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Low-Power Die-Level Process Variation and
Temperature Monitors for Yield Analysis and

Optimization in Deep-Submicron CMOS
Amir Zjajo, Member, IEEE, Manuel J. Barragan, and José Pineda de Gyvez, Fellow, IEEE

Abstract—This paper reports design, efficiency, and measure-
ment results of the process variation and temperature monitors
for yield analysis and enhancement in deep-submicron CMOS
circuits. Additionally, to guide the verification process with the
information obtained through monitoring, two efficient algorithms
based on an expectation–maximization method and adjusted
support vector machine classifier are proposed. The monitors
and algorithms are evaluated on a prototype 12-bit analog-to-
digital converter fabricated in standard single poly six-metal
90-nm CMOS.

Index Terms—Analog test, process variation monitoring,
temperature monitors, yield enhancement.

I. INTRODUCTION

CMOS technologies move steadily toward finer geometries,
which provide higher digital capacity, lower dynamic

power consumption, and smaller area resulting in the integra-
tion of whole systems, or large parts of systems, on the same
chip. However, due to technology scaling, ICs are becoming
more susceptible to variations in process parameters and noise
effects like power supply noise, crosstalk reduced supply volt-
age and threshold voltage operation severely impacting the
yield [1]. Since parameter variations depend on unforeseen
operational conditions, chips may fail despite passing standard
test procedures. Similarly, the magnitude of thermal gradients
and associated thermomechanical stress increase further as
CMOS designs move into nanometer processes and multigi-
gahertz frequencies [1]. Higher temperature increases the risk
of damaging the devices and interconnects since major back-
end and front-end reliability issues, including electromigration,
time-dependent dielectric breakdown, and negative-bias tem-
perature instability, have strong dependence on temperature.
Consequently, continuous observation of process variation and
thermal monitoring becomes a necessity. Such observation
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is enhanced with dedicated monitors embedded within the
functional cores [2]. To maximize the coverage, the process
variation and thermal sensing devices are scattered across the
entire chip to meet the control requirements. The monitors are
networked by an underlying infrastructure, which provides the
bias currents to the sensing devices, collects measurements,
and performs analog to digital signal conversion. Therefore, the
supporting infrastructure is an on-chip element at a global scale,
growing in complexity with each emerging design.

The process variation and temperature monitors for signal
integrity measurement systems of very large scale integration
(VLSI) circuits should meet several requirements, including
compatibility with the target process with no additional fabri-
cation steps, high accuracy, a small silicon area, and low power
consumption. In a ring-oscillator-based technique [3], isolation
of individual parameters for variability study is challenging due
to mixture of the variation of large number of transistors into
a single parameter (i.e., the frequency of ring operation). On
the other hand, the transistor array based structures [4] enable
collection of transistor I–V curves with digital I/O, enabling
measurement of I–V characteristics of a larger number of
devices than is typically sustained by common DC probing
measurement schemes. Such structures use row and column
decoders to select an individual transistor in the transistor array
and employ different schemes to address the current–resistance
drop imposed by the transmission gates on a transistor’s se-
lection path. The temperature monitor based on a time-to-
digital-converter [5] is constrained by the large area and power
overhead at the required sampling rate. Temperature monitor
operating in the subthreshold region [6] is prone to dynamic
variations as thermal sensitivity increases by an order of mag-
nitude when operating in subthreshold [7]. Consequently, the
majority of CMOS temperature monitors are based on the
temperature characteristics of parasitic bipolar transistors [8].

In this paper, we present compact, low-area, low-power
process variation and temperature monitors with high accuracy
and a wide temperature range that does not need to operate with
special requirements on technology, design, layout, testing,
or operation. The monitors operate at the local power supply
and are designed to maximize the sensitivity of the circuit to
the target parameter to be measured. The monitors are small,
stand alone, and easily scalable and can be fully switched off.
All the peripheral circuits, such as decoders and latches, are
implemented with thick gate oxide and long channel devices
and are, hence, less sensitive to the process variation. To
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Fig. 1. Architecture of the measurement system.

characterize current process variability conditions and enable
test guidance based on the data obtained from the monitors, we
utilize the expectation–maximization (EM) algorithm [9] and
the adjusted support vector machine (ASVM) classifier [10],
respectively.

