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The Effect of Local Scattering on the Gain and Beamwidth of a
Collaborative Beampattern for Wireless Sensor Networks

Alon Amar, Member, IEEE

Abstract—Collaborative beamforming is an approach where
sensor nodes in a wireless sensor network, deployed randomly
in an area of interest, transmit a common message by forming a
beampattern towards a destination. Previous statistical analysis
of the averaged power beampattern considered multipath-free
conditions. Herein, we express the averaged power beampattern
when the signal is observed at the destination in the presence
of local scattering. Assuming the spreading angles are uniformly
distributed around the destination direction, we derive closed-
form expressions for the maximum gain and numerically examine
the beamwidth as a function of the number of nodes, the cluster
size, and the scattering parameters, for node positions with a
uniform distribution or a Gaussian distribution.

Index Terms—Collaborative beamforming, array beampattern,
wireless sensor network, local scattering.

1. INTRODUCTION

IN a wireless sensor network (WSN), a large number of
small-sized sensor nodes are deployed within an area of

interest, organized into clusters, and monitor environmental
or physical activities (e.g., temperature, pressure or motion)
according to the sensing task of the WSN [1], [2]. The
collected data has to be transmitted to a remote destination
(e.g., a ground station, an unmanned aerial vehicle or a nearby
cluster). To overcome the difficulty of an individual transmis-
sion by each node, due to its limited communication range
and battery lifetime, a collaborative beamforming technique
was recently proposed by Ochiai et al. [3], Tummala et al. [4]
and Mudumbai et al. [5], where randomly deployed sensors in
a cluster cooperate as a random array, and transmit a common
message by forming a beam towards the destination. This
joint transmission requires the nodes to be time and frequency
synchronized [3], [6]. A similar idea was discussed in the past
by Vespoli et al. [7] for military applications where randomly
deployed elements act as a relay transmitter. However, the
focus in [7] was on system parameters (e.g., signal to noise
ratio) and practical designs, and not on the statistical behavior
of the random array. As is mentioned in [3], random arrays
were also researched in the past in the field of array processing
[8]–[10].

The statistical properties of the averaged power beampattern
for a collaborative beamforming are analyzed by Ochiai et al.
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[3] where the node positions are uniformly distributed over
a disk cluster, and by Ahmed and Vorobyov [11] where a
Gaussian distribution is used instead1. It was shown that the
power received by the destination is proportional to the num-
ber of nodes. Hence, not only that the transmission range and
communication rate are increased as more nodes participate
in the beamforming, but also the transmission power of each
sensor node is reduced.

Whereas the analysis in [3], [11] assumes no reflection or
scattering of the transmitted signal, we consider multipath
propagation. Such propagation may cause angular spread-
ing of the transmitted signal due to local scattering in the
vicinity of the destination [12], [13]. The received signal is
modeled as a superposition of a large number of indepen-
dent, and identically distributed (i.i.d.) rays. Depending on
the distribution of the locations of the scatters, the spatial
distribution of the angles of the incident scattered rays can be
modeled, for example, as a Gaussian distribution, a Laplacian
distribution, or a uniform distribution [12], [13] around the
nominal angle of arrival. It is noteworthy to mention that the
problem of receiving a signal by a passive random array in
a multipath environment was previously discussed by Haber
in his unpublished report [14], where the application was
the deployment of freely drifting sonobuoys. The position of
each array element was modeled as a two-dimensional random
walk, which after a time, approaches a Gaussian distribution.
The mean and variance of the averaged power beampattern
were then derived, and the effect of the drift variance was
numerically examined.

Herein, the goal is to analyze the effect of local scattering
on the maximum gain (i.e., normalized power) and the 3dB
beamwidth of the averaged beampattern achieved by a col-
laborative transmit beamforming. The main contributions of
the work are: The averaged maximum gain is expressed as
a function of: the number of nodes, the averaged pattern of
each sensor node, and the spatial distribution of the spread-
ing angles of the rays; Assuming the spreading angles are
uniformly distributed, and for node positions with a uniform
distribution or a Gaussian distribution: i) We derive closed-
form polynomial expressions for the maximum gain; ii) We
show that the maximum gain and the 3dB beamwidth obtained
for node positions with a Gaussian distribution are larger than
those obtained with a uniform distribution; iii) We provide a
simple formula for the value of the scattering radius, given
a cluster size, for which the maximum gain equals half the
maximum gain achieved with scattering-free conditions.

