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ABSTRACT

Consider estimating the parameters of polynomial phase signals ob-

served by an antenna array given that the array manifold is unknown

(e.g., uncalibrated array). To date, only an approximated maximum

likelihood estimator (AMLE) was suggested, however, it involves a

multidimensional search over the entire coefficient space. Instead,

we propose a two-step estimation approach, termed as SEparate-

EStimate (SEES): First, the signals are separated with a blind source

separation technique by exploiting the constant modulus property;

Then, the coefficients of each polynomial are estimated using a least

squares method from the unwrapped phase of the estimated signal.

This estimator does not involve any search in the coefficient spaces

and its computational complexity increases linearly with respect to

the polynomial order, whereas that of the AMLE increases expo-

nentially. Simulations show that the proposed estimator achieves

the Cramér-Rao lower bound (CRLB) at moderate or high signal to

noise ratio (SNR).

1. INTRODUCTION

Polynomial phase signals (PPSs) are commonly used in synthetic

aperture radar (SAR) imaging and radio communications applica-

tions (such as the 3GPP standard). For example, in SAR surveillance

systems [1] the challenge is to separate the moving targets and then

to estimate the motion parameters of each target (velocity and accel-

eration) which are embedded in the coefficients of each polynomial.

The problem of estimating the coefficients of the polynomial

phases has been researched for signals observed by a single sen-

sor [2–4] and by a sensor array [5–9]. The techniques in [5–8] as-

sume that the array is perfectly calibrated. In practice, it is difficult to

maintain a precisely calibrated array due to pressure, humidity, and

mechanical vibrations. Furthermore, calibration is an expensive pro-

cess. Alternatively, the spatial signature of the array is then assumed

to be completely unknown, and blind estimation techniques are ap-

plied [10]. To date, the paper of Zeira and Friedlander [9] is the only

published work on blind estimation of the polynomial coefficients of

each of the signals impinging on a sensor array.

The exact maximum likelihood estimator (MLE) of the coeffi-

cients of each of the polynomials requires a PQ-dimensional search

in the polynomial coefficients space, where P is the order of each

polynomial and Q is the number of PPSs. Instead, Zeira and Fried-

lander suggested to estimate the coefficients with an AMLE [9],

which reduces the computation of the exact MLE to a single P -

dimensional search in the polynomial coefficients space. The AMLE

is based on the assumption that PPSs tend to be orthogonal to each

other. Then, the AMLE is obtained by decoupling the estimation
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of one PPS from the others. Given the observations, we evaluate the

cost function of the AMLE for each point in the space by performing

a P -dimensional search in the polynomial coefficients space. The

PPSs are estimated as the Q local peaks of the cost function.

Herein, we suggest a two-step estimator termed SEES. First, we

exploit the fact that the waveforms of the signals are constant mod-

ulus (CM), and separate the signals using the zero-forcing algebraic

constant modulus algorithm (ZF-ACMA) [11] which estimates all

signals simultaneously using linear algebraic operations. Then, we

estimate the polynomial coefficients of each signal from the wrapped

phase of the estimated signal. We suggest to first perform phase un-

wrapping [3] and then estimate the polynomial coefficients given the

unwrapped phases using a least squares (LS) method. The last step

can be implemented with other approaches [12]. Due to space lim-

itations, we deferred some of the analysis to [15] where we also: i)

derive the complexity of the proposed SEES technique showing that

it increases linearly with respect to (w.r.t.) the polynomial order and

the number of samples, whereas that of the AMLE increases expo-

nentially; ii) show that the estimates are asymptotically unbiased,

and derive explicit expressions for their asymptotic covariance ma-

trix; iii) obtain closed-form expressions of the estimate variances in

case of two signals with closely spaced directions of arrival (DOAs).

The root mean square error (RMSE) performance of the SEES

estimator is demonstrated in simulations where we compare it with

the AMLE and the CRLB [9]. It is shown that:1) The RMSE of

the SEES estimator achieves the CRLB at moderate or high SNR;

2) The RMSE of the SEES estimator is sensitive to the small sep-

aration between the DOAs, while for large separation, the RMSEs

of the AMLE and the SEES method are similar. In [15] we further

demonstrate that the AMLE and the SEES are not sensitive to the

separation between the initial frequencies or between the frequency

rates of the signals, and show that the processing time of the SEES

algorithm is much smaller than that of the AMLE.

