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This paper reports a novel approach for calibration of multi-step A/D converters based on the
steepest-descent estimation method. The calibration procedure is enhanced with dedicated embed-
ded sensors, which register on-chip process parameter and temperature variations. Additionally, to
guide the verification process with the information obtained through process monitoring, two efficient
algorithms based on an expectation-maximization method and adjusted support vector machine
classifier, respectively, are proposed. The algorithms are evaluated on a prototype 12 bits A/D
converter fabricated in standard single poly, six metal 90 nm CMOS.
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1. INTRODUCTION

The static parameters of a multi-step analog to digital
(A/D) converter are determined by analog errors in vari-
ous A/D converter components. Therefore, a major chal-
lenge in A/D converter debugging and calibration is to
estimate the contribution of those individual errors to the
overall A/D converter linearity parameters. The observa-
tion of important design and technology parameters, such
as temperature, threshold voltage, etc., is enhanced with
dedicated sensors embedded within the functional cores.1

The steps causing discontinuities in the A/D converter’s
stage transfer functions can be analyzed, minimized or cor-
rected with a wide variety of calibration techniques.2–7 The
mismatch and error attached to each step can either be
averaged out, or their magnitude can be measured and cor-
rected. In general, most of the debugging and calibration
methods require that a reference signal is available in the
digital domain, this being the signal that the actual stage
output of the A/D converter is compared with. This refer-
ence signal is in the ideal case a perfect, infinite resolution,
sampled version of the signal applied to the A/D converter
under test. Nevertheless, in a practical situation, the refer-
ence signal must be estimated in some way. This can be
accomplished by incorporating auxiliary devices such as a
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reference A/D converter, sampling the same signal as the
A/D converter under test,8 or a D/A converter feeding a
digitally generated signal to the A/D converter under test.9

In this paper, such an A/D converter is augmented with
dedicated sensors embedded within the converter to sup-
plement the circuit calibration and to guide the verification
process with the information obtained through the monitor-
ing process.10 Furthermore, the design-for-test (DfT) capa-
bilities permit a multi-step A/D converter re-configuration
in such a way that all sub-blocks are tested for their
full input range allowing full functional observability and
controllability. Additionally, in the proposed method the
overlap between the conversion ranges of two stages is
considered to avoid conflicting operational situations that
can either mask faults or give an incorrect interpretation.
This paper is organized as follows: Section 2 focuses

on the multi-step A/D converter architecture and the con-
cept of debugging and calibration enhanced by process
variation monitoring. In Section 3, design considerations
for each stage of dual-residue multi-step A/D converter
and calibration algorithm are highlighted. Section 4 dis-
cusses the algorithms for verification process guidance,
namely, the expectation-maximization and the support vec-
tor machine. In Section 5 experimental results obtained on
a prototype multi-step A/D converter fabricated in standard
90 nm CMOS are presented. Finally, Section 6 provides a
summary and the main conclusions.
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2. CONCEPT OF PROCESS VARIATION
MONITORING ENHANCED CALIBRATION

Even though extensive research11–14 has been done to esti-
mate the various errors in different A/D converter archi-
tectures, the use of DfT and dedicated sensors for the
analysis of multi-step A/D converters to update param-
eter estimates has been negligible. The influence of the
architecture on A/D converter modeling is investigated in
Ref. [11]. In Ref. [12] with the use of some additional
sensor circuitry, pipeline A/D converters are evaluated in
terms of their response to substrate noises globally exist-
ing in a chip. In Ref. [13], the differential nonlinearity
test data is employed for fault location and identification
of the analog components in the flash A/D converter, and
in Ref. [14] it is shown how a given calibration data set
may be used to extract estimates of a specific error perfor-
mance. Functional faults in each of the analog components
in a multi-step A/D converter affect the transfer function
differently,12 and analyzing this property forms the basis of
our approach. The A/D converter characteristics may also
change while it is used, e.g., due to temperature change
and component aging. This means that the A/D converter
has to be reevaluated at regular intervals through temper-
ature sensors to examine its performance. Each stage of
the A/D converter under test is evaluated experimentally,
i.e., a signal is fed to the input of each stage of the A/D
converter and the transfer characteristics of each stage of
the A/D converter is determined from the outcome.

2.1. A/D Converter Architecture

The multi-step architecture (Fig. 1) allows the design of
a high-speed, power efficient converter with a reasonable
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Fig. 1. Block diagram of the 12-bit multi-step A/D converter.

amount of hardware. The differential input signal is sam-
pled with three-time interleaved sample-and-hold (S/H),
which eliminates the need for re-sampling of the signal
after each quantization stage. The resulting sampled sig-
nal is then further processed in three steps, namely, the
coarse (4 bit), the mid (4 bit) and the fine (6 bit) steps. The
acquired signal from the coarse quantization is stored in a
latch and is also applied to a switch unit to select the ref-
erences for the mid quantization in the next clock phase.
The selected reference signals are combined with the held
input signals from the S/H in two mid residue amplifiers.
Similarly, the outputs of both coarse and mid A/D con-
verters are combined together in order to select proper ref-
erences for the fine quantization. Correspondingly, these
references are combined with the sampled input signal in
two fine residue amplifiers, before they are processed in a
fine stage.
Typically, the full range of the mid quantization resis-

tance ladder is longer than one step in the coarse quan-
tization ladder. With this over-range compensation in the
mid ladder (e.g., similar principle is applicable to the fine
ladder as well) the static errors can be corrected since the
signal still lies in the range of the mid ladder. This means
that the output of the A/D converter is redundant and it
is not possible, from the digital output, to find the values
from each sub-ranging step without employing dedicated
DfT.15 To set the inputs of the individual A/D converter
stages at the wanted values, a scan-chain is available in
the switch-matrix circuit. For mid-range A/D converter
measurements, the coarse A/D converter values are prear-
ranged since they determine mid-range A/D converter ref-
erences. Similarly to evaluate the fine A/D converter both
the coarse and mid A/D converter decisions are set to pre-
determined value. The response of each of the individual
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Fig. 2. Conceptual view of the debugging and calibration loop.