This paper is organized as follows. Section II focuses on
the observation strategy and design of process variation and
temperature monitors. Section III discusses the algorithms for
verification process and test-limit guidance and update. In
Section IV, the proposed monitors and algorithms are evaluated
on an application example, namely, dual-residue multistep A/D
converter. Finally, Section V provides a summary and the main
conclusion.

II. DIE-LEVEL PROCESS VARIATION

AND TEMPERATURE MONITORS

A. Observation Strategy

Yield loss can be caused by several factors, e.g., wafer
defects and contamination, IC manufacturing process defects
and contamination, process variations, packaging problems,
and design errors or inconsiderate design implementations or
methods. Constant testing in various stages is of utmost impor-
tance for minimizing costs and improving quality. Fig. 1 depicts
the proposed observation strategy block diagram for dice wafer
probing. A family of built-in process variation and temperature
sensing circuits is embedded within the functional blocks. The
monitors in a core are connected through a bus to the con-
troller [2]. The monitors operate at the local power supply and
are designed to maximize the sensitivity of the circuit to the
target parameter to be measured.

The monitors are small, stand alone, and easily scalable and
can be fully switched off. The analog sensing is converted
locally into pass/fail (digital) signals through the data decision
circuit. The output of a monitor is a digital signal, which is
transferred to the monitoring processor. The interface circuitry
allows the external controllability of the test and also feeds out
the decision of the detector to a scan chain. This register chain
provides a serial connection between the various monitors in
the different cores at minimum costs in terms of data commu-
nication and wiring. The test control block (TCB) in scan-chain
selects through a test multiplexer (TMX) the individual die-
level process monitor circuit measurement. Select, reference,
and timing window signals are offered to the detector through

Fig. 2. Schematic of a one-cell of gain-based DLPVM.

this interface circuitry. All (critical) signal paths and clock
lines have been extensively shielded. All the peripheral circuits,
such as decoders and latches, are implemented by I/O devices
(thick gate oxide and long channel devices) and, thus, are
less sensitive to the process variation. The monitors have a
1-bit output; the accuracy of the measurement is achieved by
logarithmically stepping through the range (successive approx-
imation). The scan-chain is implemented through the IEEE Std
1149.4 analog test bus extension to 1149.1. The serial shift
register is a user register controlled by an IEEE Std 1149.1 TAP
controller [11], which allows access to the serial register, while
the device is in functional mode. Furthermore, such controller
creates no additional pin counts since it is already available in
the system on chip. Another mode of operation allows self-
test: the controller continuously interrogates the monitors for
their measurements and will react to preset conditions (e.g.,
too high a temperature in a block). The architecture can also
be operated in slave mode: an external controller (e.g., a tester
workstation or a PC with 1149.1 control software) will program
the monitor settings and evaluate the measured values. The
monitors are designed in standard cell format so that they can
be automatically located anywhere within each standard-cell
block.

B. Die-Level Process Variation Monitors (DLPVMs)

The DLPVM measurements are directly related to asymme-
tries between the branches composing the circuit, giving an
estimation of the offset when both DLPVM inputs are grounded
or set at predefined common-mode voltage. In this paper, we
propose three distinctive DLPVMs, namely, gain-, decision-,
and reference-based monitors, each covering characteristic ana-
log structures. As shown in Fig. 2, the gain-based monitor
consists of a differential input pair (transistors T1 and T2)
with active loading (T3 and T4) and some additional gain
(transistors T5 and T6) to increase the monitor’s resolution and
transistors T7 and T8 to connect to read lines (lines leading to a
programmable data decision circuit).