1The practical case of a truncated Gaussian distribution is also discussed
in [11]. However, the averaged power beampattern is analyzed only for the
standard Gaussian distribution with infinite support.
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2. PROBLEM FORMULATION

Consider 𝑁 sensor nodes randomly deployed in the 𝑥 − 𝑦
plane. The coordinate vector in polar space of the 𝑛th node
is (𝑟𝑛, 𝜓𝑛), 𝑛 = 1, . . . , 𝑁 . Each coordinate vector has an
identical distribution (e.g., uniform [3] or Gaussian [11])
and is independent with all the other coordinate vectors.
The coordinate vector in spherical space of the destination
is (𝐴𝑠, 𝜙𝑠, 𝜃𝑠) where 𝜙𝑠 ∈ [−𝜋, 𝜋] and 𝜃𝑠 ∈ [0, 𝜋]. We
assume the following hold [3]: i) each node is equipped
with a single isotropic antenna; ii) all sensors transmit iden-
tical energies; iii) the nodes are sufficiently separated such
that mutual coupling effects are negligible; iv) the nodes
are perfectly time and frequency synchronized. Define by

a(𝐴, 𝜙, 𝜃)
Δ
= [𝑒𝑗

2𝜋
𝜆 𝑑1(𝐴,𝜙,𝜃), . . . , 𝑒𝑗

2𝜋
𝜆 𝑑𝑁 (𝐴,𝜙,𝜃)]𝑇 the steering

vector of the random array, where 𝜆 is the wavelength of
the radio frequency carrier, and the distance between the 𝑛th
node and an arbitrary position (𝐴, 𝜙, 𝜃) in spherical space is

𝑑𝑛(𝐴, 𝜙, 𝜃)
Δ
= (𝐴2 + 𝑟2𝑛 − 2𝐴𝑟𝑛 sin(𝜃) cos(𝜙 − 𝜓𝑛))1/2. As-

suming the arbitrary position is located at the far-field region
of the array (i.e., 𝐴 ≫ 𝑟𝑛) the distance is approximated as
𝑑𝑛(𝐴,𝜙, 𝜃) ∼= 𝐴−𝑟𝑛 sin(𝜃) cos(𝜙−𝜓𝑛), and thus a(𝐴, 𝜙, 𝜃) ∼=
𝑒𝑗

2𝜋
𝜆 𝐴a(𝜙, 𝜃) where a(𝜙, 𝜃)

Δ
= [𝑎1(𝜙, 𝜃), . . . , 𝑎𝑁 (𝜙, 𝜃)]𝑇 and

𝑎𝑛(𝜙, 𝜃)
Δ
= 𝑒−𝑗

2𝜋
𝜆 𝑟𝑛 sin(𝜃) cos(𝜙−𝜓𝑛), 𝑛 = 1, . . . , 𝑁 . We as-

sume that the array is focused on the desired destination
direction (𝜙𝑠, 𝜃𝑠) by synchronizing the phases of the nodes.

The collaborative transmission is detailed in [16]. For
simplicity assume that at time 𝑘 one of the nodes (e.g., node
1) wishes to communicate with a destination located at the far-
field region at a direction (𝜙𝑠, 𝜃𝑠). All the nodes in the cluster
collaborate to transmit to the destination the packet of node 1
consisting of 𝑄 data symbols s(𝑘) = [𝑠(𝑘; 1), . . . , 𝑠(𝑘;𝑄)]𝑇 .
At first, node 1 broadcasts the packet in the cluster. As a
result, node 𝑛 hears the (noiseless) signal x𝑛(𝑘) = 𝑐𝑛(𝑘)s(𝑘),
𝑛 = 1, . . . , 𝑁 , where 𝑐𝑛(𝑘) = 𝜉(𝑘)𝑒𝑗𝜒𝑛(𝑘) is the complex
channel gain at time 𝑘 between node 1 and node 𝑛 [16,
Eq. (7)], assumed to be modeled as a circularly symmetric
complex Gaussian variable with zero mean and variance 𝜎2𝜉 .
In the next time slot, node 𝑛 transmits the signal x̃𝑛(𝑘+1) =

𝑐∗𝑛(𝑘)x𝑛(𝑘)𝑒
−𝑗 2𝜋

𝜆 𝑟𝑛 sin(𝜃𝑠) cos(𝜙𝑠−𝜓𝑛) [16, Eq. (8)]2. Assuming
a flat fading channel between the cluster and the destination
with a complex gain denoted by 𝑏, and a line of sight and no
scattering, we get that the (noiseless) received signal at time
𝑘 at an arbitrary direction (𝜙, 𝜃) is [16, Eq. (9)]

y(𝜙, 𝜃; 𝑘) = 𝑏

𝑁∑
𝑖=𝑛

x̃𝑛(𝑘 + 1)𝑒𝑗
2𝜋
𝜆 𝑟𝑛 sin(𝜃) cos(𝜙−𝜓𝑛)

