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ABSTRACT

In the distributed linear source coding problem a set of dis-
tributed sensors observe subsets of a data vector, and provide
the fusion center with linearly encoded data. The goal is to
determine the encoding matrix of each sensor such that the
fusion center reconstructs the entire data vector with mini-
mum mean square error (MSE). The recently proposed lo-
cal Karhunen Loeve transform (KLT) approach performs this
task by optimally determining the encoding matrix of each
sensor assuming the other matrices are fixed. This approach is
implemented iteratively until convergence is reached. Herein,
we propose a greedy-based non-iterative algorithm. In each
step, one of the encoding matrices is updated by appending
an additional row. The algorithm selects in a greedy fashion
one sensor that provides the largest improvement in MSE, and
terminates when all the encoding matrices reach their prede-
fined encoded data size. The algorithm can be implemented
recursively, and it reduces the complexity from cubic depen-
dency on the data size, using the iterative method, to quadratic
dependency. This makes it a prime candidate for on-line and
real-time implementations of the distributed KLT. Simulation
results show that for many covariance matrix types, the MSE
performance of the suggested algorithm is equivalent to the
iterative approach.

Index Terms— Source coding, distributed Karhunen Loéve
transform, principal component analysis.

1. INTRODUCTION

Wireless sensor networks attract much attention due to their

wide range of applications including military and civilian surveil-

lance, environmental monitoring, and source localization [1].

A key problem is the design of the compression at each
sensor such that the fusion center will produce a reconstruc-
tion of the observed data vector that will be optimal under
certain criterion, such as the MSE. This should be distin-
guished from the estimation scenario which is a different,
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though related in a sense, where the goal of the fusion cen-
ter is to accurately estimate a parameter vector of interest
from the compressed sensor observations [2, 3]. Different
approaches towards distributed compression have been pur-
sued. For example, in the information-theoretic literature,
distributed compression has received considerable attention
following the landmark works of Slepian and Wolf [4], and
Wyner and Ziv [5]. Herein, however, we consider a different
abstraction of compression. Specifically, we view compres-
sion as dimensionality reduction by linear projections. In the
centralized (non-distributed) setting, this is a classical prob-
lem often referred to as the KLT.

Recently, the classical KLT was extended to the distributed
case [0, 7, 8]: Suppose there are several spatially distributed
sensors, each observes only a disjoint part of the entire data
vector. The sensors cannot communicate with each other.
Each sensor provides to the fusion center encoded data, which
is the result of linearly transforming its input data by an en-
coding matrix.

The problem is how to determine the encoding matrices
in the distributed setup. The recently proposed local KLT ap-
proach is performed as follows [6]: consider one of the sen-
sors, and assume that the encoding matrices of all the other
sensors are fixed and known to that sensor. This sensor then
determines its optimal encoding matrix in such a way as to
minimize the MSE in reconstructing the entire data vector at
the fusion center based on the encoded data from all sensors.
This approach is performed with an iterative algorithm, where
in each iteration step, only one of the sensors re-determines its
new encoding matrix. The algorithm terminates when the dif-
ference between the MSEs in two subsequent iteration steps is
smaller than a predefined tolerance. The algorithm converges
at least to a local minimum of the MSE [6].

Herein, we propose a greedy-based non-iterative algorithm.
In each step, one of the encoding matrices is updated by ap-
pending an additional row; in a greedy fashion, the algorithm
selects one sensor that provides the largest decrease in the
MSE. This algorithm terminates when all the encoding ma-
trices reach their predefined row dimensions, and thus, re-
quires a fixed number of steps, known ahead of time. Sim-
ulation results suggest that the MSE performance of the pro-
posed new algorithm is equivalent to the iterative local KLT.
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The proposed algorithm can be implemented recursively, and
compared to the iterative approach, the algorithm reduces the
computation load from cubic dependency on the data size,
using the iterative method, to quadratic dependency. Due to
space limitations, details are deferred to [9]. In many of the
emerging applications, it may be important to compute (and
recompute) optimal dimensionality reduction “on the fly”, based
on sequentially updated estimates of second-order statistics.
In these cases, the computational complexity of determining
optimal transforms can become an important issue, and thus,
the proposed new algorithm may become an important tool.

2. PROBLEM FORMULATION

For simplicity we consider the case of two sensors. The exten-
sion to a larger number of sensors is straightforward. Assume
that each sensor samples a disjoint part of a N x 1 Gaussian
- .’L‘N]T,
which has zero mean and covariance ¥, £ E [xxT]. The
first sensor observes x; = [x1, 72, . .., 2|7, and the second
sensor observes X = [Tar41,.--,2N]T.