The drain voltage of the different transistors in each die-
level process monitor are accessed sequentially though a switch
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Fig. 3. Schematic of a one-cell decision-based DLPVM.

matrix that connects the drain of the transistor pairs under test
to the detector; the drains of the other transistors are left open.
The switch matrix connects the gate of the transistor pairs
under test to the gate voltage source and connects the gates of
the other rows to ground. The different device arrangements
in the matrix include device orientation and the nested device
environment. The matrix is placed several times on the chip
to obtain information from different chip locations and distance
behavior. As shown in Fig. 3, in the decision-based monitor, the
common dynamic latch (transistors T11 to T16) has been broken
to allow a DC current flow through the device needed for the
intended set of measurements. In addition to these two, internal
reference voltages monitoring circuits, as shown in Fig. 4,
sense the mismatch between two of the unit resistors. The
current that flows through the resistors is fixed using a current
mirror. Since the current is fixed, the voltage drop between the
nodes labeled V1 and V2 is a measurement of the mismatch
between the resistors. The feedback amplifier is realized by
the common-source amplifier consisting of T5 and its current
source I5. The amplifier keeps the drain–source voltage across
T3 as stable as possible, irrespective of the output voltage.
The circuit consisting of T7, T9, T11, I1, and I2 operates
almost identically to a diode-connected transistor; however,
it is employed instead to guarantee that all transistor bias
voltages are accurately matched to those of the output circuitry
consisting of T1, T3, T5, and I5. Consequently, IR1 will very
accurately match I1 [12]. As transistors T3 and T9 are biased to
have drain–source voltages larger than the minimum required,
Veff3, this can pose a limitation in very low power supply
technologies. To prevent this, we add diode-connected transis-
tors, which act as level shifters in front of the common-source
enhancement amplifier [13]. At the output side, the level shifter
is the diode-connected transistor T7, biased with current I2.
The circuitry at the input acts as diode-connected transistor
while ensuring that all bias voltages are matched to the output
circuitry. Although the power dissipation of the circuit is almost
doubled over that of a classical cascode current mirror, by
biasing the enhancement circuitry at lower densities, sufficient
power dissipation savings are made.

C. Detector and Interface Circuit

The complete interface circuit including DLPVMs, a detec-
tor, the switch matrix to select the reference levels for a decision
window, the interface to the external world, control blocks to
sequence events during test, the scan chain to transport the
pass/fail decisions, and the external tester is illustrated in Fig. 5.
For clarity, only eight DLPVMs are shown. The analog decision
is converted into pass/fail (digital) signals through the data
decision circuit (transistors T1−24). The TCB selects through a
TMX the individual die-level process monitor circuit measure-
ment. Select, reference, and calibration signals are offered to
the detector through this circuitry. The data detector compares
the output of the die level process monitor against a comparison
reference window. The reference voltages defining the decision
windows are related to the performance figures under study. The
robustness against process variations is provided by an auto-
zeroing scheme [14]. The data decision circuit operates on a
two phase nonoverlapping clock. The comparison references
needed to define the monitor decision windows are controlled
through the DC signals labeled refp and refn. The differenc-
ing network samples reference voltage during phase clk onto
capacitor C, while the input is shorted giving differential zero.
During phase clkn, the input signal is applied at the inputs of
both capacitors, causing an input differential voltage to appear
at the input of the comparator preamp. At the end of clkn, the
regenerative flip-flop is latched to make the comparison and
produce digital levels at the output. In the test mode, two main
phases can be distinguished according to the state of signal φ.
If φ is high, the inputs of the detector are shorted to the analog
ground to perform a test of the detector itself, e.g., the circuit is
in the auto-zeroing mode, whereas if φ is low the particular die-
level process monitor circuit is connected to the detector and
tested.

D. Temperature Monitor

To convert temperature to a digital value, a well-defined
temperature-dependent signal and a temperature-independent
reference signal are required. For constant collector current,
base–emitter voltage Vbe of the bipolar transistors has negative
temperature dependence around room temperature.

This negative temperature dependence is cancelled by a
proportional-to-absolute temperature (PTAT) dependence of
the amplified difference of two base–emitter junctions. These
junctions are biased at fixed but at unequal current densities
resulting in the relation directly proportional to the absolute
temperature. This proportionality is, however, rather small
(0.1–0.25 mV/◦C) and needs to be amplified to allow fur-
ther signal processing. The proposed temperature monitor is
illustrated in Fig. 6. The right part of this circuit, comprising
a voltage comparator (transistors T13−21), creates the output
signal of the temperature sensor. The rest of this circuit consists
of the temperature sensing-circuit, amplifier and start-up. To
enable a certain temperature detection, the voltage comparator
requires the following two signals with different temperature
dependence: 1) an increasing PTAT voltage Vint across the
resistor network NT R and 2) a decreasing PTAT voltage Vinr

at the comparator positive input. Adjustable resistors NRR
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Fig. 4. One cell of reference-based DLPVM with a modified wide-swing current mirror.