A/D converter stages is subsequently routed to the test bus.
The sub-D/A converter (implemented as a combination of
the reference ladder and the switch matrix) settings are
controlled by a serial shift of data through a scan chain
that connects all sub-D/A converter registers. To capture
the current settings of the sub-D/A converter, it is possible
to freeze the contents of the sub-D/A converter registers in
normal mode and shift out the data via the scan-chain. A
test control bit per sub-D/A converter is available to adjust
(increase) the reference current to obtain an optimal fit of
sub-D/A converter output range to the A/D converter input
range.

2.2. Process Variation Monitoring Based Calibration

The overall multi-step A/D converter consists primar-
ily of non-critical low-power components, such as low-
resolution quantizers, switches and open-loop amplifiers
for increased power efficiency. Although a multi-step A/D
converter makes use of a considerable amount of digital
logic, most of its signal-processing functions are executed
in the analog domain. Consequently, the conversion pro-
cess is susceptible to analog circuit and device impair-
ments. The primary static error sources present in each
stage of a multi-step A/D converter are systematic deci-
sion stage offset errors �, stage gain errors �, and errors
in the internal reference voltages �. To facilitate the mea-
surement of these fluctuations, an evaluation strategy as
depicted in Figure 2 is proposed. The algorithm inputs are
the outputs of each stage of the multi-step A/D converter,
and outputs of die-level process monitor (DLPM) circuits
and temperature sensors. The desired output is collected
from the back-end A/D converter and subtracted from
the corresponding nominal value. The algorithm gives the
required information to the digital pattern generator, whose
outputs steer the calibration D/A converter, thereby clos-
ing the calibration loop. The temperature sensor based on

Ref. [16] registers any on-chip temperature changes, and,
if required, updates the estimation algorithm.
The DLPM measurements are directly related to asym-

metries between the branches composing the circuit; for
all primary error sources, we derive separate DLPMs by
extracting (replicating) the targeted error contributor of
each stage (e.g., �, �, and �). The primary reason for
replicating the error contributors is to avoid large added
loading of the test scheme on the circuits in sensitive ana-
log signal paths. Additionally, by separating DLPMs from
the signal path, the monitors can be designed to maximize
the sensitivity of the circuit to the target parameter to be
measured. A discrimination window for various die-level
process monitors is defined according to the rules of the
multi-step A/D converter error model.11

3. DESIGN OF MULTI-STEP A/D
CONVERTER

3.1. Time-Interleaved Sample-and-Hold

The sampling rate of a system is further increased by
a using time-interleaved technique,17 where a higher
sampling rate is obtained by running the system in par-
allel, although at different clock phases. However, in the
front-end S/H (Fig. 3), where the clock is used to sample
a continuous time signal, any deviation of the sampling
moment from its ideal value results in an error voltage
in the sampled signal equal to the signal change between
these two moments. The clock skew between the sam-
pling clocks of distributed S/H circuits can be calibrated
by measuring its value and controlling tunable delays of
a DLL.18 Nevertheless, in general, calibration of the skew
between S/H circuits has two significant drawbacks. First,
skew measurement is complex and second, the tuning of
the delays requires high accuracy from the calibration
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hardware and algorithm. Alternatively, timing alignment
within the required accuracy can be obtained by using
a master clock19 to synchronize the different sampling
instants and by careful design while matching the chan-
nels clock and input signals lines.20 In this design, a sim-
ilar approach is followed: besides the extensive shielding
and matching of the clock lines, the delays of any active
buffers within the clock distribution network are kept to
the minimum.
Besides timing mismatch, time-interleaved S/H suffers

from offset, gain and bandwidth mismatch. One limitation
of the offset cancelling method21 from a systems point
of view is the fact that the static offset has to be mea-
sured before the calibration. The gain mismatch can be
calibrated digitally by measuring the reference levels and
storing them in a memory. The ideal output code can
be recovered using these measured reference levels.22 In
our implementation the resulting dc offset is mainly can-
celled with design percussions, such as differential sig-
nal path, bottom plate sampling, small feedback switches,
opamp high common-mode rejection ratio and by using
the closed loop sampling architecture such that consequent
offset mismatch is sufficiently low for the required res-
olution. By dimensioning the open loop dc-gain of the
operational amplifiers large enough, the effect of gain mis-
match is suppressed below the quantization noise level.
With careful sizing and layout, capacitor matching suffi-
cient for twelve bit resolution is achieved. By increasing
the bandwidth, the impact of the bandwidth mismatch at
the signal frequency becomes lower. For this reason, the
bandwidth of each sample-and-hold unit has been chosen
larger than what is required when just looking at signal
attenuation.