= 𝑏𝜉2(𝑘)s(𝑘)a𝐻(𝜙, 𝜃)a(𝜙𝑠, 𝜃𝑠) (1)

For simplicity, we denote by hno,sc(𝜙, 𝜃)
Δ
= a(𝜙, 𝜃) the line-

of-sight (scattering-free) channel between the cluster and an
arbitrary destination located at direction (𝜙, 𝜃). We see that in
case of a line of sight and no reflections or scattering, the re-
ceived power at an arbitrary direction (𝜙, 𝜃) is proportional to

2It is assumed that each node uses cross-correlation techniques to determine
𝑐𝑛(𝑘) [17, comment before Eq. (8)].
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Fig. 1. The geometry of the model.

the power beampattern 𝑃 (𝜙, 𝜃) =
∣∣a𝐻(𝜙𝑠, 𝜃𝑠)hno,sc(𝜙, 𝜃)

∣∣2 =∣∣a𝐻(𝜙𝑠, 𝜃𝑠)a(𝜙, 𝜃)
∣∣2. The statistical analysis of this power

beampattern is presented in [3], [11].
Herein, we assume the destination is subjected to local scat-

tering. The goal is to determine the maximum gain and 3dB
beamwidth of the power beampattern under such scattering
conditions.

3. THE AVERAGED BEAMPATTERN IN THE PRESENCE OF

LOCAL SCATTERING

We assume that the transmitted signal is observed at an
arbitrary far-field destination (𝜙, 𝜃) in the presence of local
scattering (see Figure 1). The received signal is then modeled
as a superposition of 𝐿 i.i.d. rays. The azimuth and elevation
angles of each ray at an arbitrary direction (𝜙, 𝜃) are denoted

by 𝜙 + 𝜙ℓ and 𝜃 + 𝜃ℓ, ℓ = 1, . . . , 𝐿, respectively, where 𝜙ℓ
and 𝜃ℓ are i.i.d. random variables distributed with probability
density functions (pdf’s) 𝑝(𝜙) and 𝑝(𝜃), respectively. Each

ray is characterized by a complex amplitude 𝛼ℓ
Δ
= 𝑔ℓ𝑒

𝑗𝜌ℓ

where the phases {𝜌ℓ}𝐿ℓ=1 are i.i.d. random variables, and each
phase is uniformly distributed over [−𝜋, 𝜋]. The amplitudes

{𝑔ℓ}𝐿ℓ=1 are i.i.d. random variables, independent of the phases
and angles. We also assume that all rays have equal power,
i.e., 𝐸[∣𝛼ℓ∣2] = 1

𝐿 [12]. There are several spatial probability
distributions to describe the locations of the local scatters. A
simple model assumes that the locations of the scatters are
uniformly deployed in a disc around the destination. Another
model assumes their locations are evenly spaced on a circular
ring (known as Lee’s model) or that they have a Gaussian
distribution [13, Eq. (8)-(9)]. Depending on the spatial distri-
bution of the scatters, different angle of arrival distributions are
considered in the literature including: Gaussian, and Laplacian
[13, Eq. (10), (12)].

The channel between the cluster and an arbitrary destination
(𝜙, 𝜃) is then modeled as

hsc(𝜙, 𝜃) =

𝐿∑
ℓ=1

𝛼ℓa(𝜙+ 𝜙ℓ, 𝜃 + 𝜃ℓ) (2)
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Following the model given in (1), we can now express the
received signal as,

y(𝜙, 𝜃; 𝑘) = 𝑏𝜉2(𝑘)s(𝑘)h𝐻sc (𝜙, 𝜃)a(𝜙𝑠, 𝜃𝑠) (3)

We see that the received power at an arbitrary direction (𝜙, 𝜃)

for a certain realization of {𝜙ℓ, 𝜃ℓ, 𝜌ℓ, 𝑔ℓ} and {𝑟𝑛, 𝜓𝑛} is
proportional to,

𝑃𝑠𝑐 (𝜙, 𝜃) =
∣∣a𝐻(𝜙𝑠, 𝜃𝑠)hsc(𝜙, 𝜃)

∣∣2
=

∣∣∣∣∣
𝐿∑
ℓ=1

𝛼ℓ𝐴(𝜙+ 𝜙ℓ, 𝜃 + 𝜃ℓ)