2. PROBLEM FORMULATION

Consider a sensor array composed of M sensors, and Q transmitting

sources. Each source transmits a narrowband PPS. The M ×1 noisy

sampled signal vector at the array output is given by [9]

x(n) =

Q
∑

q=1

αqa(θq)sq(n) + e(n)

= As(n) + e(n) , n = 0, . . . , N − 1 (1)

where N is the number of samples, the M×1 vector x(n) containing

the outputs of the array elements is defined as,

x(n)
∆
= [x1(n), . . . , xM (n)]T (2)
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The M × Q array response matrix A is given by,

A
∆
= [α1a(θ1), · · · , αQa(θQ)] (3)

where αq is the unknown complex amplitude of the qth PPS, and the

M×1 vector a(θq) is the array response to the qth signal transmitted

from DOA, denoted by θq . The Q × 1 vector s(n), containing the

PPSs s1(n), . . . , sQ(n), is defined as,

s(n)
∆
= [s1(n), . . . , sQ(n)]T (4)

Finally, the M × 1 vector e(n) containing the noises is,

e(n)
∆
= [e1(n), . . . , eM (n)]T (5)

We assume that a(θ) (the array manifold) is unknown as occurs,

for example, when the array is uncalibrated [9, 10]. As a result, the

unknown complex amplitude of the qth signal, αq , is absorbed in the

array response of the qth signal, a(θq).

The q-th PPS is given as

sq(n)
∆
= ejφq(n)

(6)

where the instantaneous phase of the signal is,

φq(n)
∆
= u

T (n)bq (7)

and the P × 1 vector bq , containing the polynomial coefficients of

the q-th PPS, and the P × 1 vector u(n) are defined as

bq
∆
= [bq,1, . . . , bq,P ]T (8)

u(n)
∆
= [nTs, . . . , (nTs)

P ]T (9)

where Ts is the sampling time, and P is the known order of the poly-

nomial. The vector e(n) is assumed to be spatially and temporally

white Gaussian complex random vector with zero mean and covari-

ance matrix σ2
nIM , where σ2

n is unknown and IM is the M × M
identity matrix.

The problem discussed is: Given the observations {x(n)}N−1
n=0 ,

estimate the polynomial coefficients {bq}
Q
q=1, assuming that the ar-

ray manifold is unknown.

3. THE PROPOSED SEES METHOD

The proposed SEES method to estimate the polynomial coefficients

of each signal is based on two main steps:

1. Separate the signals using a blind source separation technique.

We consider the ZF-ACMA [11] which exploits the CM prop-

erty of the signals and not their polynomial phase structure.

2. Estimate the polynomial coefficients of the qth signal given

the unwrapped phases of the qth estimated signal.

A similar approach is suggested in [13] for estimating DOAs of CM

signals using a sensor array with perfectly known array response.

Based on these two steps we develop a model which linearly

depends on the polynomial coefficients of the qth signal with the

presence of small additive noises. This model will be used to ob-

tain a LS estimate of the polynomial coefficients. According to [11]

the output of the ZF-ACMA in the presence of asymptotically small

measurement noises or large number of samples is

ŝ(n) = W
H
x(n) (10)

where W is the M × Q zero-forcing beamforming matrix,

W = (AH
A)−1

A
H

(11)

Due to the phase ambiguity of the ZF-ACMA, the phase of each

signal at the output of the ZF-ACMA is obtained up to an unknown

constant phase shift, represented by cq , q = 1, . . . , Q where cq ∈
[−π, π). We collect these phase shifts in a Q × Q diagonal matrix

D
∆
= diag(ejc1 , . . . , ejcQ). The output of the ZF-ACMA is then

ŝ(n) = Ds(n) + ε(n) (12)

where ε(n)
∆
= [ε1(n), . . . , εQ(n)]T is the Q × 1 vector defined as,

ε(n) = (AH
A)−1

A
H
e(n) (13)

Observe that the qth signal at the output of the ZF-ACMA is

ŝq(n) = |ŝq(n)|ejφ̂q(n)
(14)