3.2. Stage Design

To maximize the settling time of the sub-D/A converter
output, i.e., to achieve a high conversion speed, the coarse
and mid A/D converter should be able to provide its out-
put to the sub-D/A converter as soon as possible after the
S/H circuit samples the input and enters the hold mode.
Therefore, the coarse and mid A/D converter are of par-
allel, flash type23 as it provides the highest throughput
rate. It should be noted that insufficient settling in coarse
and mid A/D converter or mismatch in coarse and mid
comparators is directly translated into a quantization error
and appears as a shift in the location of the quantization
step causing missing codes. To cope with these errors,
we have applied over-range and digital correction24 tech-
nique. On a circuit level, dynamic comparators are used
to eliminate static power consumption. The low compara-
tor offset is achieved as a result of signal amplification
in the preamplifier circuits, the large transresistance of
the current-to-voltage conversion, the two-phase clocking
scheme,25 which reduces the number of devices that con-
tribute to the offset, and finally the choice of appropriate
transconductance ratios. As a result of the absence of off-
set compensation, the clock frequency is high.
To reduce power consumption of the 6-bit fine A/D con-

verter, the folding and interpolation technique26 is applied.
In order to increase the intrinsic resolution, more zero-
crossings (e.g., necessary for the digital output code tran-
sitions) have to be created across the input range. This can
be achieved by increasing the number of folding amplifiers
at the input or by increasing the interpolation factor. How-
ever, these approaches result in increased power consump-
tion, and degraded speed performance. Alternatively, the
number of foldings in each folding signal before interpo-
lation can be increased. Conversely, the transconductance
curves of the differential pairs starts overlapping; deteri-
orating the gain of the folding amplifier. In this design,
to alleviate the problem of overlapping transconductance
curves, folding is conducted at a lower frequency in each
stage.27

The sub-D/A conversion is based on resistor-ladder
architecture since it is relatively simple and inherently
monotonic as long as the switching elements are designed
correctly. Additionally, the DNL of resistor-ladder is rel-
atively low compared to other architectures. Switches in
switch matrix are simple CMOS switches designed to have
low enough on-resistance to provide sufficient bandwidth
for twelve bit settling of the reference signals on the
residue amplifiers.

3.3. Inter-Stage Design

To build multi-step A/D converter with a large tolerance
to component non-idealities, redundancy is introduced by
making the sum of the individual stage resolutions greater
than the total resolution. The conversion accuracy thus
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solely relies on the precision of the residue signals; the
conversion speed, on the other hand, is largely determined
by the settling speed of the residue amplifier. When the
redundancy is eliminated by a digital-correction algorithm,
it can be used to eliminate the effects of inter-stage off-
set on the overall linearity. However, a gain error in the
residue amplifier is still critical. The accumulative inter-
stage gain relaxes the impact of circuit non-idealities, such
as noise, nonlinearity, and offset, of later stages on the
overall conversion accuracy. Consider a classical single-
residue processing in multi-step A/D converter illustrated
in Figure 4(a). A gain error in the residue amplifier scales
the total range of residue signal and causes an error in the
analog input to the next stage when applied to any nonzero
residue, resulting in residue signal not fitting in the fine
A/D converter range. If the error in the analog input to the
fine ADC stage is more than one part in 2r (where r is the
resolution remaining after the residue amplifier gain error),
it will result in a conversion error, which can lead to non-
monotonicity or missing codes, that is not removed by dig-
ital correction. In our design, the implemented dual-residue
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Fig. 4. (a) Single-residue, (b) Dual-residue processing.

signal processing28 as illustrated in Figure 4(b) spreads the
errors of the residue amplifiers over the whole mid and
fine range, which results in an improved linearity. Accord-
ing to quantization decision of the previous stage, a first
and a second residue amplifier pass the difference between
the analog signal and the closest and the second closest
quantization level, respectively. By passing both residues
to subsequent stages, information is propagated about the
exact size of the quantization step, as the sum of the two
residues is equal to the difference between the two quanti-
zation levels. The absolute gain of the two residue ampli-
fiers is therefore not important, providing that both residue
amplifiers match and have sufficient signal amplitude to
overcome finite comparator resolution.

3.4. Multi-Stage Circuit Calibration Algorithm

The gain (and nonlinearity) errors in the coarse and mid
A/D converter provoke over-range problems and code level
shifting. Consequently, the approaches to apply digital cor-
rection are based on either increasing the input range of the
next stage and using extra comparators, or on using the
partial codes in the next stages to correct the code of
the present stage. The effect of introducing a over-range
and digital correction24 technique on the coarse A/D con-
verter offset is studied by examining the plots shown in
Figures 4(a)–(b). When the coarse A/D converter has some
nonlinearity, even with an ideal D/A converter, as shown
in Figure 5(a), results in two of the coarse A/D converter
decision levels being shifted, one by −11/2 LSB (n+ 1
error) and the other by +2 LSB (n+2 error). If the conver-
sion range of the second stage is increased to handle the
larger residues, it can be encoded and the errors corrected
(Fig. 5(b)). The effect of an offset error in a comparator
on a stage transfer function is shown in Figure 5(c). The
dotted line represents an ideal transfer function, and the
solid line shows a transfer function with an offset voltage
in a comparator. In a multi-step A/D converter, an error
in the gain stage (Fig. 5(d)) causes a non-linearity in the
input to output transfer characteristic. The influence of the
finite gain-bandwidth product of each stage on the total
A/D converter resolution is illustrated in Figure 5(e).
The references of the sub-D/A converter and the sub-

traction of the input signal and the sub-D/A converter out-
put determine the achievable accuracy of the total A/D
converter. The residue signal Vres is incorrect exactly by
the amount of the sub-D/A converter nonlinearity caused
by errors in the internal reference voltages �

Vres = �Vin− �s−1��Vref −�Voffset (1)

where s is the observed stage and Vin, Vref and Voffset are
input, reference and offset voltage, respectivly. To obtain a
digital representation of (1) each term is divided with Vref

Dout = �Din− �s−1��−�Dos (2)
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where Din = Vin/Vref , Dout = Vres/Vref , and Dos =
Voffset� i/Vref . By denoting the kth stage input, output and
offset voltage as Din�k = Vin�k/Vref , Dout = Vres�k/Vref , and
Dos = Voffset�k/Vref , respectively, a recursive relationship
when (2) is applied to each stage in sequence becomes

Dout = Dout�3 = 	
� � ���2− �D2−1��2−�2Dos�2�3

− �D3−1��3−�3Dos�3 =Din�N�N � � � �1

− �D3−1��3−�3Dos�3 (3)

Such a model is useful to generate an efficient adaptive
filtering algorithm using a look-up table for error estima-
tion and fault isolation. In this paper, proposed calibration
algorithm based on the steepest-descent method (SDM)29

involves the creation of an estimation error e, by com-
paring the estimated output D′

out�t� to a desired response
Dout�t�. Statistical data extracted through the DLPM mea-
surements provide the SDM estimates �W ′�T = 
�′� � ′��′�

with an initial value. In the SDM algorithm (Fig. 6), by
setting the different input values Din for each stage at iter-
ation time t, the unknown filter output Dout�t� becomes

Dout�t�=Din�t�×W (4)

The desired output Dout�t� is collected from the back-
end A/D converter and subtracted from the corresponding
nominal value. This desired response is then supplied to
the filter for processing. Based on the predefined inputs
and current error estimates, the SDM algorithm involves
the creation of an estimation error e, by comparing the
estimated output D′

out�t� to a desired response Dout�t��

The automatic adjustment of the input weights �W ′�T =

�′� � ′��′� is performed in accordance with the estimation
error e

W ′�t+1�=W ′�t�−�×Din�t�× e�t� (5)

where the scaling factor used to update W ′�t+ 1� is the
step-size parameter, denoted by �. Dout�t� and Din�t� are
matrices with 2n−1 rows and three columns, where n is
the resolution of the stage. The step size, �, decreases in
each iteration until the input weights decrease, i.e., until
W ′�t+ 1� < W ′�t�. The estimation error, e, is the differ-
ence between the desired response and the actual steepest-
descent filter output

e�t�=D′
out�t�−Dout�t� (6)

based on the current estimate of the weight vector, W ′

D′
out�t�=Din�t�×W ′�t� (7)

At each iteration, the algorithm requires knowledge of
the most recent values, Din�t�, Dout�t� and W ′�t�. During
the course of adaptation, the algorithm recurs numerous
times to effectively average the estimate and to find the
best estimate of weight W .
The temporary residue voltage in input Din needs to be

updated after each iteration time to improve the accuracy,
which can be done by using the current error estimate W ′.
As temperature can vary significantly from one die area
to another, these fluctuations in the die temperature influ-
ence the device characteristics. In the implemented system,
the temperature sensors register any on-chip temperature
changes, and the estimation algorithm update the W ′ with
a forgetting factor, � .30 The estimate at time t+1 is

W ′�t+1�= �W ′�t�+ �1− ��W 0�t+1�

0< � ≤ 1
(8)

where W 0�t+1� is an estimate prior to the registered tem-
perature change.
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Algorithm

Initialization
—Initialize the input vector Din�0�
—Force the inputs and collect the desired output Dout�0�
—Measure and set the initial value of the weights W ′�0�
—Initialize the steepest descent update step �= 1
—Initialize the forgetting factor �
Data collection
—Collect N samples from the DLPM and temperature
sensors

—Collect N samples from the AD converter
Update parameter estimate
1. Update the input vector Din�t+1� based on current

available W�t�
2. Calculate the error estimate W ′�t�
3. Generate the output estimate D′

out�t�=Din�t�×W ′�t�
4. Calculate the estimation error e�t�= D′

out�t�−Dout�t�
5. Calculate the error estimate W ′�t+1�=W ′�t�−�×
Din�t�× e�t�

6. If W ′�t+1� >W ′�t� decrease step size � and repeat
step 5

7. Increase the iteration index, t and repeat steps 1–6 for
best estimate

8. Denote the final value of W ′ by W ′
l

9. If temperature changes update W ′�t+1�= �W ′�t�+
�1− ��

4. ALGORITHMS FOR PROCESS VARIATION
MONITORING

The complexity of yield estimation, coupled with the iter-
ative nature of the design process, makes yield maxi-
mization computationally prohibitive. As a result, circuit
designs are verified using models corresponding to a set

of worst-case conditions of the process parameters. Worst-
case analysis is very efficient in terms of designer effort,
and thus has become the most widely practiced technique
for statistical verification. However, the worst-case per-
formance values obtained are extremely pessimistic and
as a result lead to unnecessarily large and power hungry
designs in order to reach the desired specifications. Thus,
it would be advantageous to choose a more relaxed design
condition. In statistics, several methods, such as listwise
and pairwise deletion and structural equation modelling
can provide estimates of the selected performance figures
based on the combination of the information obtained
from multiple DLPM measurements and the differential-
nonlinearity (DNL) measurement of each stage of the
multi-step A/D converter. In this paper, we utilize a
multiple imputation method based on the expectation-
maximization (EM) algorithm31 as it offers maximum like-
lihood estimates. Additionally, to enable test guidance
based on the information obtained through monitoring pro-
cess variations, we employ the adjusted support vector
machine (ASVM) classifier.32 In comparison with estab-
lished classifiers (such as quadratic, boosting, neural net-
works, Bayesian networks), the ASVM classifier is espe-
cially resourceful, since it simultaneously minimizes the
empirical classification error and maximizes the geometric
margin.

