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Abstract—The particle filter is a Bayesian estimation technique
based on Monte Carlo simulation. It is ideal for non-linear, non-
Gaussian dynamical systems with applications in many areas,
such as computer vision, robotics, and econometrics. Practical
use has so far been limited, because of steep computational
requirements.

In this study, we investigate how to design a particle filter
framework for complex estimation problems using many-core
architectures. We develop a robotic arm application as a highly
flexible estimation problem to push estimation rates and accuracy
to new levels. By varying filtering and model parameters, we
evaluate our particle filter extensively and derive rules of thumb
for good configurations.

Using our robotic arm application, we achieve a few hundred
state estimations per second with one million particles. With our
framework, we make a significant step towards a wider adoption
of particle filters and enable studies into filtering setups for even
larger estimation problems.

Index Terms—Particle Filter; Bayesian Estimation; Many-
Core; OpenCL; CUDA

I. INTRODUCTION

Estimating the state of a dynamical system through noisy
measurements has many applications in science and engi-
neering. The most common uses are to localize or track
moving objects using computer vision [1], GPS [2], radar
or sonar sensors. Other dynamical systems can be found in
econometrics [3] and rare event simulation [4].

Often the system of interest is not perfectly understood, but
can be modeled as a Markov process. Also, many of the quan-
tities that constitute the state of a system cannot be observed
directly, but need to be inferred from noisy measurements.
Hence, there is uncertainty present in the system model and
in the measurement model. For systems where the amount of
non-linearity is limited, parametric filters such as the extended
or the unscented Kalman filter can be used. Although limited
to Gaussian measurement noise, these filters can produce
accurate estimates at reasonable computational requirements.
For state estimation in (highly) non-linear or non-Gaussian
dynamical systems, particle filters provide the most accurate
estimates given sufficiently large particle populations.

In short, a particle filter is a sequential Monte Carlo
simulation that stochastically generates many potential system
states, referred to as particles. Measurements taken from the
dynamical system are used to assign weights to particles. The
filter output is a single estimate derived from the weighted
particles. Often, the particle set is then resampled before the

procedure is repeated in the next time step. Unfortunately, the
greater flexibility of particle filters comes with much higher
computational requirements than Kalman filters, limiting prac-
tical use in (real-time) estimation problems.

This paper presents a comprehensive study on how to design
and implement high-performance particle filters on many-core
architectures (i.e. GPGPUs and multi-core CPUs). For our
dynamical system, we use a realistic (industrial) robotic arm
tracking a moving object along a known path to measure
estimation speed and accuracy. We identify the following
contributions for the work presented in this paper:

• We present a fully distributed particle filtering algorithm
suitable for many-core architectures. All operations are
performed locally on a limited amount of data.

• With our robotic arm tracking application, we present
experimental results across a broad range of hardware
platforms and number of particles. We achieve update
rates of up to 200 Hz with one million particles on a
medium sized estimation problem and scale the problem
size further.

• We identify various filtering parameters and present the
effects of varying them on the trade-off between estima-
tion speed and accuracy. Using these results, we present
guidelines for good filtering configurations.

• For the resampling step, we compare two algorithms:
Roulette Wheel Selection (RWS) and Vose’s alias
method. With its lower complexity, Vose’s is much faster
than RWS for a large centralized filter, but turns out
slower when resampling small, local filters.

• Our application separates generic particle filtering from
model-specific routines. New dynamical system models
can be easily added to further investigate particle filter
configurations. The developed “Esthera” toolkit sources
are available at https://github.com/alxames/esthera

Hereafter, Section II introduces Bayesian estimation and
particle filtering. The design space for parallel particle filters
and relevant literature are discussed in Section III, followed
by our filtering algorithm in Section IV. Two different many-
core architectures, GPGPUs and multi-core CPUs, are briefly
introduced in Section V. After some implementation details
in Section VI, we present our experiments in Section VII
and an evaluation of the filter accuracy and performance in
Section VIII. Section IX concludes our work.



II. BACKGROUND

A. Bayesian Estimation

Bayesian estimation computes a Probability Density Func-

tion for the state of a dynamical system over the range of
possible values. Suppose x is a quantity which we wish to infer
from the measurement z. The probability distribution p(x)
represents all our knowledge regarding this quantity prior to
the actual measurement. This distribution is, therefore, called
the prior probability distribution. The conditional probability
p(x | z), called the posterior probability distribution, repre-
sents our knowledge of x having incorporated the measure-
ment data. This distribution is usually unknown in advance as a
result of the complex dynamics involved in most systems. The
inverse probability p(z | x), however, directly relates to the
measurement characteristics. Bayes rule allows us to calculate
a conditional probability based on its inverse.

In order to discuss how the Bayes filter [5] calculates the
state estimate, we first need to model the dynamics of the
system. Let xk denote the state at time k, and zk denote
the set of all measurements acquired at time k. Assuming the
system exhibits Markov properties, the state xk depends only
on the previous state xk−1. Therefore, the evolution of the
state is governed by the probability distribution p(xk | xk−1),
which is referred to as the state transition probability. The
measurements of the state follow the probability distribution
p(zk | xk) which is called the measurement probability.

The Bayes filter calculates the state estimate, from an initial
state p(x0), recursively in two steps:

Predict In this step, the state estimate from the previous
step is used to predict the current state. This
estimate is known as the a priori estimate, as it
does not incorporate any measurements from the
current time step.

p(xk) =

�
p(xk | xk−1) p(xk−1 | zk−1) dxk−1

Update The state estimate from the previous step is up-
dated according to the actual measurements done
on the system. Therefore, this estimate is referred
to as the a posteriori estimate.

p(xk | zk) = η p(zk | xk) p(xk)

The Bayes filter, in its basic form, is inapplicable to any
complex estimation problem. The main obstacle is that the
prediction step requires an integration in closed form, which
is only possible for basic estimation problems.

