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ABSTRACT

Least squares source position estimation techniques from time dif-

ference of arrival measurements are based on choosing a reference

sensor. Selecting different reference sensors may affect the position-

ing accuracy by a considerable amount. We suggest a closed-form

least squares position estimation using all the available distinct time

differences, which does not involve the selection of a reference sen-

sor. The nonlinear terms, associated with the distances between the

sensors and the source, are eliminated with an orthogonal projection

matrix. Simulation results show that the proposed approach outper-

forms previous closed-form least squares solutions.

1. INTRODUCTION

Passive source localization has been under study for many years,

and has found various applications in radar, sonar, wireless com-

munications, underwater acoustics, and sensor networks. One com-

mon technique is based on measuring the time difference of arrival

(TDOA) of the source signal to several spatially distributed receivers.

The source position is determined from the intersection of a set

of hyperbolic equations defined by the TDOA estimates. A straight-

forward approach to solve this nonlinear problem is to use the maxi-

mum likelihood estimator (MLE), which under regularity conditions

is asymptotically unbiased, and approaches the Cramer Rao lower

bound (CRLB). The main difficultly is that the MLE is computa-

tionally intensive since it requires a two or three (depending on the

problem geometry) dimensional search over the position space.

To overcome this difficulty, other approaches were suggested in

the literature to solve these non-linear hyperbolic equations [1–7].

One approach is to linearize the hyperbolic equations using Taylor

series [3, 4] which is an iterative approach that requires an initial

guess. Another approach is to reorganize the nonlinear hyperbolic

equations into a set of linear equations, and then estimate the posi-

tion with a least squares (LS) method [5–7]. The idea is to define the

distance between the reference sensor and the source as an unknown

nuisance parameter. The two-step estimation method in [5] first es-

timates the source position and this nuisance parameter using an un-

constrained LS method. Then, the position is estimated by solving

another LS problem where the constraint on the nuisance parameter

is taken into account. The method in [6] is based on expressing the

source position in terms of the nuisance parameter, and obtains its

solution using LS. On the other hand, the method in [7] first elimi-

nates the nuisance parameter with an orthogonal projection matrix,

and then solves the source position using LS. The last two solutions
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were shown to be mathematically equivalent [7]. All of these solu-

tions are based on selecting a reference sensor. In [7, Section VI] it

was mentioned that choosing different reference sensors affects the

positioning accuracy by a considerable amount.

Assuming a sensor array with M sensors, for each selection of

a reference sensor, we collect M − 1 TDOA measurements. How-

ever, the maximum number of distinct TDOA measurements is (M−
1)M/2. The latter is referred to as the full set. Recently, a technique

to obtain the optimal non-redundant set of M − 1 TDOA measure-

ments with respect to a reference sensor out of the full set was pro-

posed in [8]. The conclusion was that the optimal non-redundant

set should be used instead of the full set to reduce the complexity

load. However, the model in [8] assumes that the observed signal by

each sensor is only time delayed but not attenuated. Since the sen-

sors are spatially distributed, the attenuation of each observed signal

depends on the position of the source (as is usually modeled in free

space propagation). As a result, the conversion from the full set to

the optimal non-redundant set depends on the unknown position as

well.

Herein, a reference-free TDOA (RF-TDOA) based positioning

technique is proposed. By “reference-free” we mean a position-

ing technique which does not involve the selection of a reference

point. The idea is to estimate the position using all the available

TDOAs. This leads to a set of equations which depends on the un-

known source position and a set of nuisance parameters, where each

nuisance parameter is the distance between a sensor position and the

source position. These nuisance parameters are eliminated by a pro-

jection onto the orthogonal complement of the span of the matrix

that contains all the possible TDOAs. The source position is then

estimated with a LS method. Simulations demonstrate that the pro-

posed approach outperforms the method in [7] for any choice of a

reference sensor. It is worth noting that a weighted LS solution was

also obtained in [7]. However, the weighting matrix depends on the

unknown position of the source, and the LS solution is usually used

in such a case as a starting point of the weighted LS approach. This

is the reason for our focus on the LS solution.