∣∣∣∣∣
2

(4)

where 𝐴(𝜙′, 𝜃′) Δ
= a𝐻(𝜙𝑠, 𝜃𝑠)a(𝜙

′, 𝜃′) represents the single-
path array beampattern. We are interested in expressing the
averaged power beampattern. We start by taking the expecta-
tion with respect to (w.r.t.) the distributions of {𝜌ℓ, 𝑔ℓ} and
{𝑟𝑛, 𝜓𝑛}. Since {𝜌ℓ} are i.i.d. random variables, and thus
𝐸[𝑒𝑗(𝜌ℓ−𝜌ℓ′ )] = 1 only if ℓ = ℓ′, we get that the averaged

power beampattern given 𝜙ℓ and 𝜃ℓ is

𝑃𝑠𝑐,𝑎𝑣 (𝜙, 𝜃) =
𝐿∑
ℓ=1

𝐸
[∣𝛼ℓ∣2]𝐸

[∣∣∣𝐴(𝜙+ 𝜙ℓ, 𝜃 + 𝜃ℓ)
∣∣∣2]

=
1

𝐿

𝐿∑
ℓ=1

𝑃 (𝜙+ 𝜙ℓ, 𝜃 + 𝜃ℓ) (5)

where 𝑃 (𝜙′, 𝜃′) is the single-path power beampattern averaged
over the node coordinates,

𝑃 (𝜙′, 𝜃′) Δ
=𝐸

[
∣𝐴 (𝜙′, 𝜃′)∣2

]

=𝐸

⎡
⎣
∣∣∣∣∣
𝑁∑
𝑛=1

𝑎∗𝑛(𝜙𝑠, 𝜃𝑠)𝑎𝑛(𝜙
′, 𝜃′)

∣∣∣∣∣
2
⎤
⎦

=𝑁 +𝑁(𝑁 − 1) ∣𝛽(𝜙′, 𝜃′)∣2 (6)

where 𝛽(𝜙′, 𝜃′) Δ
= 𝐸 [𝑎∗1(𝜙𝑠, 𝜃𝑠)𝑎1(𝜙

′, 𝜃′)] is the averaged
pattern of each sensor node (observe that in the last passing
we used the knowledge that the coordinate vectors are i.i.d.
random vectors). Note that ∣𝛽(𝜙′, 𝜃′)∣ < 1 and therefore the

maximum value of 𝑃 (𝜙′, 𝜃′) is 𝑁2. Since 𝜙ℓ and 𝜃ℓ are i.i.d.
random variables, the averaged gain beampattern, obtained by
taking the expectation of (5) over the distributions of 𝜙ℓ and
𝜃ℓ and normalizing by 𝑁2, is

𝐺𝑠𝑐,𝑎𝑣 (𝜙, 𝜃) =
1

𝑁
+

(
1− 1

𝑁

)

×
∫ ∞

−∞

∫ ∞

−∞
𝑝(𝜙)𝑝(𝜃)

∣∣∣𝛽(𝜙 + 𝜙, 𝜃 + 𝜃)
∣∣∣2 𝑑𝜙𝑑𝜃

(7)

The received power at a direction (𝜙, 𝜃) is therefore the
result of averaging the averaged pattern of a node w.r.t. the
distribution of the scattering angles around that direction.

4. SCATTERING RAYS WITH A UNIFORM SPREADING

DISTRIBUTION

We analyze the maximum gain and beamwidth of the
averaged beampattern assuming that the pdf of the scattering
angles is uniform. It should be emphasized that, as mentioned
in [13, comment following Eq. (9)] it is difficult to physically
justify spatial distributions of scatters that result in a uniform
angle of arrival distribution. However, this type of a uniform
distribution is widely used in the literature mainly due to
mathematical considerations (i.e., obtaining closed-form ex-
pressions). For simplicity we assume that the rays are only
scattered in the azimuth axis, i.e., 𝑝(𝜙) = 1

2Δ ,−Δ ≤ 𝜙 ≤ Δ,
where Δ ≤ 𝜋 (we refer to Δ as the scattering radius) [18,
Section IV.B]. We consider the case where the destination
direction is 𝜃𝑠 = 𝜋

2 and 𝜙𝑠 = 0 [3] and set 𝜃 = 𝜃𝑠 to
examine the received power in the azimuth axis only. We
consider two distributions of node deployments, i.e., uniform
[3] and Gaussian [11]. Using the result in (7) we get that for
a uniform deployment [3, Eq. (15)],