B. Particle Filtering

Particle filtering [6] [7] is a recursive Bayesian filtering tech-
nique using Monte Carlo simulation. Particle filters represent
the posterior by a finite set of random samples drawn from
the posterior with associated weights. Because of their non-
parametric nature, particle filters are not bound to a particular
distribution form (e.g. Gaussian) and are compatible with
arbitrary (i.e. non-linear) state transition functions.

As previously mentioned, particle filters represent the poste-
rior by a set of particles. Each particle x[m]

k can be considered
as an instantiation of the state at time t. In the prediction
step of the particle filter, each particle x[m]

k is generated
from the previous state x[m]

k−1 by sampling from the state
transition probability p(xk | xk−1). In the update step, when
measurement zk is available, each particle is assigned a weight
ω
[m]
t according to:

ω
[m]
t = p(zk | x[m]

k )

Given a large enough particle population, the weighted
set of particles {x[i]

k ,ω
[i]
t , i = 0, . . . , N} becomes a discrete

weighted approximation of the true posterior p(xk | zk).
1) The Degeneracy Problem and Resampling: A common

problem with the basic particle filter algorithm mentioned
previously is the degeneracy problem. It has been shown that
the variance of the weights can only increase over time [8].
This results in a situation where, after only a few iterations, a
single particle holds the majority of the weight with the rest
having negligible weight. This results in wasted computational
effort on particles which eventually contribute very little to the
filter estimation.

Resampling is a statistical technique which can be used to
combat the degeneracy problem. Resampling involves elimi-
nating particles with small weights in favor of those with larger
weights. This is achieved by creating a new set of particles
by sampling with replacement from the original particle set
according to particle weights. Particles with a higher weight
will, therefore, have a higher chance of surviving the selection
process. One of the implications of the resampling step is the
loss of diversity among particles as the new particle set most
likely contains many duplicates.

Algorithm 1 Particle Filter with Resampling
Input: Xk−1, zk
Output: Xk

1: X �
k ← ∅

2: foreach x[i]
k ∈ Xk−1 do

3: sample x[i]
k ∼ p(xk | x[i]

k−1)

4: ω
[i]
k ← p(zk | x[i]

k )

5: X �
k ← X �

k ∪ {(x[i]
k ,ω

[i]
k )}

6: end for
7: Xk ← ∅
8: for i ← 1, |X �

k| do
9: draw x[r]

k with probability ∝ ω
[r]
k

10: Xk ← Xk ∪ {x[r]
k }

11: end for
Algorithm 1 gives an overview of the particle filter algo-

rithm with resampling. The first for loop (lines 2 through 6)
generates, for each particle i, state xi

k based on xi
k−1 (line 3)

and assigns a weight according to the measurement zk (line
4). The second for loop (lines 8 through 11) transforms the
particle set X �

k into a new set Xk by resampling according
to the weights. The resampling step resets the weights for the
whole particle population.



III. RELATED WORK

In this section we discuss related work and put it in the
context of the design space of parallel particle filter algorithms.

A. Design Space

The qualities to evaluate a particle filter are estimation
accuracy and execution speed. Speed can be plain throughput
for offline simulations, while achievable update rate is more
important for real-time systems. Unfortunately, there are no
common system and measurement models (benchmarks) in
use, so performance numbers reported in different studies are
difficult to compare. A good parallelization strategy may use
a modified particle filter algorithm as long as it can deliver
the same estimation accuracy faster (or the same speed with
better accuracy). This may or may not require more particles
or other adaptations, but there is always a trade-off between
accuracy and speed.

All parallel particle filtering algorithms partition the particle
population over the processing cores. For the sampling and
weight calculation steps this is easy as they work on each
particle independently. The global estimate can be computed
in two rounds: first locally on each partition and then globally
by reducing the local estimates further (sequentially or in
parallel). Most of the design choices are in the resampling.
Some parallelized filters still resample sequentially or perform
exactly the same resampling in parallel requiring communica-
tion and possibly load-balancing. Parallel resampling can also
operate locally, either with or without exchanging particles.
When exchanging particles, various exchange schemes can
be envisioned, possibly adapted to the underlying hardware
topology. An important question for local resampling is in
what cases local resampling is acceptable. We identify two
algorithms to perform the actual resampling: Roulette Wheel
Selection and Vose’s alias method. Many approaches do not
name or describe how they perform the actual resampling,
but it is often a time consuming operation for large particle
populations. Extensive resampling can sometimes lead to a
significant loss of variation and thus estimation accuracy. So
an issue for any particle filter is whether to always resample or
only when needed and how to determine that. A tutorial article
on particle filters [7] suggests to evaluate a metric regarding
the particle variation and to resample only if it falls below
a predetermined threshold. Such a data-dependent conditional
operation may also be a sound way to save work, but in its
presented form it is undesirable for (resource constrained) real-
time systems.

B. Related Studies

Studies have looked into algorithmic, platform-specific and
application-specific improvements to deal with the high com-
putational requirements. The first publication to parallelize
particle filtering [9] applied basic parallelization for each step
in a master-worker scheme. The master computes the global
estimate from the local estimates. Resampling is performed
entirely local. Each worker computes the effective sample size
and resamples independently if needed. Using two “academic

non-linear filtering problems“, measurements are taken with
4K and 16K particles on five different parallel platforms.
Speedup is linear up till 16 compute nodes and very platform
dependent on 32 nodes. The authors find that local resampling
can be as accurate as global resampling. Most subsequent work
then reports on various resampling techniques or on filtering
performance of new parallel and distributed platforms.

One such work [10] proposes three methods to implement
distributed particle filters: (i) Global Distributed Particle Filter
(GDPF), (ii) Local Distributed Particle Filter (LDPF), and
(iii) Compressed Distributed Particle Filter (CDPF). With
GDPF, only the sampling and weight calculation steps run
in parallel, while resampling is performed centrally. LDPF
is comparable to the basic parallel algorithm [9] where re-
sampling is performed locally without communication. CDPF,
similar to GDPF, does resampling centrally, but uses only
a small representative set of particles for global resampling.
The results are sent back to each individual node. The paper
concludes from a number of simulations that LDPF provides
both better estimation and performance.