4.1. Expectation-Maximization (EM) Algorithm

A maximum likelihood (ML) estimation involves estima-
tion of an unknown (random) parameter vector � ∈� when
the marginal probability pX���x��� is at a maximum, given
the vector of the DLPM’s observations xi ∈X. Obtaining
optimum estimates through the ML method involves two
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steps: computing the likelihood function and maximizing
over the set of all admissible sequences.
Evaluating the contribution of the random parameter �

requires computing an expectation over the joint statis-
tics of the random parameter vector, a task that is ana-
lytically intractable. Even if the likelihood function can
be obtained analytically, it is invariably a nonlinear func-
tion of �, which makes the maximization step (which must
be performed in real time) computationally unfeasible. In
such cases, the expectation-maximization (EM) algorithm
allows obtaining the maximum likelihood estimates of the
unknown parameters by a computational procedure which
iterates, until convergence, between two steps.
Two steps, called E-step and M-step are involved in each

iteration. In the E-step, the EM algorithm forms the auxil-
iary function Q�����t��, (��0�, ��1�� � � � � ��t� is a sequence of
parameter estimates), which calculates the expected value
of the log-likelihood function with respect to the condi-
tional distribution Y of the DNL measurement of each
stage of the multi-step A/D converter, given the vector of
the DLPM’s observations X under the current estimate of
the parameters ��t�

Q�����t��= E�logp�X�Y ����X���t�� (9)

In the M-step, the algorithm determines a new parameter
maximizing Q

��t+1� = argmax
�

Q�����t�� (10)

At each step of the EM iteration, the likelihood function
can be shown to be non-decreasing;33 if it is also bounded
(which is mostly the case in practice), then the algorithm
converges. In Ref. [33] it is proven that an iterative max-
imization of Q�����t�� will lead to a maximum likelihood
estimation of �.

EM Algorithm

Initialization
—Initialize the data set TXY = 	�x1� y1�� � � � � �xl� yl�
—Initialize the parameter ��0�

Data collection
—Collect N samples from the DLPMs
Update parameter estimate
1. Calculate Q�����n��= E�logp�X�Y ���X���n�� —E step
2. Re-estimate � by maximizing the �-function —M step

��n+1� = argmax�Q�����n��, estimate
mean and variance

3. Increase the iteration index, n
4. Stop when a stationary point L���n−1��TXY �

= L���n��TXY � is found

4.2. Adjusted Support Vector Machine Algorithm

When an optimum estimate of the parameter distribution
is obtained as described in the previous section, the next
step is to update the test limit values utilizing an adjusted

support vector machine classifier. Assuming that the input
vectors (e.g., values defining test limits) belong to a priori
(nominal values) and a posteriori (values estimated with
the EM algorithm) classes, the goal is to set test limits
which reflect observed on-chip variation. Each new mea-
surement is viewed as an r-dimensional vector and the
ASVM classifier separates the input vectors into an r−1-
dimensional hyperplane in feature space Z.
Let D={xi� ci)�xi∈Rr � ci∈{-1,1}}ni=1 be the input vectors

belonging to a priori and a posteriori classes, where the ci
is either 1 or -1, indicating the class to which data xi from
the input vector belongs. To maximize the margin, w and
b are chosen such that they minimize the nearest integer
��w�� subject to the optimization problem described by

ci�w ·xi+b�≥ 1 (11)

for all 1 ≤ i ≤ n, where the vector w is a normal vector,
which is perpendicular to the hyperplane (e.g., defined as
w ·x+b= 0) The parameter b/��w�� determine the offset of
the hyperplane from the origin along the normal vector w.
In this paper, we solve this optimization problem with

a quadratic programming.34 The quadratic programming
problem is solved incrementally, covering all the sub-sets
of classes constructing the optimal separating hyperplane
for the full data set. Writing the classification rule in its
unconstrained dual form reveals that the maximum margin
hyperplane and therefore the classification task is now only
a function of the support vectors, e.g., the training data
that lie on the margin.

max
n∑

i=1

�i−
1
2

∑

i�j

�i�jcicjx
T
i xj (12)

subject to �i ≥ 0 and
∑n

i=1�ici = 0,

w =∑

i

�icixi (13)

where the � terms constitute the weight vector in terms of
the training set. To allow for mislabeled examples a mod-
ified maximum margin technique34 is employed. If there
exists no hyperplane that can divide the a priori and a pos-
teriori classes, the modified maximum margin technique
finds a hyperplane that separates the training set with a
minimal number of errors. The method introduces non-
negative variables �i, which measure the degree of mis-
classification of the data xi

ci�w ·xi+b�≥ 1−�i (14)

for all 1 ≤ i ≤ n. The objective function is then increased
by a function which penalizes non-zero �i, and the opti-
mization becomes a trade-off between a large margin and
a small error penalty. For a linear penalty function, the
optimization problem now transforms to

min
1
2
�w�2+C

∑

i

��
i (15)
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such that (9) holds for all 1≤ i ≤ n. For sufficiently large
constant C and sufficiently small � , the vector w and
constant b that minimize the functional (15) under con-
straints in (11), determine the hyperplane that minimizes
the number of errors on the training set and separate the
rest of the elements with maximal margin. This constraint
in (11) along with the objective of minimizing ��w�� is
solved using Lagrange multipliers. Similarly, non-linear
penalty functions can be employed, particularly to reduce
the effect of outliers on the classifier; however, the prob-
lem can become non-convex and thus, finding a global
solution becomes considerably more complex.