Each sensor individually sends to the fusion centera k; x 1
encoded data vector, denoted by y; = C;x;, j = 1,2, where
k; < M; is a fixed integer, My = M, My = N — M, and
C; isak; x M; encoding matrix (see Figure 1). The goal of
the fusion center is to obtain a reconstruction of x, denoted
by %, such that the MSE, denoted by D, 2 El|lx — x|%], is
minimized. The problem is: How to determine the encoding
matrices C; such that the MSE will be minimized?

real-valued random vector, denoted by x 2 [x1,..
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Fig. 1. The distributed KLT setup for the case of two sensors.

3. THE ITERATIVE LOCAL KLT ALGORITHM

We briefly describe the iterative local KLT algorithm [6, Al-
gorithm 1] which was proposed as a suboptimal solution to
the problem. Let X(n) denote the estimate of x at the n-th
iteration step, and D, (n) = E[||%(n) — x||?] the MSE. Con-
sider that at the (n + 1)-th iteration step sensor 2 has fixed
matrix Ca(n). Given Cy(n), the goal is to determine the op-
timal encoding matrix of sensor 1 at the (n + 1)-th iteration
step, denoted by C; (n+1), such that D, (n+1) is minimized.
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Define the (N — M) x (M + k2 ) matrix A, and the N x N
matrix A,

A = (], =ZnCln))
3, $12C7 (n) B (1)
Co(n)=1; C2(n)E2xCy (n)
A = GA;M)(Z) - £.CT(n)

(C2(n)B22CY (n)) ' Ca(n)=1,)G(A; M)"
Rdiag(\1, Ao, « ., An)RT

1>

@)

where G(A; M) 2 (T ([AT],)7 )", and [AT]y is

the sub matrix of A” consisting the first m rows of A. Also,

211 = E[xlx{], 222 = E[ngg], and 212 = E[xlsz],

AL > A > Ay = - - - = Ay = 0 are the eigenvectors

of A, and R is the orthonormal eigenvectors matrix of A.
The optimal encoding matrix Cy(n + 1) is [6]

Ci(n+1) = [([AT]M)TG(A;M)] 3)

k1

LetC(n+1) = Diag(Cy(n+ 1), Ca(n)). The estimate of x
and its MSE at the (n + 1)-th iteration step are

%(n+1) = X.(Cn+1)T 4)
(C(n+1)2.(C(n+1))")'y(n+1)
D.(n+1) = tr(2, — X, (Cn+1)T

(C(n+ 1), (C(n+1)") !
¥, C(n+1)) %)
where y(n + 1) £ C(n + 1)x. In the next iteration step the
optimal matrix Cs(n+2) is determined given C; (n+1), and
so on. The iterative algorithm terminates when | D, (n + 1) —
D, (n)| < e, where € is a predefined tolerance.

4. THE GREEDY-BASED ALGORITHM

The principal notion of the proposed algorithm is that at each
step, we determine a single sensor that, by adding another
dimension to its compressed version, attains the largest re-
duction in the MSE in reconstructing the entire data vector.
Only that sensor’s compression matrix is updated in this step.
In this sense it is a greedy-based algorithm. The number of
steps required for such a procedure is k1 + ko.
We start by defining the following:

o d; 2 [do,dy,....di)T, i =1,... k + ko is the i x
1 decision vector of the fusion center at the i-th step,
where

g 2 1, ifsensor 1 is selected at the i-th step
71 2, ifsensor?2 is selected at the i-th step

(6)



e p, and g; are the total numbers of 1°s and 2’s, respec-
tively, in d;, where p; + ¢; = 1.

o C") and C{") are the p; x M, and ¢; x (N — M)
encoding matrices at the i-th step of sensor 1 and sensor
2, respectively.

e u,, n=1,... , q; are the n-th
row and m-th row of C{*) and C{%, respectively.

,pi-and v, m=1,...

e %) is the estimate of x at the i-th step, and Dg) E
E[||%®% — x||?] is its MSE.

e W, isthe N x ¢ matrix where its m-th column vector,
W, 18

A
wm:{

A . . .
e y; = Wlx s the i x 1 vector that consists of the pre-
vious outputs of the sensors.

ifd, =1
if dyy = 2

[ug, 0%,%[] !
0% v,

0

Consider the (i + 1)-th step. The fusion center needs to
decide between two alternatives:

T

1. Letting sensor 1 add a new row vector, denoted by u,, .

T
such that Cy’i“) = [ (Cgpl))T up, ., } .

T

2. Letting sensor 2 add a new row vector, denoted by v,

(a:41) !
such that Cy"/ = [ (Cé‘“))T Vaii } .

