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To summarize, the performances of LS and SR-LS differ in general.
The simulations and discussion here suggest that the worst-case per-
formance ratio

�
� can be larger if the ranges ��� � � � � �� span a large

range. While we believe that the examples and discussion here give
substantial insight, we must state the complete characterization of bad
geometries for SR-LS as an open problem.

VI. CONCLUSION

Compared to classical LS, SR-LS [1] is a computationally very at-
tractive approach to the source localization problem, since it can find
the global minimum of the cost function without resorting to heuristic
divide-and-conquer methods or heuristic techniques for solving non-
convex optimization problems. We have computed and compared the
asymptotic accuracies of LS and SR-LS. Our main observations are
i) there exist geometries, where LS and SR-LS have identical perfor-
mances and ii) there are geometries, for which the difference in per-
formance between LS and SR-LS is unbounded. We also exemplified
the asymptotic performance difference numerically for random geome-
tries. Taken together, SR-LS performs well relative to LS for most ge-
ometries, but not for all. If SR-LS is used in practice, then care should
be taken to avoid the geometries that the method has difficulties with.
If the position of � is approximately known a priori, then the achiev-
able accuracy can be estimated by using (14) and (19), before choosing
what localization algorithm to use.

The numerical results presented in this paper are reproducible. To ob-
tain the relevant MATLAB programs go to www.commsys.isy.liu.se/
~egl/rr . Included therein is also Monte Carlo simulation code for nu-
merically verifying the validity of the asymptotic accuracy formulas
that we derived.
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Efficient Estimation of a Narrow-Band Polynomial Phase
Signal Impinging on a Sensor Array

Alon Amar

Abstract—The parameters of interest of a polynomial phase signal ob-
served by a sensor array include the direction of arrival and the polynomial
coefficients. The direct maximum likelihood estimation of these parameters
requires a nonlinear multidimensional search. In this paper, we present a
two-step estimation approach. The estimation requires only a one-dimen-
sional search in the direction of arrival space and involves a simple least
squares solution for the polynomial coefficients. The efficiency of the esti-
mates is corroborated by Monte Carlo simulations.

Index Terms—Extended invariance property, maximum likelihood esti-
mation, polynomial phase signal.

I. INTRODUCTION

Polynomial phase signals (PPSs) attract attention in radar, sonar,
and communications systems. Previous research has considered PPSs
observed with a single sensor [1]–[5] and also with a sensor array
[6]–[10]. We focus on the latter case here. The parameters of interest
are the direction of arrival (DOA) and the polynomial coefficients of
the signal’s phase.

The maximum likelihood estimator (MLE) requires a large amount
of computation since it involves the maximization of a multivariable
cost function and is therefore not practically useful. For example, the
MLE in [6] extracts the parameters of a chirp signal (PPS of order two)
with a three-dimensional search in the DOA, frequency, and frequency-
rate spaces.

The goal of this paper is to suggest an efficient parameter estimation
of a single narrow-band PPS impinging on an array, based on the
extended invariance property (EXIP) [11]. It is shown that the DOA
is estimated by a one-dimensional search and that the polynomial
coefficients are obtained by a simple least squares (LS) solution. Sim-
ulation results corroborate that the estimates asymptotically converge
to the Cramér–Rao lower bound (CRLB) at high signal-to-noise ratio
(SNR).

II. PROBLEM FORMULATION

Consider a uniform linear array (ULA) composed of � sen-
sors. Assume that the transmitted signal can be modeled as
���������

�
� ���

�������, where � is the unknown amplitude,
������� � 	�� � ������, where 	� is the carrier frequency, and
������

�
� �

�
���� with ����

�
� 	
� �� � � � � �� �

�
, 
 is the known

polynomial order, and �
�
� 	��� ��� � � � � �� �

� is the vector of
polynomial coefficients. The noiseless signal observed at the �th
element of the array over the time interval 
� � � � 
� � 


is ������ � ���
�
����

������ ���, � � 
� � � � �� , where
�� � ������� � 
� �
����, � is the signal’s DOA, � is the
propagation speed of the signal, and � is the interelement spacing.
According to the mean value theorem of Lagrange, we can write
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���������� � ������������������������, where � � �� � ����
[8, p. 342]. The noiseless vector of the received signals at the
array output can then be written as ����� � ����� ���������	���,
where �����

�
� ��
����� � � � � �
� ���	� , ����� ����

�
� �
�

�
��

�
� ��� ������ ��� �	�� � � � � ��� ������ ��� �	�	� , and 
����
�
�

�
����������������� represents the deviation of the signal fre-
quency around the carrier frequency. Let � denote the bandwidth
of the signal. We consider the case of a narrow-band signal, that is,
��

�


���� � ������ � 
. In this case, ����� ���� �� ����,

where ���� � �
�
�
���
� � � � � ���� 
�������� ��	 		� . Let

���� � ��������� � be the array outputs after down-conversion
to baseband. We then sample ���� with a sampling interval denoted
by �. The vector containing the noisy received signals is [8]–[10]

���� � ��������	��� � ����� � � ��� � � � � �� �� � 
 (1)

where � � ����� is the number of samples, �� � ������,
����	���

�
� 	��� ��
��, and ���� is the ��1 noise vector

assumed to be a spatially and temporally white Gaussian complex
random vector with zero mean and covariance matrix �
�� , where
�� is the � �� identity matrix.

The problem discussed herein is as follows. Given the observations
	����

 ����


�
 , estimate the parameter vector ���
�
� ��� � �� 	� �
	� ,

where � and � are the parameters of interest while 	 and �
 are nui-
sance parameters.

III. MAXIMUM LIKELIHOOD ESTIMATOR

The maximum likelihood (ML) technique directly estimates ��� from
the given observations as follows. The negative log-likelihood function
(LLF) is

������ � �� ���
�



�



 ����


�


����� 	������� ��
��



(2)

Differentiating (2) with respect to �
 and equating the result to zero
yields that the MLE of �
 is ��
 � �
���� 
 ����


�
 ����� �
�	�������

�� ��
���
. Inserting ��
 into (2) yields that 	�	� ��� ��

maximize

���	� ���� � �	� ���� ������

�

 ����


�


�
�� � �
��

���� � 	
�� (3)

Define by �
�
� �
��� 
 ����


�
 �
����������

�� �� �
��
. The

estimates of �� and 	 are then ��� � ���	�
 and �	 � 
�
, where
����
� � ��� ��� is the phase of 
. Finally, substituting ��� and �	 into
(3) yields

	���
����� ��

� �����

�� � �	


 ����


�


�
���������

�� � �
��




� (4)

Given the above estimates, we define the vector of the (direct) ML es-
timated parameters as ����

�
� ���� � ��� �	� ��
	

�
. The result in (4) is the

narrow-band version of the result in [6, (53)]. This estimation requires
a large amount of computation since it involves the maximization of a
multivariable cost function.

We estimate the complexity of the MLE based on the number of mul-
tiplication operations. Let �	 and �� be the number of grid points in

the spaces of � and �, respectively. The complexity of the cost function
in (4) is �	�

�
� ��� � � � 1�. Similarly, the complexities of com-

puting ��� and �	 are ��� �� �
�, and that of ��
 is � (2� ���1).
The overall complexity is � ���	�

�
� � ���� � � � 
� � � 	 ��

�	�
�
� ��� � � � 
�, which increases exponentially with the order

of the polynomial.

IV. CRAMÉR–RAO LOWER BOUND

We derive explicit expressions for the CRLB on the accuracy of es-
timating ���. The Fisher information matrix (FIM) on the estimation of
��� is given by �

�
� �	�
���������������� 
. Using the closed-form ex-

pressions as given in [13, (8.33)], it can be shown that

� �


�
�

��
� 
� �

�
��������� 	� 	�


� �
�

����������
� 
�� �

�
���
��� � �

	
�
� � 
�

�
�

	
�
� � � ��

�

(5)

where �� is an ��1 vectors with all elements equal to one, 	� is an
��1 vector with all elements equal to zero, and where we defined the
�� � 1� � � Vandermonde matrix