Fig. 5. Detector and interface circuit.

are employed for Vbe (of transistors Q1−2) curvature com-
pensation [15]. The amplifier (transistors T1−6) consists of
a non-cascoded operational transconductance amplifier (OTA)
with positive feedback to increase the loop-gain. Due to the
asymmetries, the inaccuracy of the circuit is mainly determined
by the offset and flicker noise of the amplifier. Several dynamic
compensation techniques such as auto-zeroing, chopping, or
dynamic element matching [16] might be employed to decrease
offset and flicker noise. However, inherently, such techniques
require very fast amplifier, whose noise is typically several
orders of magnitude larger and consumes considerably more
power. In addition, chopping ads switching noise due to, e.g.,
charge dump and clock interference. Such characteristics make
these techniques unsuitable for thermal monitoring of VLSI
circuits. In this design, to lower the effect of offset, the system-
atic offset is minimized by adjusting transistor dimensions and

bias current in the ratio, while the random offset is reduced by
a symmetrical and compact layout. Additionally, the collector
currents of bipolar transistors Q1 and Q2 are rationed by a
predefined factor, e.g., transistors are multiple parallel connec-
tions of unit devices. A start-up circuit consisting of transistors
T7−9 drives the circuit out of the degenerate bias point when
the supply is tuned on. The scan chain delivers a four-bit
thermometer code for the selection of the resistor value NT R.
The nodes in between each resistor have different voltages
depending on their proximity to Vint. By using thermometer
decoding on the digital signal one specific node can be selected
as the correct analog voltage. The resistor-ladder network is
inherently monotonic as long as the switching elements are
designed correctly. Similarly, since no high-speed operation
is required, parasitic capacitors at a tap point will not create
significant voltage glitch.
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Fig. 6. Temperature monitor.

III. CHARACTERIZATION OF PROCESS VARIABILITY

CONDITIONS AND TEST-LIMIT UPDATES AND GUIDANCE

The complexity of yield estimation, coupled with the iter-
ative nature of the design process, makes yield maximization
computationally prohibitive. Worst case analysis is very effi-
cient in terms of designer effort and, thus, has become the most
widely practiced technique for statistical verification. However,
the worst case performance values obtained are extremely
pessimistic and as a result lead to unnecessarily large and power
hungry designs to reach the desired specifications. In this paper,
statistical data extracted through the monitor measurements
allow us possibilities not only to enhance observation of impor-
tant design and technology parameters, but also to characterize
current process variability conditions of certain parameters of
interest, enabling optimized design environment as well.

A. Characterization of Process Variability Conditions

A maximum likelihood (ML) estimation involves estimation
of parameter vector (threshold voltage variation, resistor width
variation, etc., obtained through monitor’s observation) θ ∈ Θ,
where Θ is a parameter space for which the observed data is the
most likely, e.g., marginal probability pX|Θ(x|θ) is a maximum,
given the vector of the DLPVM’s observations xi ∈ X , where
X is a measurement space, at temperature T . The pX|Θ(x|θ)
is the Gaussian mixture model given by the weighted sum of
the Gaussian distributions. The logarithm of the probability
p(TX |θ) is referred to as the log-likelihood L(θ|TX) of θ with
respect to TX .

The input set TX is given by TX = {(x1, . . . , xl)}, which
contains only vectors of DLPVM’s observations xi. The log-
likelihood can be factorized as

L(θ|TX)=log p(TX |θ)=
l∑

i=1

∑
y∈Y

pX|Y,Θ(xi|yi, θ)pY |Θ(yi|θ)

(1)

for the missing data vector yi ∈ Y , where Y is the incomplete
data set, which are independent and identically distributed
according to the probability pXY |Θ(x, y|θ). The problem of

ML estimation from the set of DLPVM observations Tx can
be defined as

θ∗=max
θ∈Θ

L(θ|TX)=max
θ∈Θ

l∑
i=1

∑
y∈Y

pX|Y,Θ(xi|yi, θ)pY |Θ(yi|θ).