The decision criterion is as follows: Assume that sensor 1 (or
sensor 2) is selected. Determine the optimal vector u,,, ., (or
Vgia)s given y; = WI'x, such that the MSE in reconstruct-
ing x is minimized. Let €;11,1 (or €;41,2) denote the MSE in
reconstructing x at the (i + 1)-th step assuming that sensor 1
(or sensor 2) is selected. Given €;41,1 and €412, the decision
of the fusion center at the (i + 1)-th step is based on selecting
the sensor which provides a smaller MSE, that is,

1

The MSE in reconstructing x at the (i + 1)-th step is then

pl+1) _ €it+1,1
z €it1,2

sy Eir1,1 S €ig1,2 ®)
) €i41,1 > €i41,2

ifdi =1
Lifdip =2 ©)

This binary decision process, performed by the fusion cen-
ter, continues until p; = ki or ¢; = k. Assume that this
occurs when ¢; = ko while p; < ky. The fusion center then
performs a sequence of k1 — p; steps where only sensor 1 fur-
ther adds a new encoding vector at each step, based on the
previous outputs of the two sensors.

The determination of the vector u,,, , is described in the
following result which is a modification of the proof in [6,
Theorem 2] (v, , is obtained similarly with minor changes).
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Result 4.1 Define the (N — M) x M matrix A9, and the
N x N matrix 3; as

Al)  — (E{Q 222(CgZi))T)
>, 212(CgQi))T 10)
cixsl, Oy sy (cy)T

2 = GAYW: M) (2, - [Z],, W,

(WIS, W) "W ([3],,)7) G(A); a)T
Qidiag(Ni1, Ni2s - \in)QF (11)

where /\1‘71 > - )\,,M > )\i,M+1 =... = )\i,N = 0 are the
(non increasingly ordered) eigenvectors of 3;, and Q; is the
(orthonormal) eigenvectors of 33;.

The optimal vector ug, | which leads to the minimization
of the MSE in reconstructing X is

Ug, , = [[Q?} M G(A(qi); M):| 1 (12)

The MSE in reconstructing x at the (i + 1)-th step is

giv1,1 = tr (Bp — BF)  (Fi 2,F] ) 7R 5,)
(13)
where F; 44 = Diag(Cgp”l), Céqi)) is the (i+1) x N matrix
that consists the encoding matrices.

5. NUMERICAL EXAMPLES

We compare the MSE of the proposed algorithm with the
MSE:s of the joint KLT, marginal KLT, and the iterative local
KLT. We consider the example in [6, p.5186]. Suppose X, is
a symmetric Toeplitz matrix with first row (1, p,..., pVN 1)
x1 and X5 contain the odd-indexed and the even-indexed com-
ponents of x, respectively. Also, N = 40 and M = 20, and
p = 0.7. For the iterative local KLT we used a tolerance of
e = 0.01.

We calculated the MSE of each method as a function of
the required number of approximations kq, with k; = 10
fixed. We varied k; from 2 to 10 with a step of 1. The case
of k1 = 10 was considered in [6, Example 6]. The results are
plotted in Figure 2. The number in the parenthesis below the
line associated with the results of the iterative local KLT is the
number of iteration steps that were required for this method
to reach the predefined tolerance. As can be seen the MSE of
the proposed algorithm coincide with the MSE of the iterative
local KLT for almost all values of k.

Consider the case when k1 = 10 and k2 = 15. In Fig-
ure 3 we plotted the MSE of the greedy-based approach as a
function of its step index, i. Also, plotted are the MSEs of the
joint KLT, marginal KLT, and iterative local KLT. As can be
seen the MSE of the greed-based approach decreases until it
achieves the MSE of the iterative local KLT approach.
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Remark:
(-)is the number of iterations perfomed by the iterative local KLT, with ¢=0.01

k. ) size of the encoded data provided by sensor 1

Fig. 2. MSE comparison of the joint KLT, marginal KLT,
iterative local KLT, and the greedy-based approach versus the
size of the encoded data of the first sensor.

6. CONCLUSIONS

In the distributed KLT problem several sensors observe dis-
joint parts of the entire data, and then provide linearly en-
coded data to the fusion center. It is impossible to apply a
centralized KLT to the entire data vector. The local KLT is
an iterative method that depends on the predefined tolerance.
Instead, we propose a non iterative greedy-based approach
which is based on successive steps. In each step the fusion
center selects the sensor that by letting it increases its en-
coding matrix with a new, optimally determined, encoding
vector, the MSE in reconstructing the entire data vector will
be the smallest. The proposed approach reduces the com-
plexity compared to the iterative approach, and can also be
implemented recursively. We thus expect the proposed al-
gorithm to be important in “on-line” implementations of the
distributed KLT. Simulations demonstrate that the MSE of the
proposed algorithm achieves the MSE of the iterative local
KLT method.
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