karlsson, and F. Gustafsson, “Particle filtering: The need
for speed,” EURASIP J. Adv. Signal Process., vol. 1, no. 5, pp. 1–9, 2010.

[18] M.-A. Chao, C.-Y. Chu, C.-H. Chao, and A.-Y. Wu, “Efficient paral-
lelized particle filter design on CUDA,” in Proc. IEEE Workshop Signal
Process. Syst., Oct. 2010, pp. 299–304.

[19] K. Par and O. Tosun, “Parallelization of particle filter based localization
and map matching algorithms on multicore/manycore architectures,” in
Proc. IEEE Intell. Veh. Symp., Jun. 2011, pp. 820–826.

[20] J. Brown and D. Capson, “A framework for 3-D model-based visual
tracking using a GPU-accelerated particle filter,” IEEE Trans. Vis.
Comput. Graph., vol. 18, no. 1, pp. 68–80, Jan. 2012.

[21] CUDA C Programming Guide. NVIDIA Corporation, Santa Clara, CA,
USA, October 2010.

[22] C. Godsil and G. Royle, Algebraic Graph Theory (Graduate Text in
Mathematics). New York: Springer-Verlag, 2001.

[23] A. Simonetto and T. Keviczky, “Recent developments in distrib-
uted particle filters: Towards fast and accurate algorithms,” in
Proc. 1st IFAC Workshop Estimat. Control Netw. Syst., Sep. 2009,
pp. 138–143.

[24] B. Balasingam, M. Bolić, P. M. Djuric, and J. Míguez, “Efficient
distributed resampling for particle filters,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., May 2011, pp. 3772–3775.

[25] M. Chitchian, A. S. van Amesfoort, A. Simonetto, T. Keviczky, and
H. J. Sips, “Particle filters on multi-core processors,” Dept.
Comput. Sci., Delft Univ. Technology, Delft, The Netherlands,
Tech. Rep. PDS-2012-001, (Feb. 2012) [Online]. Available: http:
//www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2012/PDS-2012-001.pdf.
Code available at: https://github.com/alxames/esthera

[26] M. Saito and M. Matsumoto. (2010, Jun.). A Variant of Mersenne
Twister Suitable for Graphic Processors [Online]. Available:
http://arxiv.org/abs/1005.4973

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[28] J. Míguez, “Analysis of parallelizable resampling algorithms for particle
filtering,” Signal Process., vol. 87, no. 12, pp. 3155–3174, 2007.

[29] J.-Y. Bouguet. (2010). Camera Calibration Toolbox for Matlab [Online].
Available: http://www.vision.caltech.edu/bouguetj/calib_doc/

[30] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robot. Automat., vol. 12, no. 5, pp. 651–670,
Oct. 1996.

[31] D. van der Lijn, G. Lopes, and R. Babuska, “Motion estimation based
on predator/prey vision,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2010, pp. 3435–3440.

Mehdi Chitchian received the B.Sc. and M.Sc.
degrees in computer science from the Delft Univer-
sity of Technology, Delft, The Netherlands, special-
izing in parallel and distributed systems.

He has been involved in multi-disciplinary
research projects with the Delft Biorobotics Lab as
well as the Delft Center for Systems and Control.
His academic interests include research in the appli-
cation of high-performance computing technologies
in robotics and other control systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHITCHIAN et al.: DISTRIBUTED COMPUTATION PARTICLE FILTERS ON GPU ARCHITECTURES 15

Andrea Simonetto received the M.Sc. degree in
space engineering (cum laude) from both Politecnico
di Milano and Politecnico di Torino, Torino, Italy, in
2008, and the Ph.D. degree in systems and control
from the Delft University of Technology, Delft, The
Netherlands, in 2012.

He is currently a Post-Doctoral Researcher with
the Circuits and Systems Group, Electrical Engineer-
ing Department, Delft University of Technology. He
was a Visiting Researcher with the Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, and

with KTH, Royal Institute of Technology, Stockholm, Sweden. His current
research interests include distributed estimation, control, and optimization with
applications in sensor networks and mobile robotics.

Alexander S. van Amesfoort received the B.Sc.
and M.Sc. degrees in computer science from VU
University, Amsterdam, The Netherlands, with a
specialization in parallel computing and visualiza-
tion, and the Ph.D. degree in parallel computing
from the Parallel and Distributed Systems Group,
Delft University of Technology, Delft, The Nether-
lands.

He is currently finalizing his dissertation, while
developing radio astronomy data processing soft-
ware for the LOFAR telescope at ASTRON, The

Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands. He
is particularly interested in cooperating with application experts to adapt their
algorithms to modern parallel architectures. His current research interests
include accelerator architectures, cluster and grid computing, compilers, and
computer graphics.

Tamás Keviczky received the M.S. degree in elec-
trical engineering from the Budapest University of
Technology and Economics, Budapest, Hungary, in
2001, and the Ph.D. degree from the Control Sci-
ence and Dynamical Systems Center, University of
Minnesota, Minneapolis, in 2005.

He is currently an Assistant Professor with the
Delft Center for Systems and Control, Delft Uni-
versity of Technology, Delft, The Netherlands. He
has been a Research Intern with Honeywell Labo-
ratories, Minneapolis, and a Post-Doctoral Scholar

with the Control and Dynamical Systems, California Institute of Technology,
Pasadena. His current research interests include distributed optimization
and optimal control, model predictive control, and distributed control and
estimation of large-scale systems with applications in aerospace, automotive,
mobile robotics, industrial processes, and infrastructure systems.

Dr. Keviczky was a co-recipient of the AACC O. Hugo Schuck Best Paper
Award for Practice in 2005.