(2)

Obtaining optimum estimates through the ML method in-
volves the following two steps: 1) computing the likelihood
function and 2) maximizing over the set of all admissible se-
quences. Evaluating the contribution of the random parameter θ
requires computing an expectation over the joint statistics of the
random parameter vector, a task that is analytically intractable.
Even if the likelihood function L can be obtained analytically,
it is invariably a nonlinear function of θ, which makes the
maximization step (which must be performed in real time)
computationally unfeasible. In such cases, EM algorithm [9]
allows obtaining the ML estimates of the unknown parameters
by a computational procedure that iterates, until convergence,
between two steps.

Instead of using the traditional incomplete-data density in
the estimation process, the EM algorithm uses the properties
of the complete-data density. In doing so, it can often make
the estimation problem more tractable and also yield good
estimates of the parameters for small sample sizes [17]. Thus,
with regard to implementation, the EM algorithm holds a
significant advantage over traditional steepest descent methods
acting on the incomplete-data likelihood equation. Moreover,
the EM algorithm provides the values of the log-likelihood
function corresponding to the ML estimates based uniquely on
the observed data.

The EM algorithm builds a sequence of parameter estimates
θ(0), θ(1), . . . , θ(t), such that the log-likelihood L(θ(t)|TX)
monotonically increases, i.e., L(θ(0)|TX) < L(θ(1)|TX) <
. . . < L(θ(t)|TX) until a stationary point L(θ(t−1)|TX) =
L(θ(t)|TX) is achieved. Using Bayes rule, the log likelihood
of xi can be written as

log p(TX |θ) = log p(X,Y |θ), θ(t) − log pX,Y |X(X,Y |θ), θ(t).
(3)
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Taking expectations on both sides of the above equation
given xi and θ, where θ(t) is an available estimate of θ, we have

log p(TX |θ) =Eθ(t) {log p(X,Y |θ)|X, θ(t)}
− Eθ(t)

{
log pX,Y |X(X,Y |X)|X, θ(t)

}

=Qn

(
θ|θ(t)

)
− P

(
θ|θ(t)

)
. (4)

By Jensen’s inequality, the relation holds that

P
(
θ|θ(t)

)
≤ P

(
θ(t)|θ(t)

)
. (5)

Therefore, a new estimate θ in the next iteration step that
makes Q(θ(t)|θ(t)) ≥ Q(θ|θ(t)) leads to

log p(TX |θ) ≥ log p
(
TX |θ(t)

)
. (6)

In each iteration, two steps, called E-step and M-step, are
involved. In the E-step, the EM algorithm forms the auxiliary
functionQ(θ|θ(t)), (θ(0),θ(1),. . . ,θ(t) isasequenceofparameter
estimates), which calculates the expected value of the log-
likelihood function with respect to the conditional distribution
Y ofthefunctional test,giventhevectorof theDLPVM’sobserva-
tions X under the current estimate of the parameters θ(t), i.e.,

Q
(
θ|θ(t)

)
= E (log p(X,Y |θ)|X, θ(t)) . (7)

In the M-step, the algorithm determines a new parameter
maximizing Q, i.e.,

θ(t+1) = arg max
θ

Q
(
θ|θ(t)

)
. (8)

At each step of the EM iteration, the likelihood function can
be shown to be nondecreasing [17]; if it is also bounded (which
is mostly the case in practice), then the algorithm converges.
An iterative maximization of Q(θ|θ(t)) will lead to a ML
estimation of θ [17].

EM Algorithm

Initialization
– Initialize the data set TXY = {(x1, y1), . . . , (xl, yl)}.
– Initialize the parameter θ(0).
Data collection
– Collect N samples from the DLPVMs and temperature

monitors
Update parameter estimate
1) Calculate Q(θ|θ(n)) = E(logp(X,Y |θ)X, θ(n))—E step.
2) Reestimate θ by maximizing the θ-function θ(n+1) =

arg maxθQ(θ|θ(n)),estimatemean,andvariance—Mstep.
3) Increase the iteration index n.
4) Stop when a stationary point L(θ(n−1)|TXY ) =

L(θ(n)|TXY ) is found.