�
�
� �
������ � � � �
 ���� �� � 
���	 (6)

and also

��
�
�
���
�

��� �

�
�

���
�




�
 (7)

��
�
�




�
�� � 
�� �


�
�




�
�� � 
���� � 
�� (8)

Using the matrix inversion formula [13, (A.68)], the CRLB matrix, de-
noted by ��������

�
� �

��, is

�������� �

�

�

� � �

�

� 	� 	�

� �

�

�
� �


�
�

�� � 
�� �	�
� �

	
�
� � �


�
�

	
�
� � � �

��

(9)

where

�
�
����� ��� �

�
�
��
�

�
�
���

�
� ����� (10)

�
�
�

��
��
� ������

�
�
�� (11)

�
�
�
� �
�

��

�
�
��

�
�

�
�� (12)

and �
� �

� ���� �
��
�. It is easy to verify that for � � 
� �, we

get ����
�
�

�
�� � � , and that ��

�� � ��, where �� is the first
column of ����. For larger values of � , using numerical software
tools, it can be verified that these results still hold. Therefore, we
obtain that � � 
 � ��
���
�. Using these results, we can rewrite
�������� also as

�������� �

�

�

�� � �

�

�� 	� 	�

� �

�

��� �

�

�
�� � 
�� �	�

� �

	
�
� � �


�
�

	
�
� � � �

��

(13)
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where

��
�
����� ��� �

���
����

���
�
� (14)

��
�
�

��
���� ������

��� (15)

For a large number of elements in the array, that is,� � 	, we get that
�������� �� �
���, and thus, � �� �	���. Observe that the CRLB on the
DOA is identical with the CRLB derived in [12, p. 3127] for the case
of a single constant modulus signal. Also, the cross-term between the
DOA and the polynomial parameters approaches zero as � increases,
and therefore their estimation is decoupled. This can also be seen from
the CRLB on �, which does not depend on the array parameters as
� increases, since the last term of this CRLB approaches zero as �
increases.

V. PROPOSED TWO-STEP ESTIMATOR

The major difficulty of the direct MLE of			 is that it requires a mul-
tidimensional search. Instead, we estimate 			 with a two-step approach
using the EXIP [11], which substantially reduces the computation load.
The two-step approach was mentioned also in [2] and [5] but for a
single sensor and without using the EXIP.

Consider the negative LLF in (2). We reparameterize it by a vector
of intermediate parameters 			�, such that 
�			�� is equivalent to 
�			�,
where 			�

�
� ����� � ��� 
�� �

�
� 

�

with ���
�
� ���	�� � � � � ����
� , and

����
�
� �

�
����� represents the instantaneous phase. We thus have

the following one-to-one mapping:

			� � �			 (16)

where � is the �� � 3�� �� � 4� matrix defined as

�
�
�

�
�

����

�������� 	�
(17)

and ���� is an ��� matrix with all elements equal to zero. Notice
that the mapping from �� 
� �� to ��� 
�� ��� is one-to-one. Moreover,
given the time samples ����� ����

��� , assume that there exists another
vector �� such that ��� � �

�
� � �

�
�
�, that is, �� �� � �

�� � 
.
Since �� is a full column rank Vandermonde matrix, then � � �

�,
and thus ��� � �

�
� is also a one-to-one mapping.

According to the EXIP, we estimate 			 with two subsequent steps:
1) estimate 			� and 2) estimate 			 given the previous results using the
appropriate weighted least squares (WLS) approach.

A. Estimating the Vector of Intermediate Parameters 			�

Denote the ML estimated vector of 			� by �			�
�
� �����

�
� ���� �
�� ��

�
� 

�

,
where the estimated vector of��� is ���� � ����	�� � � � � �����
� . The vector
�			� is the minimizer of the negative LLF parameterized by 			�


�			�� � �� ����� �
	

���

� ����

���

����� 
�������
�����

�

� (18)

Differentiating (18) with respect to ��� and equating the result to zero
yields that the MLE of ��� is ���� � �	���� � ����

��� ����� �

�
��������
�	������. Substituting ���� in (18) yields that �
�� ���� �����

minimize


� �
�� ��� ����� � 
� �
�


�

�

� ����

���

�
	������� ��� ��� �

	������� ����� � (19)