5. EXPERIMENTAL RESULTS

A prototype of the multi-step A/D converter with dedi-
cated embedded process monitors was fabricated in a stan-
dard single poly, six metal 90 nm CMOS (Fig. 7). The
stand-alone A/D converter occupies an area of 0.75 mm2

operates at 1.2 V supply voltage and dissipates 55 mW
(without output buffers). Dedicated embedded monitors
(12 per stage subdivided into three specific groups and
placed in and around the partitioned multi-step A/D con-
verter) and the complete DfT are restricted to less than
10% of the overall area and consume 8 mW and 0.4 mW
when in active and passive mode, respectively. Each
DLPM consists of 12 differential pairs or ladder resistors
corresponding to gain-, decision- or referenced-based mon-
itor, respectively. The DLPM circuits are small and stand-
alone, they match the physical layout of the extracted
device under test, and consume no power while in off state.
Additionally, the test-chip contains a temperature sensor
(located between coarse A/D converter and fine residue
amplifiers), which consumes only 11 �W. The multi-stage
circuit calibration (MSCC) algorithm requires about 1.5 k
logic gates as calibration overhead, occupies an area of
0.14 mm2 and consumes 11 mW of power.

Fig. 7. Chip micrograph.

5.1. Application of Results for A/D Converter Test
Window Generation/Update

The algorithms for the A/D converter’s test window gen-
eration/update, namely, the EM and ASVM algorithms are
performed off-line and are implemented in Matlab. All
experimental results are carried out on a single proces-
sor Linux system with an Intel Core 2 Duo CPUs with
2.66 GHz and 3 GB of memory. To illustrate the con-
cept of test window generation/update, consider only the
coarse stage, which is a simple four bit flash stage, con-
sisting of the reference ladder and sixteen comparators.
Some DNL errors are present in the coarse stage (Fig. 8),
which originates from the gain, decision and reference
ladder inaccuracies. To avoid loading of the test scheme
onto the error contributors in the sensitive analog signal
paths, and to be able to mimic and analyze the stage-
under-test (SUT) behavior, the basic element to be mea-
sured in each group of the gain-, decision- and reference
ladder-based DLPMs is an exact replica of the original cir-
cuit in the targeted stage-under-test. Figures 9–11 illustrate
the histogram estimated from 1680 samples extracted from
48 specific DLPMs in coarse stage and measured across
35 prototype devices. The monitoring circuit is designed to
maximize the sensitivity of the circuit to the target param-
eter to be measured. The DLPM measurements are directly
related to asymmetries between the branches composing
the circuit, giving an estimation of the offset when both
DLPM inputs are grounded or set at a predefined common-
mode voltage. The circuit is small and stand-alone, it
matches the physical layout of the extracted device under
test, and consumes no power while in off state. Repetitive
single die-level process monitor measurements for each
group of monitors are performed to minimize noise errors.
Since different transistors are measured sequentially the

dc repeatability of the dc gate voltage source must be
larger than the smallest gate-voltage offset to be measured.
The repeatability of the source in the measurement set-up
was better than six digits. The extracted DLPM and DNL
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Fig. 8. Coarse A/D converter DNL histogram.
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Fig. 9. Gain-based DLPM histogram.

measurements of each stage of the multi-step A/D con-
verter are correlated with the EM-algorithm. The mean �
and the variance � of �, �, and � are estimated based on
the EM-algorithm (Figs. 12 and 13). As the main statis-
tical concern is the estimation of the (randomly varying)
performance functions �, �, and �, the EM algorithm
substitutes the DLPM measurements in the log likelihood
function, not in the incomplete data set; the missing val-
ues are substituted by the conditional expectations of their
functions as they appear in the log-likelihood function. The
DLPM measurement is the set of observations, whereas
each element of the DNL measurement set is defined
as a two-component vector consisting of an observation
and an indicator specifying which component of the mix-
ture occurred during that observation. To make the prob-
lem manageable, the process parameter variation model is
assumed to follow a Gaussian distribution.
The mixtures of Gaussians are initialized by applying

the EM equations to the observed mixtures of two uni-
variate Gaussian components based on the DLPM and the
coarse A/D converter DNL measurements. This observed
process related information allows design re-centering,

0 0.5 1 1.5 2
0

20

40

60

80

LSB

de
ci

si
on

-b
as

ed
 D

LP
M

 h
is

to
gr

am

Fig. 10. Decision-based DLPM histogram.
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Fig. 11. Reference based DLPM histogram.

e.g., test limit setting with the ASVM classifier. Through
the quadratic programming optimization, the input vec-
tors belonging to a priori (nominal values) and a pos-
teriori (values estimated with the EM algorithm) classes
are divided into a number of sub-sets. The quadratic pro-
gramming problem is solved incrementally, covering all
the sub-sets of classes constructing the optimal separat-
ing hyperplane for the full data set. Note that during this
process the value of the functional vector of parameters
is monotonically increasing, since more and more train-
ing vectors are considered in the optimization leading to
a smaller and smaller separation between the two classes.
As illustrated in Figure 14, the high limit value is updated
in the corresponding functional test specs of the stage-
under-test with 0.35 LSB. Following a similar procedure,
the high limit values of the mid and fine stages and the
overall multi-step A/D converter are updated with 0.3, 0.2
and 0.15 LSB, respectively. This on the fly test limit set-
ting leads to increased yield as illustrated in Figure 15.
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Fig. 12. Estimating mean values of �, �, and � with respect to the
number of iterations of the EM.
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Fig. 13. Estimating variance values of �, �, and � with respect to the
number of iterations of the EM.