Following (12) we show in [15] that the magnitude |ŝq(n)| approx-

imately equals to unity assuming small errors, that is, |εq(n)| ≪ 1,

q = 1, . . . , Q. This means that under the assumption of small errors,

each signal at the output of the ZF-ACMA is (approximately) a CM

signal. Consider next the phase φ̂q(n). By assuming that ℜ{εq(n)}
and ℑ{εq(n)} are small, we can use a first order Taylor series to

approximate this phase as

φ̂q(n) ∼= φq(n) + cq + ηq (15)

where

ηq
∆
= cos(φq(n)+cq)ℑ{εq(n)}−sin(φq(n)+cq)ℜ{εq(n)} (16)

The information on the polynomial coefficients is hidden in the phases

{φ̂q(n)}Q,N−1
q=1,n=0. The wrapped phases are simply computed by con-

sidering the arguments of {ŝq(n)}N−1,Q
n=0,q=1. However, to estimate the

polynomial coefficients we are interested in the unwrapped version

of the phase, which is obtained from {ŝq(n)}N−1,Q
n=0,q=1 with an un-

wrapping procedure. There are several techniques to perform phase

unwrapping for PPSs (e.g., [3, 12]). Herein, we use the procedure

presented in [3]. The unwrapped phases of {φ̂q(n)}N−1
n=0 , denoted

by {φ̃q(n)}N−1
n=0 , are given by (see [3, p. 2120] and also [8])

φ̃q(0) = φ̂q(0) mod 2π

φ̃q(1) = ((φ̂q(1) − φ̂q(0)) mod 2π) + φ̃q(0) (17)

φ̃q(n) = δq(n) + 2φ̃q(n − 1) − φ̃q(n − 2) , n = 2, . . . , N − 1

and

δq(n)
∆
= (φ̂q(n) − 2φ̂q(n − 1) + φ̂q(n − 2)) mod 2π (18)

We further assume that the noises are small enough such that they

do not cause any 2π jumps in the unwrapping procedure. Thus, the

unwrapped phase at the end of this step is

φ̃q(n) = φ̂q(n) ∼= cq +

Q
∑

q=1

npbq,p + ηq (19)

Consider the noise term ηq , defined in (16). Since ℜ{ε(n)} and

ℑ{ε(n)} are zero mean Gaussian random vectors, this means that

ηq is also a zero mean Gaussian random variable. This serves as a

motivation for applying the LS method. By neglecting the additive

254



noise part we obtain an approximated linear model for the param-

eters of interest (polynomial coefficients) given the measurements

(unwrapped phase). Define the N × 1 vector

φ̃q
∆
= [φ̃q(0), . . . , φ̃q(N − 1)]T (20)

We then rewrite (19) in a vector form as

φ̃q
∼= cq1N + U

T
bq = Ũ

T
hq (21)

where 1N is a N×1 vector of ones, hq
∆
= [cq,b

T
q ]T is a (P +1)×1

vector, and Ũ is the (P + 1) × N Vandermonde matrix defined as,

Ũ
∆
= [1N U

T ]T (22)

U
∆
= [u(0), · · · ,u(N − 1)] (23)

The unknown parameters ĉq, b̂q are estimated using a LS method as

follows (a similar LS estimation was used in [8] without considering

the estimation of the arbitrary initial phase),

[ĉq, b̂
T
q ] = argmin

hq

∥

∥

∥
φ̃q − Ũ

T
hq

∥

∥

∥

2

= (ŨŨ
T )−1

Ũφ̃q (24)

Note that the first entry of the estimated vector is the estimate of the

nuisance parameter cq . The estimate of the polynomial coefficients

vector is given after few mathematical steps as [15]

b̂q = (UU
T )−1

U

(

IN −
1

κ
1N1

T
N

(

IN − U(UU
T )−1

U

)

)

φ̃q

(25)

where κ
∆
= N−1

T
NU

T (UU
T )−1

U1N . Using the matrix inversion

lemma we obtain that (25) can be written more compactly as,

b̂q = (UPU
T )−1

UPφ̃q (26)

where P
∆
= IN − 1

N
1N1

T
N is the N × N orthogonal projection

matrix. We note that the Vandermonde structure of U can also be

exploited in the above LS solution [14] to save computations.