Another study into resampling variants [11] compares two
distributed resampling algorithms: (i) Resampling with Pro-
portional Allocation (RPA), and (ii) Resampling with Non-
proportional Allocation (RNA). RPA involves a two-stage
resampling step (local + global), while RNA involves local
resampling followed by a particle exchange step. These algo-
rithms still involve a certain degree of centralized planning and
information exchange. RPA provides a better estimation, while
RNA has a simpler design. In later work [12], they compare
a standard particle filter with a Gaussian particle filter1 on an
FPGA. The presented results indicate that the Gaussian particle
filter is equally accurate for (near-)Gaussian problems, but is
faster than a standard particle filter. Some of these algorithms
(GDPF, RNA, RPA, Gaussian particle filter) are compared
using a parallel implementation on a multi-core CPU [13]. The
comparison goes until 10K particles. The Gaussian particle
filter outperforms all other algorithms for Gaussian estimation
problems. RNA achieves near linear speedup with respect to
the number of cores, which is much better than the other non-
Gaussian filters.

A recent study [14] geared towards distributed tracking
by wireless sensor networks proposes a design by adapting
the order of the filtering steps to take advantage of near
neighbor overhearing. Their evaluation focuses on the lowered
communication cost and the effect on tracking accuracy.

With the introduction of GPGPU, new speedup levels have
come within reach. Various tracking applications in computer
vision [1], [15]–[19] have benefited from using CUDA.

The CUDA-based particle filter implementation from [19]
consists of parallel sampling and weight calculations and
local resampling. The authors propose to use the finite-redraw
importance-maximizing (FRIM) method for the sampling step.
The FRIM method rejects drawn particles and redraws until a

1Gaussian particle filters are a variant of particle filters that approximate
the posterior with a normal distribution and do not require a resampling step.



particle satisfies a minimum weight. This results in a reduc-
tion of the required total number of particles. However, the
maximum number of redraws is bounded, which is critical for
real-time systems. As pseudo-random numbers are generated
on the host CPU, the implementation is somewhat limited. The
experiments are run on a laptop GPU for up to 4K particles
with best execution times around 200 ms.

A more recent study [2] investigates a particle filter for
localization and map matching for vehicle applications on a
CPU using OpenMP and on a GPU using CUDA. The state
dimension is only four and does not benefit from more than
32K particles, but the application is an interesting and well
explained case for a particle filter. Experimentation shows that
with 128K particles, a CPU is 4.7x faster on six cores and
that a GPU is another 16x faster. While they do partition all
particles over all cores, resampling is performed on the CPU,
but only if particle variance is below a threshold. This means
that they need to compute the global variance and perform
global resampling. It also means that they can only keep the
amount of host-device transfers minimal for rounds where no
resampling takes place. When resampling is needed, however,
particle weights are transferred to the host and data describing
the surviving particles must be transferred back. This strategy
is fast only if resampling is not needed very often.

While related studies have compared resampling techniques,
or run (parts of) the filter on accelerator platforms, these
studies do not scale the number of particles very far. Their
dynamic systems do not benefit from more particles, or it
has been too computationally intensive to consider. Some
designs still contain centralized operations, or data-dependent
operations in the context of real-time systems. In the next
section, we introduce our design tailored to modern many-
core architectures. By carefully designing and optimizing our
filter for CUDA/OpenCL devices and by measuring on recent
architectures, we can scale at least two orders of magnitude
beyond earlier studies to gain insight into how high perfor-
mance particle filters can best be designed.

IV. PARALLEL PARTICLE FILTER DESIGN

The particle filter algorithm, as described in Algorithm 1,
consists of three steps: (i) Sampling (prediction), (ii) Impor-
tance weight calculation (update), and (iii) Resampling. The
first two steps apply independent functions to each particle.
Delivering a single estimate and resampling require (in prin-
ciple) coordination between different (groups of) particles.

Our design is based on the fully distributed scheme pro-
posed earlier [20]. The idea was tested with a small experiment

(a) All-to-All (b) Ring (c) 2D Torus

Fig. 1. Considered exchange schemes

Algorithm 2 Distributed Particle Filter
Input: Xk−1, zk, n particles, n filters, n transfers

Output: Xk

1: for n ← 1, n filters do
2: X �

k ← ∅
3: for i ← 1, n particles do
4: sample x[n][i]

k ∼ p(xk | x[n][i]
k−1 )

5: ω
[n][i]
k ← p(zk | x[n][i]

k )

6: X �
k ← X �

k ∪ {(x[n][i]
k ,ω

[n][i]
k )}

7: end for
8: sort X �

k according to weight
9: calculate local/global estimate

10: foreach neighboring filter q do
11: for t ← 1, n transfers do
12: send (x[n][t]

k ,ω
[n][t]
k ) to neighbor q

13: end for
14: end for
15: Xt ← ∅
16: for i ← 1, n particles do
17: draw x[r]

k with probability ∝ ω
[r]
k

18: Xk ← Xk ∪ {x[r]
k }

19: end for
20: end for

(16 groups of 5–80 particles each, connected by a 2D mesh)
comparing the estimation accuracy of a distributed compu-
tation filter to a centralized filter with 500 particles. In this
paper, we work out the idea much further, by using a larger
model, by introducing alternative particle exchange schemes,
and by exploring the impact of filtering parameters beyond
the number of particles on the accuracy/speed trade-off using
high-performance algorithms and implementations. The idea is
to construct a network of smaller particle filters (“sub-filters”).
Each sub-filter computes independently, and only exchanges a
few particles each round with its neighbors, which is inherently
scalable. Instead of scaling the size of each sub-filter, we can
scale the number of sub-filters in the network, which matches
the hardware trend of increasing core counts. Each sub-filter
runs the algorithm as described in Algorithm 2. We distribute
the particle sub-filters over available CPU cores or GPGPU
SMs/CUs. To exchange efficiently, the exchange scheme can
be matched to the underlying physical network topology.
However, we will later show that All-to-All on globally shared
memory is not necessarily a good choice. Figure 1 depicts the
exchange schemes considered. We also vary the number of
particles exchanged per neighbor pair.