B. Algorithm for Test-Limit Updates and Guidance

When an optimum estimate of the parameter distribution is
obtained as described in the previous section, the next step is to
update the test limit values utilizing an ASVM classifier [10].
In comparison with established classifiers (such as quadratic,
boosting, neural networks, and Bayesian networks), the ASVM
classifier is particularly resourceful, since it simultaneously
minimizes the empirical classification error and maximizes
the geometric margin. Assuming that the input vectors (e.g.,
values defining test limits) belong to a priori (nominal values)
and a posteriori (values estimated with the EM algorithm)
classes, the goal is to set test limits that reflect observed
on-chip variations. Each new measurement is viewed as an
r-dimensional vector and the ASVM classifier separates the
input vectors into an r − 1-D hyperplane in feature space Z.
Let D = {xi, ci)|xi ∈ Rr, ci ∈ −1, 1}n

i=1 be the input vectors
belonging to a priori and a posteriori classes, where the ci

is either 1 or −1, indicating the class to which data xi from
the input vector belong. To maximize the margin, w and b are
chosen such that they minimize the nearest integer ‖w‖ subject
to the optimization problem described by

ci(w · xi + b) ≥ 1 (9)

for all 1≤ i≤n, where the vector w is a normal vector, which is
perpendicular to the hyperplane (e.g., defined as w · x + b = 0)
the parameter b/‖w‖ determine the offset of the hyperplane
from the origin along the normal vector w.

In this paper, we solve this optimization problem with a
quadratic programming [18]. The equation is altered by sub-
stituting ‖w‖ with 1/2‖w‖2 without changing the solution (the
minimum of the original and the modified equation have the
same w and b). The quadratic programming problem is solved
incrementally, covering all the subsets of classes construct-
ing the optimal separating hyperplane for the full data set.
Writing the classification rule in its unconstrained dual form
reveals that the maximum margin hyperplane and, therefore, the
classification task is now only a function of the support vectors,
e.g., the training data that lie on the margin

max
n∑

i=1

αi − 1
2

∑
i,j

αiαjcicjx
T
i xj (10)

subject to αi ≥ 0 and
∑n

i=1 αici = 0,

w =
∑

i

αicixi (11)

where the α terms constitute the weight vector in terms of
the training set. To allow for mislabeled examples a modified
maximum margin technique [18] is employed. If there exists no
hyperplane that can divide the a priori and a posteriori classes,
the modified maximum margin technique finds a hyperplane
that separates the training set with a minimal number of errors.
The method introduces nonnegative variables ξi, which mea-
sure the degree of misclassification of the data xi, i.e.,

ci(w · xi + b) ≥ 1 − ξi (12)



2218 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 8, AUGUST 2012

Fig. 7. Block diagram of the 12-bit multistep A/D converter [19].

Fig. 8. Chip micrograph of the A/D converter and embedded monitors.

for all 1 ≤ i ≤ n. The objective function is then increased
by a function that penalizes nonzero ξi, and the optimization
becomes a tradeoff between a large margin and a small error
penalty. For a linear penalty function, the optimization problem
now transforms to

min
1
2
‖w‖2 + C

∑
i

ξσ
i (13)

such that (9) holds for all 1 ≤ i ≤ n. For sufficiently large
constant C and sufficiently small σ, the vector w and constant
b that minimize the functional (13) under constraints in (9)
determine the hyperplane that minimizes the number of errors
on the training set and separate the rest of the elements with
maximal margin. This constraint in (9) along with the objective
of minimizing ‖w‖ is solved using Lagrange multipliers. The
key advantage of a linear penalty function is that the variables
ξi vanish from the dual problem, with the constant C appearing
only as an additional constraint on the Lagrange multipliers.

IV. EXPERIMENTAL RESULTS

The proposed monitors and algorithms are evaluated on a
12-bit A/D converter described in [19] (Fig. 7) and fabricated
in a standard single poly six-metal 90-nm CMOS (Fig. 8).
The stand-alone A/D converter consist of three stages, namely,
coarse-, mid-, and fine-stage, occupies an area of 0.75 mm2, op-
erates at 1.2 V supply voltage, and dissipates 55 mW (without
output buffers).