𝐺(𝑈𝑛𝑖𝑓)
𝑠𝑐,𝑎𝑣

(
𝜙,
𝜋

2

)
=

1

𝑁
+

(
1− 1

𝑁

)
1

2Δ

×
∫ Δ

−Δ

(
2𝛾−1(𝜙+ 𝜙)𝐽1(𝛾(𝜙+ 𝜙))

)2

𝑑𝜙

(8)

where 𝛾(𝜙)
Δ
= 4𝜋�̃� sin

(
𝜙
2

)
, �̃�

Δ
= 𝑅
𝜆 , and 𝑅 is the radius of

the disk cluster. Also, 𝐽1(𝑥)
Δ
=

∑∞
𝑘=0

(−1)𝑘(𝑥
2 )

2𝑘+1

𝑘!Γ(𝑘+2) is the first

order Bessel function of the first kind [15, p. 22] where Γ(𝑛)
is the Gamma function. For a Gaussian deployment [11, Eq.
(6)] we get that3,

𝐺(𝐺𝑎𝑢𝑠𝑠)
𝑠𝑐,𝑎𝑣

(
𝜙,

𝜋

2

)
=

1

𝑁
+

(
1− 1

𝑁

)
1

2Δ

∫ Δ

−Δ

𝑒−𝛾2(𝜙+𝜙)𝜎2/�̃�2

𝑑𝜙

(9)

where 𝜎2
Δ
=
𝜎20
𝜆2 is the normalized variance, and 𝜎20 is the

variance of the Gaussian distribution. The integrand in both
cases is a symmetric function around zero only if 𝜙 = 0.
Therefore, the maximum gain of each averaged beampattern
occurs for 𝜙 = 0.

To illustrate this behavior we plot in Figure 2 the averaged
beampattern with and without local scattering for uniform and
Gaussian deployments. The number of nodes is 𝑁 = 128.
In order to have a fair comparison between the two node
deployments, we need to assume that 𝜎0 equals the standard
deviation of the node positions under a uniform deployment,

that is, 𝜎0 = 𝑅
3 , and thus 𝜎 = �̃�

3 . Then, as indicated in [11,
p. 640] we obtain that 99.73% of all nodes are deployed in
a disk of radius 𝑅. We assume that Δ = 10 [degrees] or
Δ = 20 [degrees], and �̃� = 1 or �̃� = 4. The destination
azimuth is 𝜙𝑠 = 0 [degrees]. To clarify the exhibition, we
show the range of 𝜙 ∈ [−90, 90] [degrees] only. As can be

3Notice that the difference between the parameter 𝛾(𝜙) used here and the
one that is defined in [11, text following Eq. (2)] is the multiplication by the

parameter �̃�. This is the reason for the normalization by �̃� in the integrand
of the integral in (9).
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Fig. 2. The averaged gain beampattern for 𝑁 = 128, �̃� = {1, 4}, and
Δ = {10, 20} [degrees] with and without local scattering, and for uniform
and Gaussian deployments of nodes.

seen, in both cases, as �̃� and Δ are increased, the mainlobe
of the averaged beampattern becomes more flat around the
destination direction, and the maximum gain of the averaged
beampattern is reduced.

A. The Maximum Gain

We analyze the maximum gains of (8) and (9), denoted by

𝐺
(𝑈𝑛𝑖𝑓)
𝑚𝑎𝑥

Δ
= 𝐺

(𝑈𝑛𝑖𝑓)
𝑠𝑐,𝑎𝑣

(
0, 𝜋2

)
and 𝐺(𝐺𝑎𝑢𝑠𝑠)

𝑚𝑎𝑥
Δ
= 𝐺

(𝐺𝑎𝑢𝑠𝑠)
𝑠𝑐,𝑎𝑣

(
0, 𝜋2

)
,

respectively.

1) Uniform deployment: The maximum of the averaged
beampattern in (8) is,

𝐺(𝑈𝑛𝑖𝑓)
𝑚𝑎𝑥 =

1

𝑁
+

(
1− 1

𝑁

)
4

Δ

∫ Δ

0

(
𝛾−1(𝜙)𝐽1(𝛾(𝜙))

)2

𝑑𝜙

=
1

𝑁
+

(
1− 1

𝑁

)
1

2𝜋2�̃�2Δ

×
∫ sin(Δ

2 )

0

1

𝑡2
√

1− 𝑡2 𝐽
2
1 (4𝜋�̃�𝑡)𝑑𝑡 (10)

where in the second passing we substitute 𝛾(⋅) and defined

𝑡
Δ
= sin(𝜙/2). Using Taylor series expansion we obtain

that
(
1− 𝑡2)− 1

2 =
∑∞
𝑛=0 (−1)