Another design issue is how to determine the global esti-
mate. We know that the worst local estimate in such a network
may still be close to the best local estimate [20]. So depending
on the communication costs, it may or may not pay off to take
all local estimates into account. What is a good function to
select and/or aggregate depends on the application and model;
we select the particle with the highest global weight.

The design of the resampling stage is one of the most



important parts of a (distributed) particle filter implementation.
As a result of our distributed particle filter design strategy,
resampling can be performed locally on small sub-filters as
opposed to the global particle population. This circumvents
many difficulties arising when resampling a large number of
particles for traditional centralized particle filters. There are
still a number of choices to be made regarding the resampling
algorithm and how often it should be performed.

We have implemented two algorithms to sample (with
replacement) from a discrete probability density function:
the Roulette Wheel Selection (RWS) algorithm and Vose’s
alias method [21]. An excellent explanation on both and
related algorithms can be found in an article online [22].
Comparing their computational complexities, RWS has Θ(n)
(initialization) and Θ(log n) (generation), while Vose’s has
Θ(n) (initialization) and Θ(1) (generation). Vose’s appears
favorable, but its initialization every round is harder to par-
allelize and our sub-filter size is limited.

As for the choice whether to resample or not, we have
experimented with the suggested metric to compute the ef-
fective sample size as well as a simpler resampling frequency
parameter (each sub-filter randomly decides to resample at
a fixed ratio of the time). From these experiments we have
concluded that although it might be beneficial for low particle
settings, frequent resampling generally yields better results.
Other applications might still benefit from conditional resam-
pling, but we do not examine this further in our experiments.

While traditional centralized particle filters are characterized
only by the total number of particles, the behavior of our
distributed particle filter depends on more parameters, listed
in Table I.

To evaluate the model with enough particles, deliver a global
estimate and maintain good particle variance, we need to select
hardware platforms with enough processing capacity.

TABLE I
DISTRIBUTED PARTICLE FILTER PARAMETERS

Parameter Symbol

Number of particles per sub-filter m

Number of sub-filters N

Exchange scheme X

Number of particles per exchange t

V. MANY-CORE HARDWARE PLATFORMS

We briefly describe many-core hardware platforms, consist-
ing of GPGPUs and multi-core CPUs.

A. General-Purpose GPUs (GPGPUs)

The CUDA (NVIDIA, Feb 2007) [23] and OpenCL
(Khronous Group, Nov 2008) [24] hardware/software plat-
forms present the same virtual platform with a host and device
side. Their APIs offer equivalent functionality for NVIDIA
GPUs and for many-cores with some minor differences in
vendor-specific extensions. The host runs on the CPU to
manage device memory, transfer data to/from devices and

launch kernels. Each kernel launch specifies the number and
size of independent work groups, each consisting of 32–1024
threads operating cooperatively in parallel. The device consists
of 8–30 “streaming multi-processors” (SM) or “compute units”
(CU) to execute kernels and is connected to off-chip, device-
wide shared, “global” memory. Each SM/CU contains a data
parallelism oriented set of processing units that runs up to
several work groups concurrently. It also features a large
register file and scratch pad memory, both statically partitioned
over work groups at kernel launch time, and caches. A GPGPU
SM/CU executes vector instructions in SIMT fashion (single
instruction, multiple threads). SIMT supports scatter/gather
and a thread runs in each vector lane that can independently di-
verge on branches (though diverging often costs performance).
For GPGPUs, threads in a work group must access global
memory with high spatial locality, such that the hardware can
combine accesses to deliver high bandwidth. Data in local
memory is stored interleaved over multiple banks, so efficient
accesses avoid serializing “bank conflicts”.

In contrast to CPUs, GPUs are designed to reach high
throughput for massively parallel workloads. They feature
more computing resources and global memory bandwidth
than CPUs, but require much more (esp. spatial) locality of
reference and less control flow to maintain pace.

B. Multi-Core CPUs

Multi-core CPUs have 2–8 cores. Some can execute two or
four hardware threads per core. An extensive cache hierarchy
must keep all cores fed with typically around 2x 32 kB L1
and 256 kB L2 per core and many MBs L3 cache. Multiple
channels of main memory are connected directly to each CPU
(NUMA). If cores are idle, shared resources are fully used
by active cores, and given enough thermal headroom, clock
frequencies are increased dynamically.

CPUs can better tolerate unfavorable accesses, bank con-
flicts and branch divergence. While OpenCL compilers for
CPUs can auto-vectorize some constructs, a surer way is to
program with CUDA/OpenCL vector types (some GPGPUs
may also profit). The maximum power drain of a high-end
CPU is around 95 Watt, so one GPU tends to use about the
same power as two CPUs.

VI. IMPLEMENTATION DETAILS

We have implemented a distributed particle filter algorithm
using CUDA as well as OpenCL. We have also implemented
a sequential, centralized particle filter in C as a reference. All
floating point operations in the parallel implementations are in
single precision. We compared delivered estimates with those
from our double precision reference and found that it does
not improve our estimation accuracy by a meaningful amount.
Our model as well as the model independent calculations are
not so precision sensitive.

The I/O channel between host and device memory is often a
bottleneck for GPGPU programs. Unlike many filtering stud-
ies, all our distributed particle filter operations are executed
on the CUDA/OpenCL device. Reducing data transfers to only



measurement data and estimates is essential to run experiments
with millions of particles.