2. PROBLEM FORMULATION

2.1. The model

Consider M spatially distributed receivers and a source, where all

are located in a plane (the extension to a three dimensional space

is straightforward). The source radiates an isotropic narrowband

complex envelope at a carrier frequency. Since the radiated wave

is spherical, the waveform impinges on the different receivers with

different delays and attenuations. Assuming a free space propaga-

tion, the low-pass equivalent discrete-time signal observed by the
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mth receiver is therefore expressed as

rm(n) =
κ

ρm

s(n − τm) + em(n) , n = 0, . . . , N − 1 (1)

where N is the number of samples, s(n) is the low-pass equivalent

discrete-time source signal, κ is a constant [9], and τm = ρm/c
is the propagation time of the signal with c the signal propagation

speed, and ρm
∆
= ‖pm − ps‖ the distance between the mth sen-

sor and the source. Note that pm = [xm, ym]T , m = 1, 2, ..., M ,

and ps = [xs, ys]
T denote the coordinates of the mth sensor and

the source, respectively. Also, {em(n)}M,N−1

m=1,n=0
are additive noises

at the output of the receivers, due to thermal noise. We assume

that {em(n)}M,N−1

m=1,n=0
are zero-mean white Gaussian processes with

variance σ2
e , independent of s(n), and that s(n) is also a zero-mean

white Gaussian process with variance σ2
s [8].

2.2. The range-difference measurements

Let τm,k
∆
= τm − τk be the TDOA between the mth and kth signals,

and the range difference associated with it be

dm,k
∆
= cτm,k = ρm − ρk (2)

The estimate of τm,k, denoted by τ̂m,k, is obtained by cross-correlating

two signals, that is [8],

τ̂m,k = argmax
τm,k

{

N−1
∑

n=0

rm(n)rk(n − τm,k)

}

(3)

The range difference estimate is then given by d̂m,k = cτ̂m,k. Note

that d̂m,k = −d̂k,m and therefore there are only M(M − 1)/2 dis-

tinct range measurements (known as the full set of measurements).

Similarly to [8] we define the vector containing all the distinct TDOA

estimates

d̂
∆
= [d̂2,1, . . . , d̂M,1, d̂3,2, . . . , d̂M,2, . . . , d̂M,M−1]

T
(4)

We assume that

d̂m,k = dm,k + ηm,k (5)

where ηm,k are zero mean Gaussian random variables. The dif-

ference between the current modeling and that in [8] is expressed

through the matrix cov(d̂, d̂). In [8, Appendix I] the variance of

d̂m,n and the covariance between d̂i,j and d̂k,ℓ are derived assuming

that the attenuations of the signals observed by all receivers are iden-

tical. By applying the model in (1) to the analysis in [8, Appendix I]

we get1

cov(d̂m,n, d̂m,n) =
3c2

π2Nκ2

ρmρn

SNR

(

2 +
ρmρn

SNR

)

(6)

cov(d̂i,j , d̂k,ℓ) =
3c2

π2Nκ2

ρiρjρkρℓ

SNR2
φi,j,k,ℓ (7)

where φi,j,k,ℓ is defined as [8, Eq. (6)],

φi,j,k,ℓ =







1 , i = k and j 6= ℓ, i 6= k and j = ℓ
−1 , i = ℓ and j 6= k, i 6= ℓ and j = k
0 , j 6= k 6= i 6= ℓ

(8)

1Notice that if the signal is observed by all sensors with identical attenu-
ations we get [8, Eq. (5)-(6)].

and the signal to noise ratio (SNR) is defined as,

SNR
∆
=

σ2
s

σ2
e

(9)

The problem is to determine the position of the source given the

estimates {d̂m,k}
M
m,k=1.