𝑛
√
𝜋

Γ(𝑛+1)Γ( 1
2−𝑛)

𝑡2𝑛. We then

express (10) as,

𝐺(𝑈𝑛𝑖𝑓)
𝑚𝑎𝑥 =

1

𝑁
+

(
1− 1

𝑁

)
1

2𝜋2�̃�2Δ

×
∞∑
𝑛=0

(−1)𝑛
√
𝜋

𝑛!Γ(12 − 𝑛)
∫ sin(Δ

2 )

0

𝑡2(𝑛−1)𝐽2
1 (4𝜋�̃�𝑡)𝑑𝑡

(11)

Applying the results in [15, p. 259, Eq. (27) ] and [15, p. 18,
Eq. (1)] leads to

∫ sin(Δ
2 )

0

𝑡2(𝑛−1)𝐽2
1 (4𝜋�̃�𝑡)𝑑𝑡 =

∞∑
𝑘=0

(−1)𝑘 (2𝜋)
2(𝑘+1)

(2𝑘 + 2)!

𝑘! (3 + 2(𝑛− 1) + 2𝑘) ((𝑘 + 1)!)2(𝑘 + 2)!

×�̃�2(𝑘+1)[sin(Δ/2)]2(𝑛+𝑘)+1 (12)

Substituting (12) into (11) yields that the maximum gain can
be expressed as a series of powers of sin

(
Δ
2

)
, that is,

𝐺(𝑈𝑛𝑖𝑓)
𝑚𝑎𝑥 =

1

𝑁
+

(
1− 1

𝑁

)
1

Δ

∞∑
𝑛,𝑘=0

𝑏𝑛,𝑘�̃�
2𝑘 [sin(Δ/2)]

2(𝑛+𝑘)+1

(13)
where the coefficients of the series are,

𝑏𝑛,𝑘
Δ
=

(−1)
𝑛+𝑘

22𝑘+1𝜋2𝑘+
1
2 (2𝑘 + 2)!

Γ(12 − 𝑛)𝑛!𝑘!((𝑘 + 1)!)2(𝑘 + 2)! (3 + 2(𝑛− 1) + 2𝑘)
(14)

We further assume that 𝑁 is large, and that Δ is small enough

such that sin
(
Δ
2

) ∼= Δ
2 . Define by �̃�𝑛,𝑘

Δ
=

(
1
2

)2(𝑛+𝑘)+1
𝑏𝑛,𝑘.

The maximum gain in (13) is then approximately given by,

𝐺(𝑈𝑛𝑖𝑓)
𝑚𝑎𝑥

∼=
∞∑
𝑛=0

∞∑
𝑘=0

�̃�𝑛,𝑘�̃�
2𝑘Δ2(𝑛+𝑘)

= 1 +

∞∑
𝑛=1

[
𝑛∑
𝑘=0

�̃�𝑛−𝑘,𝑘�̃�2𝑘

]
Δ2𝑛 (15)

By numerically verifying the values of the coefficients {�̃�𝑛,𝑘},
it can be shown that ∣�̃�0,𝑛∣ ≫ {∣�̃�𝑛−𝑘,𝑘∣}𝑛−1

𝑘=0 . Thus, we can
further approximate (15) as,

𝐺(𝑈𝑛𝑖𝑓)
𝑚𝑎𝑥

∼= 1 +

∞∑
𝑛=1

(−1)
𝑛
𝜋2𝑛(2𝑛+ 2)!

𝑛!((𝑛+ 1)!)2(𝑛+ 2)! (1 + 2𝑛)
(�̃�Δ)2𝑛

= 1− 𝜋2

3
(�̃�Δ)2 +

𝜋4

12
(�̃�Δ)4 − ⋅ ⋅ ⋅ (16)

As can be seen, the maximum gain asymptotically reduces
w.r.t. even powers of the product of the normalized cluster
radius and the scattering radius.