We have decided to have each GPGPU thread process
one particle and each work group one sub-filter. This way,
most communication stays within a work group and we can
utilize fast, local memory and synchronization to efficiently
work cooperatively in parallel. This limits the sub-filter size
on GPGPUs to 512 or 1024 particles. This limit could be
stretched by processing multiple particles per thread, which
may also ease auto-vectorization for CPUs, but increases
register pressure and complicates programming.

To maximize attained memory bandwidth on GPGPUs, we
need to ensure that as many global memory transfers as
possible access memory closely together. If particle data in
global memory is more than 16 bytes, transferring in Structure

of Arrays (SoA) format will not result in efficient transfers,
so we store it in the Array of Structures (AoS) format. In
a few kernels where we cannot have very efficient reads, it
can be beneficial to pack individual elements of the particle
data into larger, aligned structures. This reduces the number
of inefficient memory operations. For more information on
optimizing CUDA/OpenCL programs, see the vendor’s opti-
mization manuals [25], [26].

Based on the details of Algorithm 2 we implemented the
following computational kernels.

1) Pseudo-Random Number Generation
2) Sampling and Importance weight calculation
3) Local Sorting
4) Global Estimate
5) Particle Exchange
6) Resampling

A. Pseudo-Random Number Generation

Particle filters rely heavily on pseudo-random number gen-
erators (PRNGs). Mersenne Twister [27] is a widely used
PRNG, characterized by a large period, good test results and
an inspiring name. But a PRNG running on many-cores must
be able to generate many uncorrelated sequences. To provide
this, MTGP [28] was developed as an MT variant optimized
for CUDA. We ported MTGP to OpenCL, added a Box-Muller
transformation to get a normal distribution, and used it for all
our experiments as a separate kernel. MT/MTGP does need
substantial computations and state. For GPUs this matters;
ideally, MTGP would be directly usable from the sampling and
resampling kernels, but then their static resource size increases,
allowing fewer concurrent threads per SM.

B. Sampling and Importance weight calculation

The sampling step involves generating new particles x[m]
k

from the previous particles x[m]
k−1. Pseudo-random numbers

produced by the previous kernel are used to generate samples
from the state transition distribution. The importance weight
calculation assigns weights to each particle using measure-
ment data. We can combine sampling and importance weight
calculation in one kernel, as measurement data is available at
the start of each round.

C. Local Sorting

Each sub-filter needs to sort its particles according to their
weights for the next steps. We use a bitonic sort, which
executes a fixed sequence of parallel comparisons and has
a complexity of O(log2(n)). In general, the particle data is
too large to fit in local memory. Therefore, we sort weights
and keep track of the permutation using an index array that
we both store locally. To sort the data in global memory, we
apply the index array and prefer non-contiguous reads over
the more expensive non-contiguous writes. By giving up the
flexibility to exchange an arbitrary number of particles, local
sorting can in principle be replaced by a cheaper operation
such as a local maximum.

D. Global Estimate

To output a global estimate, we perform a parallel reduction
on all particles. The reduction operator can compute the
particle with the highest weight, a weighted average, or any
other associative operator suitable for the application. We
select the particle with the highest weight and since we just
sorted locally, we only perform the last reduction round(s).

E. Particle Exchange

The exchange scheme (X) determines which sub-filters
exchange particles. It is important to realize that on our
platforms, all exchanges go through cached, globally shared
memory. We have implemented the All-to-All, Ring, and
2D Torus exchange schemes. For All-to-All, the parameter t

indicates the number of particles that each sub-filter supplies.
Then, all sub-filters read back the same t “best” particles
from the supplied set. The Ring and 2D Torus are more
distributed in that exchanged particles are unique to neighbor
pairs. In those cases, each sub-filter exchanges t particles with
its neighbor.

F. Resampling

To resample, we implemented the Roulette Wheel Selection
(RWS) algorithm and Vose’s alias method. Here, we describe
our implementations and refer to an article [22] explaining
the algorithms. The generation of m samples is independent,
but the initializations require more care to parallelize with
CUDA/OpenCL. After all surviving particles are known, state
vectors are reordered, again preferring non-contiguous reads
over non-contiguous writes.

For RWS, initialization can be done using a parallel prefix
sum to compute an array of cumulative sums. We use a bank-
conflict avoiding implementation [29]. Then to generate, each
thread draws one random number, multiplies it with the sum
of the local weights, and performs a binary search to find the
highest index with a weight not larger than the drawn number.

For Vose’s alias method (and in case of weight-dependent
conditional resampling), weights must first be normalized.
To generate samples, each thread needs two uniform random
numbers per sample, one to select a particle and the other as
a biased coin using the selected particle’s weight to select
either the particle itself or its “alias”. Thus an alias table



has to be produced first, which is guaranteed to exist. This
is implemented as follows: Particles with a weight below
1/m (“small”) are segregated from those with a higher weight
(“large”). To fill the alias table, weights are “transferred” from
a large to a small particle until all weights end up at 1/m. A
particle that receives weight, registers the supplier as its alias
and ends up at 1/m. However, a particle can have at most
one alias, so a large particle may become small requiring
an alias itself. To save local memory, we operate in-place
after filling a single array forwards with small elements and
backwards with large elements using atomic operations. One
can assign an alias to small elements one at a time, but we
operate on min(#large,#small) particle pairs at a time.
However, concurrency usually drops steeply towards one and
some synchronization points are needed. For resampling in
our experiments, we only employ Vose’s alias method in the
sequential, centralized filter, because as we will see, its parallel
version is not faster working on sub-filters.

VII. EXPERIMENTS

In this section, we explain our robotic arm application and
our test setup, followed by experiments to measure filtering
frequency and the effects of varying filtering parameters.

A. Robotic Arm Application

To test and benchmark our particle filter, we use the realistic
industrial application of a robotic arm. The main reason for
this choice is that its measurement equations are highly non-
linear and challenging for standard estimation techniques.
Another reason is its parametric form. By adjusting the number
of joints, we can increase the state dimensions.