The cumulative differential non-linearity is obtained across
a projected 10000 devices showing similar characteristics
as a measured prototype.

5.2. Application of Results for A/D Converter
Debugging and Calibration

The test shell contains all functional control logic, the dig-
ital test bus, a test control block (TCB) and a CTAG isola-
tion chain. Testing of each stage is performed sequentially
starting from the first stage. Since there is no feedback
from the mid and fine A/D converters to the coarse result
value, it is not necessary to set these two A/D converters
at a fixed value to test the coarse A/D converter. However,
since the calibration D/A converter settings do show in the
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Fig. 14. Fitting a posteriori probability to the SVM output. The sup-
port vectors, marked with larger circles, define the margin of separation
between the classes of multiple runs of DLPM (crosses) and DUT mea-
surements (smaller circles).
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Fig. 15. DNL cumulative histograms of 10 000 devices before and after
adjusting the tolerance limits.

mid A/D converter results, the sub-D/A converter is set to
a known value to prevent interference with the mid A/D
converter test results. Similar to the mid A/D converter, the
fine A/D converter cannot be monitored directly due to the
overlap in the A/D converter ranges. The predefined input
signals are extracted when the A/D converter operates in
a normal application mode. At a certain moment the scan
chains are set to a hold mode to acquire the requested
value. Now, the residue signals derived through the prede-
fined input signals evaluate the fine A/D converter perfor-
mance. The calibration signals need to be active as well
for the fine A/D converter test. To verify offsets, a sim-
ilar procedure as in the mid A/D converter is followed.
The calibration D/A converter settings have to be known
and set to a known value to prevent interference with test
results.
The calibration technique was verified for all stages with

full scale inputs. If the analog input to the calibrated A/D
converter is such that the code transition is i, then the code
transition of the ideal A/D converter is either i or i+1. The
offset between the digital outputs of these two convert-
ers for the range of analog inputs is denoted �i1 and �i2,
respectively. If a calibrated A/D converter has no errors in
the internal reference voltages � and neither has stage gain
errors �, the difference between the calibrated and ideal
A/D converter outputs is constant regardless of the analog
input, thus �i1 = �i2. If errors � and � are included, then
the calibrated A/D converter shows unique missing codes.
The difference between �i1 and �i2 gives the error due
to missing codes that occur when the ideal A/D converter
changes from code i to code i+1. The unique error due to
missing codes at all other transitions can be measured in
a similar manner. With errors from missing codes at each
measured transition, the calibrated A/D converter stage is
corrected by shifting the converter’s digital output as a
function of the transition points such that the overall trans-
fer function of the calibrated A/D converter is free from
missing codes. As long as the input is sufficiently rapid to
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generate a sufficient number of estimates of �i1, �i2, for
all i, there is no constraint on the shape of the input signal
to the A/D converter. A constant offset between the cali-
brated and ideal A/D converter appears as a common-mode
shift in both �i1 and �i2. Since the number of missing
codes at each code transition is measured by subtracting
�i2 from �i1, the common mode is eliminated and thus
input-referred offsets of the calibrated A/D converter have
no impact in the calibration scheme (under the practical
assumption that the offsets are not large enough to saturate
the output of the converter stages).
It is important to note that the steepest-descent debug-

ging and calibration algorithm, which captures random
statistical process variations of device characteristics (man-
ifested through �, �, and � errors) in the observed
multi-step A/D converter, can operate independently from
DLPM and temperature sensor measurements. Statistical
data extracted through the DLPM measurements coupled
with conditional distribution of DNL data obtained with
the EM algorithm supplement the debugging process by
enhancing observation and characterization of the current
process variability conditions of parameters of interest.
The correction parameters are shown in Figures 16 and 17.
The largest correction values significantly decrease with
the amount of samples. As an ideal A/D converter offers
an ideal reference for the calibrated A/D converter, the
error signal used for the algorithm adaptation is highly
correlated with the error between them, thus steady state
convergence occurs within a relatively short time inter-
val. Different �, �, and � are generated randomly, so that
the relative errors are uniformly distributed in the inter-
val [−0.1, 0.1]. At first, � is set to 1/4 to speed up the
algorithm, then � is set to 1/64 after 1000 iterations to
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Fig. 16. Mean-square error for two thousand samples. The quality crite-
rion adopted for an estimator is the mean-squared error criterion, mainly
because it represents the energy in the error signal, is easy to differentiate
and provides the possibilities to assign the weights.
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Fig. 17. Mean-square error for two million samples.

improve the accuracy. Calibration results measured at sev-
eral temperatures are summarized in Table I. A summary
of the converter performance at 30 	C and comparison with
previous works is shown in Table II.
A code density test was conducted to obtain static lin-

earity of the proposed A/D converter. DNL (Fig. 18) and
INL (Fig. 19) are measured with a signal frequency of
1 kHz and 15 MS/s, and THD and SNR are obtained with
25 MHz input signal and 60 MS/s sampling frequency
(Fig. 20). The largest spike, other than the fundamental
input signal, is the spurious harmonic which appears at
fs/3± fin and is about 78 dB below the fundamental sig-
nal. A locked histogram test revealed a 2.6-ps rms jitter in
the system including the clock generator, the synthesizer,

Table I. Summary of the calibration performance.