3. THE PROPOSED POSITIONING TECHNIQUE

We start by considering the noise-less case. Note that we can write

the square of ρk as

ρ2

k = (ρm + dk,m)2 = ρ2

m + 2ρmdk,m + d2

k,m (10)

Define the M × 1 vectors

dm
∆
= [d1,m, . . . , 0, . . . , dM,m]T (11)

ρ
∆
= [ρ1, . . . , ρM ]T (12)

where the zero in the vector dm is in the mth entry. We can rewrite

(10) in a vector form as

ρ ⊙ ρ = 1ρ2

m + 2dmρm + dm ⊙ dm (13)

where ⊙ is the hadamard product, and 1 is a M × 1 vector with all

entries equal to unity. Define the M ×M matrix D that contains all

the range differences,

D
∆
= [d1, · · · ,dM ] (14)

Using (14) we can now further write (13) in a matrix form as

(ρ ⊙ ρ)1T = 1(ρ ⊙ ρ)T + 2D ⊙ (1ρ
T ) + D ⊙ D (15)

Multiplying (15) from the right by 1 and dividing by 2M yields

1

2M
(D ⊙ D)1 +

1

M
Dρ =

1

2
S(ρ ⊙ ρ) (16)

where we define the M × M orthogonal projection matrix,

S
∆
= I −

1

M
11

T
(17)

We further simplify (16) by noticing that the mth element of S(ρ ⊙
ρ) can be written as

ρ2

m −
1

M

M
∑

n=1

ρ2

n = ‖pm‖2 −
1

M

M
∑

n=1

‖pn‖
2

+2(
1

M
P1 − pm)T

ps (18)

where we define the 2 × M matrix

P
∆
= [p1, · · · ,pM ] (19)

which contains the positions of all sensors. Using (18) we can now

express S(ρ ⊙ ρ) as

S(ρ ⊙ ρ) = Su − 2SP
T
ps (20)

where we define the M × 1 vector

u
∆
= [‖p1‖

2, . . . , ‖pM‖2]T (21)

158



which includes the squared norms of the positions. Substituting (20)

into (16) yields,

1

2M
(D ⊙ D)1 +

1

M
Dρ =

1

2
Su − SP

T
ps (22)

This result depends linearly on the parameter of interest ps, but also

on the nuisance vector ρ. The idea is to eliminate the nuisance

term Dρ in (22) by pre-multiplying (22) with a matrix G such that

GD = 0, and then (22) becomes a linear equation with respect

(w.r.t.) to the unknown position ps. To obtain this matrix we use the

following proposition.

Claim 1. rank(D) = 2 with probability one.

Proof. Observe that we can write the matrix in (14) as

D = ρ1
T − 1ρ

T = B1B2 (23)

where B1

∆
= [ρ,1], and B2

∆
= [1,−ρ]T . Notice that rank(B1) =

2 and rank(B2) = 2 unless ∀m : ‖pm − ps‖ = α, where α is a

scalar, that is, only if the sensors are located on a circle with a radius

of α, and the source is located exactly in the center of the circle.

Since the source can be located anywhere in the continuous posi-

tion space, this situation occurs with probability zero. We therefore

conclude that rank(D) = 2 with probability 1.

According to Claim 1 we can express the singular value decom-

position (SVD) of D as

D = [U,V]Λ[U,V]T (24)

where U is a M×2 matrix that contains the two eigenvectors associ-

ated with the two non-zero eigenvalues, V is a M × (M −2) matrix

that contains the M − 2 eigenvectors associated with the M − 2
zero eigenvalues, and Λ is a M ×M diagonal matrix where the first

two elements on the diagonal are the two non-zero eigenvalues, and

the other elements are zero. We therefore conclude that G = VT .

Pre-multiplying (22) by VT results in

V
T
SP

T
ps = z (25)

where the (M − 2) × 1 vector z is defined as

z
∆
=

1

2
V

T

(

Su −
1

M
(D ⊙ D)1

)

(26)

The result in (25) is a linear model w.r.t. the vector of interest ps.

In case noise is present, ps can be estimated with a LS method. The

estimated position is then given as

p̂s = argmin
ps

{‖VT
SP

T
ps − z‖2} = Qz (27)

where we define the 2 × (M − 2) matrix Q as

Q
∆
=

(

PSVV
T
SP

T
)

−1

PSV (28)

This concludes the proposed positioning technique.

4. THE CRAMÉR-RAO LOWER BOUND

The CRLB is a lower bound on any unbiased estimator of ps, that is,

cov (p̂s) ≥ J−1(ps), where J(ps) is the 2 × 2 Fisher information

matrix (FIM). The FIM of the position vector is expressed in [8].