In our experiments, the robotic arm has N joints that can
be controlled independently. It has one degree of freedom per
joint plus the rotation of the base. Each joint has a sensor to
measure the angle. The camera at the end is used for tracking
an object that is moving on a fixed x− y 2D plane. Figure 2
gives an illustration of this robotic arm.

Let θi,k be the angles of the joint i at the discrete time k (i =
0 represents the rotational degree of freedom of the base). Let
(xk, yk) ∈ R2 be the position of the object to be tracked at the
discrete time step k in the fixed reference system of the robotic

Fig. 2. A 3-joint robotic arm with a camera at the end.

TABLE II
DEFAULT FILTER AND MODEL PARAMETERS WITH NOISE TERMS

Number of particles per sub-filter (GPGPU) 256
Number of particles per sub-filter (CPU) 128
Number of sub-filters 2048
Exchange scheme Ring
Number of particles per exchange 1
Number of joints 5

State dimension (#joints + 4) 9
Arm length (meter) 0.5

wθi,k N (0, 0.1) rad/s
wθ̂i,k

N (0, 0.1) rad
wC,k, wx,k, wy,k N (0, 0.1) m
wvx,k, wvy,k N (0, 0.1) m/s

arm, as indicated in Figure 2, and let (vx,k, vy,k) ∈ R2 be its
velocity. Denote by xk = (θ0, . . . , θN , xk, yk, vx,k, vy,k)� the
state of the robotic arm and object dynamics. We model the
angle dynamics as single integrators and the object dynamics
as double integrators as:

θi,k = θi,k−1 + hsui,k−1 + wθi,k−1 ∀i ∈ {0, . . . , N}
xk = xk−1 + vx,k−1hs + wx,k−1
yk = yk−1 + vy,k−1hs + wy,k−1

vx,k = vx,k−1 + wvx,k−1
vy,k = vy,k−1 + wvy,k−1

where the terms w model the process noise, ui is the control
action applied to the joints, and hs is the sampling time.
This system of dynamical equations represents our a priori
p(xk|xk−1).

The camera detects the object in its own frame of ref-
erence. Let (xC,k, yC,k) be the position of the object in
the camera moving frame, which can be related back to
the state xk via rotations and translations. Let θ̂i,k be the
measured value for the angle of each joint and the base. Let
zk = (xC,k, yC,k, θ̂0,k, . . . , θ̂N,k)� be the measurement vector.
The measurement equations read as:

�
xC,k

yC,k

�
= h(xk) + wC,k (1)

and
θ̂i,k = θi,k + wθ̂i,k

Fig. 3. Achieved particle filter update rate



TABLE III
HARDWARE PLATFORMS

Intel Core Intel Xeon NVIDIA GeForce AMD Radeon
i7-2820QM E5-2680 GTX 580 GTX 680 HD 6970 HD 7970

Platform Type CPU dual CPU GPGPU GPGPU GPGPU GPGPU
Nr. Cores/SMs/CUs 4 2x 8 16 8 24 8
Core Clock (GHz) 2.3 2.7 1.5 1.0 0.88 0.93
Main Mem. (GB) 8 2x 16 1.5 2 2 3
On-chip Mem. (kB) 4x 256, 8192 8x 256, 20480 16x 64, 768 8x 64, 512 24x 8, 512 8x 16, 768
Comp. SP (GFlop/s) 74 2x 173 1581 3090 2703 3789
Memory Bw. (GB/s) 51 2x 51 192 192 176 264
TDP (Watt) 45 2x 130 244 195 250 230
Released Jan 2011 Mar 2012 Nov 2010 Mar 2012 Dec 2010 Jan 2012
Runtime Software Intel OpenCL SDK 2012 NVIDIA CUDA 4.1 AMD APP SDK 2.6

for all i = 0, . . . , N . Here h(xk) represents the highly non-
linear rotation-translation function, and the terms w are the
measurement noise terms. From these measurement equations
we derive our a posteriori p(zk|xk).

The default filter and model parameters with noise terms
(the w’s) are listed in Table II. We have adapted the number
of particles per sub-filter to the platform, trying to keep them
close together without incurring a significant performance
penalty. We use these parameters for all tests, unless indicated
otherwise.

B. Test Setup

Table III lists the platforms we use. We use a dual Xeon
CPU (Sandy Bridge-EP) configuration, so we can compare
a GPGPU against a CPU platform with similar power usage
(TDP). The i7-2820QM is a mobile CPU (Sandy Bridge). Both
CPU types can scale their frequency beyond 3 GHz.

All experiments were run under Linux. The centralized
implementation was compiled with GCC 4.6.3 -O3 and uses
SIMD vectorization for the PRNG and Box-Muller transfor-
mation.

C. Filtering Runtime Performance

Figure 3 presents the achieved filtering frequency on all
platforms. On GPGPUs, we can reach an update frequency
of a few hundred Hz with 1 million particles. The dual CPU
platform is up to 6.5x faster than running a centralized filter
sequentially, but up to 14x slower than a high end GPGPU.
The Radeon HD GPGPUs stay behind even more for very
small filters, but outperform CPUs for medium filters, while
the HD 7970 outperforms any other at 4M and 8M particles.
(We cannot make larger GPU memory allocations to see its
trend beyond.) We also have timed our OpenCL code on the
GTX 580; it is at most 5% slower than with CUDA.

We now explore the relative performance impact of our
filter kernels when scaling (i) the number of particles per
sub-filter, (ii) the number of sub-filters, and (iii) the state
dimensions. For each experiment, all other parameters stay
the same. (The total number of particles does increase for the
first two experiments). The plotted breakdowns in Figure 4
have been run on a GTX 580 running CUDA. The trends
from other (esp. NVIDIA) GPGPUs are similar. The biggest

difference between our dual CPU and GPGPU performance
is that the CPU spends much more time on random numbers
(40% at 64 particles/sub-filter). This can be attributed to the
PRNG kernel used; MTGP is highly optimized for (NVIDIA)
GPGPUs and apparently performs poorly on CPUs. Checking
this out, we found that our OpenCL MTGP port runs about
50% slower on the dual E5-2680 than “SFMT”, the optimized
single core CPU implementation of MT.