4. NUMERICAL RESULTS

To demonstrate the performance of the proposed method, we present

the results of simulated experiments. The noise power σ2
n is ad-

justed to give the desired SNR defined as SNR = −10log10σ
2
n

[dB]. In each of the simulation examples we evaluated the RMSE

on the estimated polynomial coefficients. We defined the RMSE

on the estimation of the p-th coefficient bp of the q-th signal as

RMSEq(bp)
∆
=

√

1
Nexp

∑Nexp

n=1 (b̂q,p,n − bq,p)2 where b̂q,p,n is the

estimate of bp of the q-th signal at the n-th trial, and Nexp = 100
is the number of Monte-Carlo (MC) independent trials. For com-

parison, in each simulation we added the theoretical covariances of

the estimates [15], and also compared the results with the associated

CRLB [9, Section 2].

Unless otherwise stated, we use a M = 10 element ULA with

half wavelength spacing. We consider two PPSs of order two (P =
2), that is, chirp signals, sampled with a sampling frequency of fs =
1/Ts = 50 [Hz], and the number of samples is N = 200 [9]. The

continuous time signals are given by s1(t) = ej2πξfst(0.9−0.2t/T ),

s2(t) = ej2πξfst(0.1−0.8t/T ), where ξ = 0.25, and T = N/fs.

We compare the RMSE of the estimated initial frequency (b1)

and the estimated frequency rate (2b2) versus the SNR. We consid-

ered SNR values from -2[dB] to 3[dB] with a step of 1[dB]. The

DOAs of the signals are θ1 = −20 [deg] and θ2 = 5 [deg]. The

RMSE results are presented in Fig. 1. As can be seen, for low SNR

the performance of the AMLE is superior. However, as the SNR

increases, the RMSE of the proposed SEES method improves and

approaches the CRLB. Also, observe that the theoretical variances

are similar to those obtained by the CRLB.
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Fig. 1. RMSEs of the estimated initial frequency and the frequency

rate, and the CRLB, versus the SNR for chirp signals.

We also compare the RMSE of the estimated initial frequency

(b1) and the estimated frequency rate (2b2) versus the separation in

the DOA of the two signals. We set the DOA of the first signal at 0

[deg]. The DOA of the second signal is varied from 2[deg] to 14[deg]

with a step of 2[deg]. The SNR is 5[dB]. The RMSE results are

presented in Fig. 2. Also added are the approximated closed form

expressions for the theoretical RMSEs for two PPSs with closely

spaced DOAs [15]. As can be seen, the proposed SEES estimator

is inferior to the AMLE at low SNR, while both have similar per-

formance at high SNR. The theoretical expressions for the RMSEs

predict well the performance.

Finally, we compare the RMSE of the estimated polynomial co-

efficients for quadratic FM signal versus the SNR. We use a M = 12
element ULA with half wavelength spacing. The continuous time

quadratic FM signals are [7, Eq. (41)] s1(t) = ej(2πξfs(t−5t2/T+7t3/3T2)),

s2(t) = ej(2πξfs(−t+3t2/T−6t3/3T2)), where ξ = 0.4, and T =
N/fs, where N = 256, and fs = 1/Ts = 8192 [Hz]. The DOAs

of the signals are θ1 = −30 [deg] and θ2 = −15 [deg]. We varied

the SNR from -4[dB] to 6[dB] with a step of 2[dB]. We only con-

sider the SEES estimator and the AMLE, since the complexity of the

AMLE is very high in this case. The RMSE results are presented in

Fig. 3 for the first signal only since the results of the second signal

are similar. As can be observed, the SEES estimator has similar per-

formance at high SNR as predicted by the CRLB. Similar results are

presented in [15] for fourth order PPSs.
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Fig. 2. RMSEs of the estimated initial frequency and the frequency

rate, and the CRLB, versus the DOA separation.

5. CONCLUSION

We proposed an approach for estimating polynomial phase signals

observed by a sensor array assuming an unknown array manifold.

First, the signals are separated using a blind source separation method,

and then the coefficients of the polynomial phase of each signal are

estimated using a LS method. The complexity of the algorithm in-

creases linearly with respect to the polynomial order and to the num-

ber of samples. Simulations show that the estimator achieves the

CRLB at moderate or high SNR.
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