Before (0 	C) (30 	C) (90 	C)

Coarse A/D converter
DNL ±0.5 LSB ±0.5 LSB ±0.4 LSB ±0.4 LSB
INL ±0.7 LSB ±0.7 LSB ±0.6 LSB ±0.6 LSB
THD −26.1 dB −26.4 dB −26.7 dB −26.5 dB
SNR 23.7 dB 23.9 dB 24.3 dB 23.8 dB

Mid A/D converter
DNL ±0.7 LSB ±0.7 LSB ±0.5 LSB ±0.6 LSB
INL ±1.8 LSB ±0.8 LSB ±0.6 LSB ±0.7 LSB
THD −13.8 dB −24.8 dB −26.1 dB −25.3 dB
SNR 12.4 dB 21.3 dB 23.5 dB 22.4 dB

Fine A/D converter
DNL ±0.9 LSB ±0.9 LSB ±0.6 LSB ±0.8 LSB
INL ±2.6 LSB ±1.0 LSB ±0.9 LSB ±0.9 LSB
THD −18.3 dB − 33.7 dB −35.8 dB −33.2 dB
SNR 15.6 dB 29.5 dB 31.4 dB 29.1 dB

Total A/D converter
DNL ±1.4 LSB ±1.2 LSB ±0.7 LSB ±1.1 LSB
INL ±4.1 LSB ±1.5 LSB ±1.2 LSB ±1.4 LSB
THD −46.6 dB −69.4 dB −73.5 dB −70.9 dB
SNR 41.5 dB 67.3 dB 70.3 dB 68.7 dB
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Table II. Summary of A/D converter performance and comparision with prior art.

[2] [3] [4] [5] [6] [7] [This work]

CMOS technology 0.6 �m 0.35 �m 0.18 �m 0.13 �m 90 nm 90 nm 90 nm
Resolution (bit) 12 12 12 12 12 (nom) 12 12
Supply voltage (V) 5 3.3 1.8 1.2 1.2 1.2 1.2
Sample rate (MS/s) 33 20 40 120 100 200 60
Eff. Bandw. (MHz) 16 10 20 60 50 91 30
DNL (LSB) ±0.8 ±0.42 ±1 ±0.3 ±0.54 +0�8/−0�6 ±0.7
INL (LSB) ±1 ±0.75 +1�7/−1�97 +0�95 ±368 +1�3/−1�7 ±1.2
SNR (dB) — — 62.2 — 70 — 70.3
SNDR (dB) 70.3 70.2 62 74.7 68.8 61.6 68.6
Calibration Piecew. Lin. Nested off chip off chip HDC LMS SDM
Power (mW) 650 231 72 51.6 130 348 55
Area (mm2� 3 7.5 1.9 0.56 4 1.36 0.75
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Fig. 18. DNL after calibration.

the A/D comparator chip and the board, which translates
to a 66-dB SNR at 15 MHz approximately. This con-
firms the observation that the performance of this converter
is limited by the clock jitter at high input frequencies.
The measured behavior of the temperature monitor shows
the typical bandgap-curve which reaches a maximum at
810 mV close to the target of 800 mV without trim-
ming. Results from 35 prototype samples show a stan-
dard deviation of the bandgap output voltage of 4.5 mV.
The temperature sensor switches at intervals of 10 	C as
measured on a digital production IC tester. We observe
that the improvement of DNL and INL is coincident
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Fig. 19. INL after calibration.
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Fig. 20. Frequency spectrum at 60 MS/s with an input frequency of
25.6 MHz.

with the fact that the mismatch increases when decreas-
ing the temperature. Therefore, as the worst case mismatch
and temperature condition, the lower end (0 	C) of the used
temperature scale (0 	C to 90 	C) is observed. The linear-
ity measurements show bathtub-like features since at the
higher temperature end, mobility degradation deteriorates
the circuit performance. The DLPM measurements show
that at optimal temperature (30 	C), the standard devia-
tion Stdev (�VTsat� decreases by 0.16 mV. This compares
reasonably well with the measured improvement in IDsat
matching of 0.032%. The threshold voltage matching coef-
ficient AVT, the standard deviation of percent �ID and the
current matching coefficient AID improve by 0.3 mV�m,
0.032% (0.036 �A), and 0.06% �m, respectively.

6. CONCLUSION

The feasibility of the calibration method has been veri-
fied by experimental measurements from the silicon pro-
totype fabricated in standard single poly, six metal 90 nm
CMOS. The stand-alone A/D converter occupies an area
of 0.75 mm2 operates at 1.2 V supply voltage and
dissipates 55 mW (without output buffers). The calibra-
tion algorithm requires about 1.5 k logic gates, occu-
pies an area of 0.14 mm2 and consumes 11 mW of
power. The monitors allow the readout of local (within
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the core) performance parameters as well as the global
distribution of these parameters. The flexibility of the
concept allows the system to be easily extended with a
variety of other performance sensors. The implemented
expectation-maximization algorithm and adjusted support
vector machine classifier allow us to guide the verifica-
tion process with the information obtained through mon-
itoring process variations. Fast identification of excessive
process parameter variation effects is facilitated at the cost
of at most 10% area overhead, and 8 mW and 0.4 mW
of power consumption when in active and passive mode,
respectively.
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