1) Scaling the Number of Particles per Sub-Filter: From
Figure 4a, we see that when the number of particles increases,
the compute-heavy sorting and resampling stages dominate the
runtime at the cost of non-local stages. This is good news,
because it means that the filter can be tuned to the computation
to communication ratio using this parameter. Our experiments
on the CPU platform confirm this with non-local stages being
much cheaper.

2) Scaling the Number of Sub-Filters: From Figure 4b, we
see that when the number of sub-filters increases towards 32K
(16M particles), local operations dominate, but unlike the last
experiment, changes appear to be settling down when reaching
32K. Local sort takes most of the time, so we would do well to
take a second look at that in future optimizations. When the
kernels that have enough computation to overlap long stalls
dominate, execution time rises linearly with more sub-filters.
With a small setup, the HD 7970 spends more time on the
global estimate in favor of sampling, while for a large setup,
resampling is fractionally cheaper at the cost of the RNG. The
CPU trades in relative time in non-local operations for more
time to sort, but the other kernels (except RNG) stay the same
with resampling at about 18%.

3) Scaling the State Dimensions: In this experiment, we
scale a model-specific aspect of filtering by testing state
dimensions from 8–48 (4–44 joints) variables of 4 bytes. From
Figure 4c, we see that when the state dimensions increase to
48, the sampling (with weight calculation) fraction increases
to 45% of the runtime at the cost of local sorting and resam-
pling. As the problem becomes more complex, the “filtering”
aspect loses relevance and the model implementation more
and more determines the runtime. Depending on the model,
sampling may be easier to implement efficiently, and certainly
to parallelize.
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4) Resampling Algorithms: In Figure 5, we compare the
runtime of the resampling kernel running the Roulette Wheel
Selection algorithm and Vose’s alias method. For a sequential,
centralized filter, Vose’s is much faster as expected. (Vose’s
need for more random numbers is not included, but in no way
changes this.) But for all platforms running OpenCL code,

resampling with Vose’s is never faster. A sub-filter size of 256
is too small to earn back the overhead from synchronization
and reduced concurrency during table initialization. We have
some ideas how to improve concurrency, but only using more
atomic operations on local memory. We do see that on the HD
7970 GPGPU both algorithms are equally fast (plot lines are
superimposed).

D. Estimation Accuracy

After runtime performance, we inspect the impact to ac-
curacy from exchange scheme and number of exchanged
particles. We scale the number of sub-filters, since that is our
principal scaling direction. The presented estimation errors in
Figure 6 are averages from 100 runs over 100 time steps for
each configuration.

1) Filter Network Size and Exchange Scheme: From Fig-
ure 6, we can clearly see that All-to-All delivers the worst
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Fig. 6. Estimation error with varying particle exchange schemes
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estimates. This happens as a consequence of a loss of diversity
among the whole particle population as the same particles are
fed into all sub-filters. The most interesting observation from
both the ring and 2D Torus is that in all cases, a low number
of particles can be compensated by adding more sub-filters.
This confirms our strategy of dividing a large particle filter
into a network of smaller sub-filters. We also observe that
with a low number of sub-filters, the Ring outperforms the
2D Torus, while with a large number of sub-filters, the 2D
Torus outperforms the Ring. The extra connectivity from the
2D Torus results in a loss of diversity in small networks, while
it enables faster propagation of more likely particles in large
networks.

2) Particle Exchange: From Figure 7, we see that the
benefit of particle exchange is evident. Exchanging more
than one particle offers a minor improvement, but exchanging
a single particle seems sufficient for the likely particles to
spread. We ran up to t = 16 to verify the trend.

E. Discussion

Using our robotic arm application, we attained high filtering
rates with large particle sets using GPGPUs. A comparable
CPU platform performs slower, but we believe the gap can be
reduced by using CPU specialized kernels.

We analyzed the scaling behavior in three directions and
found that for larger particle populations, local operations
increasingly take more runtime. However, a large particle
population is only needed for complex models with large
state dimensions, where ultimately, model-specific sampling
and weight calculations become the dominant factor in the
total runtime. As for particle exchanges, even minimal com-
munication among the individual filters is sufficient to spread
likely particles throughout the network. An article [30] from
the perspective of control systems provides additional experi-
mental (and theoretical) results using an actual robotic arm in
a closed-loop setting.

A single, optimal configuration does not exist. The rules
of thumb we deduce are that in small filtering setups, limited
communication and a low connectivity network provide the
best results. High particle settings tend to perform better with
a more connected network and increased communication. Both
resampling algorithms we tried have their uses, but when the
model state is large, this becomes less relevant.

VIII. EVALUATION

In this section, we explain how we validated that our particle
filter produces proper estimates. We also assess if a distributed
scheme requires the same number of particles as a centralized
scheme to deliver the same estimation accuracy.

A. Correctness Validation

We used two techniques to validate our particle filter imple-
mentations: (i) using a ground truth, and (ii) using reference
implementations.

Initially, without a reference implementation for our model,
a particle filter can be checked to see if it converges to
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Fig. 8. Lemniscate ground truth with two filter traces

a known correct state under various noise levels and filter
configurations. In Figure 8, the dark line shows our ground
truth as a lemniscate path that starts by heading up from
the right side, as would be observed from the camera on
our robotic arm. Two particle filters start in the center on
the right off the ground truth. The high particle estimation
uses 512 × 512 particles and converges. But the low particle
estimation uses only 16× 16 particles, which is not enough.

We also developed a centralized and a distributed par-
ticle filter as sequential reference implementations. These
are much easier to implement as intended than optimized
CUDA/OpenCL versions. Once tested against ground truths,
output from optimized versions can be compared to reference
output in more detail.