Fig. 9. Chip micrograph of the temperature monitor (zoomed in)

Fig. 10. A/D converter DNL histogram.

Dedicated embedded DLPVMs (12 per stage subdivided
into three specific groups and placed in and around the parti-
tioned multistep A/D converter) and the complete design-for-
test circuit are restricted to less than 5% of the overall area
and consume 8 mW when in active mode. The multistage
circuit calibration algorithm [20] requires about 1.5k logic gates
as calibration overhead, occupies an area of 0.14 mm2, and
consumes 11 mW of power. A temperature monitor (Fig. 9)
is located between coarse A/D converter and fine residue am-
plifiers. The stand-alone temperature monitor occupies an area
of 0.05 mm2, operates within 1.0–1.8 V, and dissipates 11 μW.
In the test silicon, four bits for 16 selection levels are chosen
for the temperature settings, resulting in a temperature range
from 0 ◦C to 160 ◦C in steps of 9 ◦C, which is sufficient
for thermal monitoring of VLSI circuits. If more steps are
required, a selection NT R can be easily extended with a higher
resolution resistive network. For the robustness, the circuit is
completely balanced and matched both in the layout and in
the bias conditions of devices, canceling all disturbances and
nonidealities to the first order.

The overall converter employs around 6500 transistors within
an analog core and consists primarily of noncritical low-power
components, such as low-resolution quantizers, switches, and
open-loop amplifiers. The total acquisition time required at
wafer-level manufacturing test is in 0.5–1 ms range per func-
tional block. This pales in comparison with ∼1 s needed to
perform histogram-based static [21] or ∼1 s for FFT-based
dynamic A/D converter test. Note that the time required to
perform these functional tests depends on the speed of the
converter and available postprocessing power. The algorithms
for the test window generation/update, namely, the EM and
ASVM algorithms, are performed off-line and are implemented
in Matlab. Fig. 10 illustrates A/D converter differential nonlin-
earity (DNL) histogram.

Figs. 11–13 illustrate the histogram estimated from 3780
samples extracted from 108 specific DLPVMs and measured
across 35 prototype devices. The extracted DLPVM and DNL
measurements of each stage of the multistep A/D converter are
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Fig. 11. Gain-based DLPVM histogram.

Fig. 12. Decision-based DLPVM histogram.

Fig. 13. Reference-based DLPVM histogram.

Fig. 14. Estimating mean μ values of gain-, decision-, and reference-based
DLPVMs with respect to the number of iterations of the EM at temperature T .

correlated with the EM algorithm. To make the problem man-
ageable, the process parameter variation model is assumed to
follow a Gaussian distribution. The mean μ and the variance σ
of gain-, decision-, and reference-based DLPVMs are estimated
based on the EM algorithm (Figs. 14 and 15). This observed

Fig. 15. Estimating variance σ values of gain-, decision-, and reference-based
DLPVMs with respect to the number of iterations of the EM at temperature T .

Fig. 16. Fitting a posteriori probability to the SVM output. The support
vectors, marked with larger circles, define the margin of separation between
the classes of multiple runs of DLPVMs (crosses) and DNL measurements
(smaller circles).

Fig. 17. Yield enhancement; DNL cumulative histograms of 100 000 devices
before and after adjusting the tolerance limits.

process-related information allows design recentering, e.g., test
limit setting with the ASVM classifier. As illustrated in Fig. 16,
the high limit value is updated in the corresponding functional
test specs of the stage-under-test with 0.35 least significant bit.
This on-the-fly test limit setting leads to an increased yield, as
illustrated in Fig. 17. The cumulative DNL is obtained across a
projected 100 000 devices showing similar characteristics as a
measured prototype.



2220 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 8, AUGUST 2012

TABLE I
SUMMARY OF THE TEMPERATURE SENSOR PERFORMANCE AND COMPARISION WITH PRIOR ART

For the circuit measurement, a single-frequency sinusoidal
input signal is generated by an arbitrary waveform generator
and applied at the first to a narrow bandpass filter to remove
any harmonic distortion and extraneous noise, and then to the
test board. The signal is connected via 50 Ω coaxial cables to
minimize external interference.