2) Gaussian deployment: The maximum of the averaged
beampattern in (9) is,

𝐺(𝐺𝑎𝑢𝑠𝑠)
𝑚𝑎𝑥 =

1

𝑁
+

(
1− 1

𝑁

)
1

Δ

∫ Δ

0

𝑒−𝛾
2(𝜙)𝜎2/�̃�2

𝑑𝜙

=
1

𝑁
+

(
1− 1

𝑁

)
1

Δ

×
∞∑
𝑛=0

1

𝑛!
(−1)𝑛24𝑛𝜎2𝑛𝜋2𝑛

∫ Δ

0

sin2𝑛
(
𝜙/2

)
𝑑𝜙

(17)

where we substitute 𝛾(⋅) and express 𝑒−𝛾
2(𝜙)𝜎2/�̃�2

=∑∞
𝑛=0

1
𝑛! (−1)𝑛(4𝜎𝜋 sin(𝜙/2))2𝑛 using the Taylor series ex-

pansion. Let 𝑡
Δ
= 𝜙

2 . Applying the integration by parts
technique yields that
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∫ Δ/2

0

sin2𝑛 (𝑡) 𝑑𝑡 = −Γ(𝑛+ 1/2)√
𝜋𝑛![

cos(Δ/2)

𝑛−1∑
𝑘=0

Γ(𝑘 + 1)Γ(3/2)

Γ(𝑘 + 3/2)
sin2𝑘+1(Δ/2) −Δ/2

]
,

and thus,

𝐺(𝐺𝑎𝑢𝑠𝑠)
𝑚𝑎𝑥 =

1

𝑁
+

(
1− 1

𝑁

)

×[1 +

∞∑
𝑛=1

𝑞𝑛𝜎
2𝑛(1 − 2

Δ
cos (Δ/2)

×
𝑛−1∑
𝑘=0

Γ(𝑘 + 1)Γ(3/2)

Γ(𝑘 + 3/2)
sin2𝑘+1 (Δ/2))] (18)

where the coefficients of the series are defined as,

𝑞𝑛
Δ
=

Γ(𝑛+ 1/2)

(𝑛!)
2 (−1)𝑛24𝑛𝜋2𝑛−

1
2 (19)

Assume that Δ is small. By applying the Leibniz’s
rule for differentiation of an integral we get that

lim
Δ/2→0

2
Δ

∫ Δ/2

0
sin2𝑛 (𝑡) 𝑑𝑡 = sin2𝑛(Δ/2) ∼= Δ2𝑛/22𝑛. There-

fore, we can approximate
∫Δ/2

0 sin2𝑛 (𝑡) 𝑑𝑡 ∼= Δ2𝑛+1

(2𝑛+1)22𝑛+1 .

Substituting this approximation into (17) and assuming that
𝑁 is large, results in,

𝐺(𝐺𝑎𝑢𝑠𝑠)
𝑚𝑎𝑥

∼= 1 +

∞∑
𝑛=1

(−1)𝑛(2𝜋)2𝑛

𝑛!(2𝑛+ 1)
(𝜎Δ)2𝑛 (20)

For 𝜎 = �̃�
3 we get that (20) is

𝑃 (𝐺𝑎𝑢𝑠𝑠)
𝑚𝑎𝑥

∼= 1 +

∞∑
𝑛=1

(−1)𝑛𝜋2𝑛22𝑛

𝑛!(2𝑛+ 1)32𝑛
(�̃�Δ)2𝑛

= 1− 4𝜋2

27
(�̃�Δ)2 +

8𝜋4

405
(�̃�Δ)4 + ⋅ ⋅ ⋅ (21)

Similarly to the result in (16), we see that the maximum gain
in this case also reduces w.r.t. even powers of �̃�Δ.

In Figure 3 we demonstrate the dependency of the maxi-
mum gain versus the scattering radius Δ [degrees] for a uni-

form deployment and a Gaussian deployment (with 𝜎 = �̃�
3 ).

We consider three values of the number of sensors in the array,
i.e. 𝑁 = 16, 128 and 256, and three values of the normalized
cluster radius �̃�, i.e., �̃� = 1, 4 and 16. The scattering radius Δ
varied from 0.01 [degrees] (almost scattering-free conditions)
to 10 [degrees]. For each pair (𝑁, �̃�) we show the maximum
gain obtained by numerically calculating (10) and (17), using
the closed-form analytical expressions in (13) and (18), and
their approximated expressions in (16) and (21). As can be
observed, as �̃� increases the maximum gain reduces. The
maximum gain of a Gaussian deployment is larger than that of
a uniform deployment. Also, for large 𝑁 the dependency of
the maximum gain is weak. The lines associated with �̃� = 16
end at Δ ∼= 3 [degrees] since these lines diverge above this
value due to the use of a finite number of coefficients (we used
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Fig. 3. The maximum gain versus Δ for 𝑁 = {16, 128, 256} and �̃� =

{1, 4, 16} using numerical calculations, closed-form analytical expressions,
and their approximations, for uniform and Gaussian deployments of nodes.

only 10) in calculating (13), (16), (18), and (21). We note that
numerical simulations show that by using more than 10 terms
in these series, the discrepancy between the analytical line and
the approximated line, and the numerical line (which occurs
for large values of �̃� and Δ) appears at higher values of Δ
than the current value of 3 [degrees] (depending on the number
of terms used).