B. Distributed Filtering Overhead

To quantify the overhead of our distributed scheme, we
compare the estimation error of our distributed filter with that
of a centralized filter having the same total number of particles.
To this end, we developed our sequential, centralized filter in
C as a fast reference for estimation accuracy. As the sub-
filter size significantly alters the distributed filter behavior, we
made multiple comparisons using different sub-filter sizes. The
results are depicted in Figure 9.

The presented results confirm that, although many dis-
tributed particle filter configurations perform poorly, for all
filter sizes, distributed configurations exist which perform sim-
ilarly to (or even outperform) their centralized counterparts.
For small filtering setups of hundreds of particles, the default
sub-filter sizes of 128 and 256 are large enough; we do not
measure a negative impact to estimation accuracy (which we
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would then have to compensate for with extra particles for a
fair performance comparison). Only if we use very small filter-
ing or sub-filter sizes (the filter may not converge), accuracy is
impacted, possibly severely. Although in general a distributed
setup is not “for free”, our measurements show that the effect
is manageable, even with a few million particles. Given a
proper filtering configuration with exchanges, our network
of sub-filters can replace a centralized particle filter without
requiring additional particles that decrease performance.

IX. CONCLUSION AND FUTURE WORK

The particle filter is a powerful, but computationally de-
manding Monte Carlo based Bayesian estimation method.
With the introduction of massively parallel many-core pro-
cessors, particle filtering has become viable, but the design
intricacies of the algorithm remained elusive.

For this paper, we thoroughly investigated a new particle
filter algorithm and implemented a realistic robotic application
on various hardware platforms using CUDA and OpenCL. We
identified the parameters that strongly affect the behavior of
our filter and experimentally quantified their scaling effects
on estimation accuracy and execution speed. For the particle
exchange and resampling functions, we implemented several
alternatives, and we demonstrated that there is no single
configuration that is optimal for all settings.

Our experiments indicate that real-time particle filtering for
complex estimation problems is feasible on current generation
GPGPUs and, for smaller systems, on multi-core CPUs. For
small estimation problems with up to four state variables, we
can reach kHz estimation rates. For our robotic arm application
with nine state variables utilizing over one million particles,
we pushed our GPGPUs to attain estimation rates of 100–200
Hz. Given many-core processor trends, it is important to use
a design that effectively combines more (and not larger) sub-
filters. The All-to-All particle exchange scheme may seem an
intuitive choice for a shared memory system, but it decreases
particle diversity too much. We discovered that exchange
schemes with a lower connectivity are preferable for accuracy

reasons. The ring performs better with a small number of sub-
filters, while the added connectivity of the 2D Torus compares
favorably with a large number of sub-filters. Another rule of
thumb is that accuracy can improve a lot by exchanging even
one particle per pair of neighboring sub-filters.

As for multi-core CPUs with similar power usage (dual),
CUDA/OpenCL particle filter performance is up to a factor
14 slower than a high-end GPGPU. We believe that this gap
can be narrowed, but that requires writing platform optimized
kernels, such as with the Mersenne Twister variants that we
ran. Note that the filtering performance of a particular estima-
tion problem also depends on model-specific characteristics.

We see two interesting directions for future work. The first
direction is a matter of scale: down to real-time applications
on embedded systems (with GPGPU cores), or up to take ad-
vantage of clusters. Each platform scale direction will present
new challenges to performance portability.

Another direction is to focus on applications with different
types of estimation problems. We expect to gain an even better
understanding of the particle filter design with data available
from different estimation problems.

ACKNOWLEDGMENT

This research was partially funded by NWO/STARE under
project AstroStream. The authors would like to thank Intel
Corporation for providing a dual Xeon E5-2680.

REFERENCES

[1] O. M. Lozano and K. Otsuka, “Real-time visual tracker by stream
processing,” Journal of Signal Processing Systems, vol. 57, no. 2, pp.
285–295, 2009.

[2] K. Par and O. Tosun, “Parallelization of particle filter based localization
and map matching algorithms on multicore/manycore architectures,” in
Proc. of the IEEE 2011 Intelligent Vehicles Symposium. IEEE, June
2011, pp. 820–826.

[3] T. Flury and N. Shephard, “Bayesian inference based only on simu-
lated likelihood: particle filter analysis of dynamic economic models,”
Econometric Theory, vol. 27, no. 05, pp. 933–956, May 2011.

[4] F. Cérou, P. D. Moral, T. Furon, and A. Guyader, “Sequential monte carlo
for rare event estimation,” Statistics and Computing, vol. 22, no. 3, pp.
795–808, May 2012.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, ser.
Intelligent robotics and autonomous agents. The MIT Press, Sep 2005.
[Online]. Available: http://www.worldcat.org/isbn/0262201623

[6] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,” Radar and Signal

Processing, vol. 140, no. 2, pp. 107–113, Apr 1993.
[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
tracking,” IEEE Trans. on Signal Processing, vol. 50, no. 2, pp. 174–
188, Feb 2002. [Online]. Available: http://dx.doi.org/10.1109/78.978374

[8] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte
Carlo sampling methods for Bayesian filtering,” Statistics and

Computing, vol. 10, pp. 197–208, Jul. 2000. [Online]. Available:
http://portal.acm.org/citation.cfm?id=599374

[9] O. Brun, V. Teuliere, and J. M. Garcia, “Parallel Particle Filtering,”
Journal of Parallel and Distributed Computing, vol. 62, no. 7, pp.
1186–1202, July 2002. [Online]. Available: http://dx.doi.org/10.1006/
jpdc.2002.1843

[10] A. S. Bashi, V. P. Jilkov, X. R. Li, and H. Chen, “Distributed Implemen-
tations of Particle Filters,” in Proc. of the 6th Int’l Conf. of Information

Fusion, Jul. 2003, pp. 1164–1171.
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