On the test circuit board, the single-ended signal is con-
verted to a balanced differential signal using a transformer.
Potentiometers are used to adjust the reference voltages and
the common-mode voltage. The common-mode voltage of the
test signal going into the A/D converter is set through matching
resistors connected to a voltage reference. The digital output
of the A/D converter is buffered with an output buffer to the
drive large parasitic capacitance of the lines on the board and
probes from the logic analyzer. A clock signal is also provided
to the logic analyzer to synchronize with the A/D converter.
Repetitive single die-level process monitor measurements are
performed to minimize noise errors. Special attention is paid
in the layout to obtain a very low resistance in the gate path to
eliminate systematic errors during the measurements; very wide
source metal connections are used. Since different transistors
are measured sequentially the DC repeatability of the DC gate
voltage source must be larger than the smallest gate-voltage
offset to be measured. The repeatability of the source in the
measurement setup was better than six digits. All chips are
functional in a temperature range between 0 ◦C and 160 ◦C.
The measured behavior of the temperature monitor shows the
typical bandgap curve, which reaches a maximum at 810 mV
close to the target of 800 mV without trimming.

We observe that the improvement of DNL coincident with
the fact that the mismatch increases when decreasing the tem-
perature. Therefore, as the worst case mismatch and tempera-
ture condition, the lower end (0 ◦C) of the used temperature
scale (0 ◦C to 90 ◦C) is observed. The linearity measurements
show bathtub-like features since at the higher temperature end
mobility degradation deteriorates the circuit performance. The
DLPM measurements show that at optimal temperature (30 ◦C),
the standard deviation Stdev(ΔVT sat) decreases by 0.16 mV.
This compares reasonably well with the measured improvement
in IDsat matching of 0.032%. The threshold voltage matching
coefficient AV T , the standard deviation of percent ΔID, and
the current matching coefficient AID improve by 0.3 mVμm,
0.032% (0.036 μA), and 0.06% μm, respectively. The aver-
age error of the temperature monitor at room temperature is
around 0.5 ◦C, with a standard deviation of less than 0.4 ◦C,
which matches the expected error of 0.4 ◦C within a batch.

Nonlinearity is approximately 0.4 ◦C from 0 ◦C to 160 ◦C.
The intrinsic base–emitter voltage nonlinearity in the bandgap
reference is limited by the compensation circuit. The measured
noise level is lower than 0.05 ◦C. A summary of the temperature
monitor performance and comparison with recently published
works is shown in Table I. In all-digital temperature sensors [5],
[25], the two-temperature-point calibration is required in every
sensor; thus, calibration cost is very large in on-chip thermal
sensing applications. A current-output temperature sensor [6]
does not have a linear temperature reading and is sensitive
to process variation, which requires more effort and cost for
after-process calibration. Although the dual-DLL-based tem-
perature sensor [24] only needs one-temperature-point calibra-
tion, it occupies a large chip area with a high level of power
consumption at a microwatt level. The sensors based on the
temperature characteristics of parasitic bipolar transistors [22],
[23] offer high accuracy and small chip area. However, the high
power consumption in [22] and the small temperature range
in [23] make these realizations unsuitable for on-chip thermal
monitoring.

V. CONCLUSION

The feasibility of the proposed method has been verified
by experimental measurements from the silicon prototype fab-
ricated in standard single poly six-metal 90-nm CMOS. The
monitors allow the readout of local (within the core) perfor-
mance parameters as well as the global distribution of these
parameters, significantly increasing the obtained yield. The
monitors are small, stand alone, and easily scalable and can
be fully switched off. The flexibility of the concept allows the
system to be easily extended with a variety of other perfor-
mance monitors. The implemented EM algorithm and ASVM
classifier allow us to guide the verification process with the
information obtained through monitoring process variations.
Fast identification of excessive process parameter and temper-
ature variation effects is facilitated at the cost of at most 5%
area overhead and 8 mW of power consumption when in the
active mode.
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