It is of interest to obtain the value of Δ, given �̃�, for
which the maximum gain equals half the maximum gain
assuming scattering-free conditions. This value can be termed
as the 3dB maximum gain point, and is obtained by solving

the equations 𝑃 (𝑈𝑛𝑖𝑓)
𝑚𝑎𝑥 = 0.5 or 𝑃 (𝐺𝑎𝑢𝑠𝑠)

𝑚𝑎𝑥 = 0.5. Using
mathematical software such as MATLAB we obtain that the
solution of (16) is (�̃�Δ)𝑈𝑛𝑖𝑓 ∼= 0.54 while the solution of

(21) is (�̃�Δ)𝐺𝑎𝑢𝑠𝑠 ∼= 0.83 (assuming large but finite number
of coefficients). In other words, for a given normalized cluster
size, �̃�, the value of the scattering radius for which the

maximum gain is reduced to half is Δ
(𝑈𝑛𝑖𝑓)
3𝑑𝐵

∼= 0.54
�̃�

[radians]

for a uniform deployment, and Δ
(𝐺𝑎𝑢𝑠𝑠)
3𝑑𝐵

∼= 0.83
�̃�

[radians]

for a Gaussian deployment. In Figure 4 we plot Δ
(𝑈𝑛𝑖𝑓)
3𝑑𝐵 and

Δ
(𝐺𝑎𝑢𝑠𝑠)
3𝑑𝐵 versus �̃� where we varied �̃� from 1 to 4 with a step

of 0.25. We also plot the values of these 3dB points determined
numerically using the expressions in (10) and (17). As can be
seen the theoretical results agree with the numerical results
for any value of �̃�.

B. The 3dB Mainlobe Beamwidth

We now discuss another important characteristic of the
averaged beampattern which is the 3dB beamwidth. This
beamwidth is defined as the azimuth angle at which the gain
is reduced by 3dB below the gain in the direction of the desti-
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Fig. 4. The value of the scattering radius Δ required to obtain a maximum

gain equals to half, versus �̃� (the normalized cluster radius), obtained by
numerical calculations and closed-form expressions, for uniform and Gaussian
deployments of nodes.

nation, and is mathematically expressed as 𝐺𝑠𝑐,𝑎𝑣(𝜙3𝑑𝐵 , 𝜋2 ) =
1
2max

{
𝐺𝑠𝑐,𝑎𝑣(0,

𝜋
2 )
}
. We numerically determine the 3dB

beamwidth as a function of the scattering radius Δ. In Figure 5
we show the dependency of the 3dB beamwidth as a function
of �̃� for Δ = 0.5, 5 and 10 [degrees], and for both uniform and
Gaussian deployments. We varied �̃� from 1 to 8 with a step of
0.25. We also show the 3dB beamwidth in case of no scattering
which is 𝜙3𝑑𝐵 = 2 arcsin(0.1286/�̃�) [radians] for a uniform

deployment [3, Eq. (23)], and is 𝜙3𝑑𝐵 = 2 arcsin(0.2/�̃�)
[radians] for a Gaussian deployment [11, Eq. (11)]. As can be
observed: i) For a small scattering radius (Δ = 0.5) the 3dB
beamwidth is almost the same as the 3dB beamwidth when
no scattering occurs; ii) For large scattering radius (Δ = 10),
as �̃� decreases, the 3dB beamwidth increases, however as �̃�
increases the 3dB beamwidth is almost constant; iii) The 3dB
beamwidth of a Gaussian deployment approaches that of a
uniform deployment as �̃� increases.

5. CONCLUSIONS

We have examined the maximum gain and beamwidth of
the averaged beampattern of collaborative beamforming in
a wireless sensor network when the signal is received at
the destination in the presence of local scattering. Assuming
a uniform distribution of the spreading incident angles, we
derive closed-form polynomial expressions for the maximum
gain of the beampattern, and numerically demonstrate the
dependency of the 3dB beamwidth on the number of nodes,
the cluster size and the scattering radius for the cases where the
node positions are with a uniform distribution or a Gaussian
distribution.
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Fig. 5. The 3dB beamwidth versus �̃� (the normalized cluster radius) for
Δ = 0.5, 5, 10 [degrees], with and without local scattering, and for uniform
and Gaussian deployments of nodes.
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