However, due to the use of the attenuation in modeling the received

signal, the result expressed in [8, Eq. (24)] is slightly modified, and

is given as

J(ps) = Hcov(d̂, d̂)−1
H

T
(29)

where

H
∆
= [h2,1, . . . ,hM,1,h3,2, . . . ,hM,M−1]

T
(30)

hm,n
∆
=

1

ρm

(ps − pm) −
1

ρn

(ps − pn) (31)

and the entries of cov(d̂, d̂) are given in (6)-(7).

5. NUMERICAL RESULTS

We demonstrate the empirical position root mean square error (PRMSE)

of the proposed RF-TDOA algorithm, and compare it with the closed-

form LS solution suggested in [7]. We define the PRMSE as PRMSE
∆
=

√

1

Nexp

∑Nexp

i=1
‖ps − p̂s,i‖2, where p̂s,i is the estimated source

position at the ith Monte-Carlo (MC) trial, and Nexp = 1000. As a

benchmark we also compute the theoretical PRMSE obtained from

using the CRLB in (29).

In the first simulation, we examined the PRMSEs versus SNR.

We consider six sensors (M = 6), where the position of the mth

sensor is pm = 1000 · [cos
(

2πm
M

)

, sin
(

2πm
M

)

]T [Meter], m =
1, . . . , 6. We consider two source positions: i) Far-field region - the

source position is ps = [7000, 3000]T [Meter]; ii) Near-field region

- the source position is ps = [2000, 3000]T [Meter]. We varied

the SNR from 0 [dB] to 20 [dB] with a step of 2 [dB]. In Figure 1

we show the PRMSE of the proposed RF-TDOA method, and the

PRMSE of the method in [7] (for different reference selections) ver-

sus κ2

c2
SNR. As can be seen, the RF-TDOA method outperforms

the method in [7] for any selection of the reference sensor. For a

source in the far-field region, the RF-TDOA method also achieves

the CRLB.
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Fig. 1. PRMSEs of the proposed method, the method in [7] (for

different selections of the reference sensor), and using the CRLB,

versus κ2

c2
SNR given a sensor array with a circular configuration.

In the second simulation, we examined the PRMSEs for ran-

dom sensor configurations assuming the same source coordinates as
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detailed in the first simulation. We performed 50 random configu-

rations. In each configuration the coordinates of each sensor were

randomly and independently deployed according to a uniform dis-

tribution, i.e., xm ∈ Uniform [−1000, 1000] [Meter] and ym ∈
Uniform [−1000, 1000] [Meter]. We then averaged the PRMSEs

over the 50 random configurations. In Figure 2 we show the PRMSE

of the proposed RF-TDOA method, and the PRMSE of the method

in [7] (for different reference selections) versus κ2

c2
SNR. Again, the

RF-TDOA method outperforms the method in [7] for any reference

selection.
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Fig. 2. PRMSEs of the proposed method, the method in [7] (for

different selections of the reference sensor), and using the CRLB,

versus κ2

c2
SNR given a sensor array with a random configuration.

Finally, in the third simulation, the position of the mth sensor is

as detailed in the first simulation. We examined the PRMSEs versus

the source position. We changed the position of the source as ps =
7000 · [cos(φ), sin(φ)]T [Meter] where φ is varied from 2 [Deg] to

338 [Deg] with a step of 12 [Deg]. We set κ2

c2
SNR = 10[dB]. The

PRMSEs results of the RF-TDOA method and the method in [7]

are shown in Figure 3. The RF-TDOA method has a better PRMSE

performance than the method in [7] for any selection of the reference

sensor and any position of the source.

6. CONCLUSION

The accuracy of source positioning techniques given TDOA mea-

surements depends on the choice of the reference sensor. Herein,

we suggested a closed-form LS solution to the problem which does

not involve the selection of a reference point. Simulations demon-

strated that the PRMSE of the proposed estimator is better than that

of the previous closed-form LS solutions. Ongoing research is fo-

cused on: i) developing a weighted LS solution; ii) analyzing the

asymptotic bias and covariance matrix; iii) evaluating the computa-

tional complexity of the method, and iv) comparing the method with

the two-step positioning approach [5].
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Fig. 3. PRMSEs of the proposed method, the method in [7] (for

different selections of the reference sensor), and using the CRLB,

versus the angle of the source position given a sensor array with a

circular configuration.
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