It is clear from (19) that ����� � �����	���������� and �
� �

�	��� � ����
��� ��	����������. By substituting ����� and �
� into

(19), we obtain that the MLE of �� is

��� � ������



� ����

���

�
	������� � (20)

The phases ����� are obtained by substituting (20) into �����. Note that
it is required to perform phase unwrapping on ��	����������

� ����
���

in order to have a continuous phase, instead of a discontinuous phase
defined in ��� ���. We adopt the phase unwrapping procedure presented
in [2, p. 2119]. The unwrapped phases of ��	����������

� ����
���

are

����
� � ��� �
	��������
�

����
 � 	� � ��� �
	��������
 � 	� �

	��������
�
�

� ����
�

����� ��� ����� � ������ 	�� ����� ���

� � �
 � �� � � � � �
 �� � 	 (21)

where

�� �����
�
� ��� �

	��������� �
	��������� 	�

�

� �
	��������� 	�

�

�
	��������� �� � (22)

B. Estimating 			 Using WLS

Denote the indirect estimate of 			 as �			
� �
� ����� � ���� �
�� ����


�
. Ac-

cording to the EXIP, �			
�

is given as [11]

�			
�

� ������
���

� �			� � �			

�

� �			� � �			
 � ���
������
�			�

(23)

where

�
� ����
�			����			��			

�
� ����� �	��� is the �� � 3�� �� � 3�

FIM on the estimation of 			� evaluated at �			�. Similarly to Section IV,
using the result in [13, (8.33)], it can be shown that


 �

�	�



	�

�� 	�



���������� 
� 
�

�� 	�



���������

�
�

��� 	�



��������� � �



�
� � ��



�



�
� � � ��




� (24)
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Fig. 1. MSEs of the estimated �� � using the proposed method and the
MLE, and their associated CRLBs, versus the SNR.

Combining (17) and (24) with (23), we obtain that the estimates using
the EXIP are

�
� � �

� �
���

����
���

�
� �

� ���� ����� � ����

��� � ���� ��� � ���� ��
� � ���� 	 (25)

Notice that although theoretically the weighting matrix� is evaluated
at the values of the estimates of the first estimation step, in this case,
the matrix multiplying ���� can be evaluated offline. Also, if � is large
enough, then �� � ������, which is the LS solution of �� given the
vector of estimates ����.

We estimate the computational complexity of the proposed method.
Since the matrix multiplying ���� can be evaluated offline, its computation
will not be taken into account. The complexity of ���
�, ���, and ��� are
� , �� , and 2�� , respectively. The complexity of (20) is ���� ,
where�� is the number of grid points in the space of �. The complexity
of the unwrapping step is approximately on the order of �� . There-
fore, the overall complexity is ���� � 4�� �� , which is on the
order of ���� . Clearly, the complexity of the proposed method is
less than the complexity of the MLE.

VI. NUMERICAL EXAMPLES

We present the results of several simulated experiments. In the first
three simulations, we consider a chirp signal given by [8] ��
����� �

�������������������	����	�� ����, where � � �, 
� � 	, and � �

�		. We use an eight-element ULA with half-wavelength spacing �� �

������. The signal’s DOA is 10�. The noise power �� is adjusted to
give the desired SNR, defined by SNR� ��	 
���� �

� [dB].
In the first simulation, we compare the mean square error (MSE)

of the estimates of ��, ��, and �� of the direct MLE and the proposed
method versus the SNR. We consider SNR values from 6 [dB] to 14
[dB] with a step of 1 [dB]. At each SNR, we evaluated the MSE of
�
 with ���
 � �		 Monte Carlo (MC) independent trials. The re-
sults are presented in Fig. 1. We also plotted the associated CRLB of
��, ��, and ��. As can be seen, the estimates approach the CRLB for

Fig. 2. MSEs of the estimated DOA using the proposed method and the MLE,
and the associated CRLB, versus the SNR.

sufficiently high SNR. However, for low SNR, the performance of the
MLE is superior.

In the second simulation, we compared the MSE of the estimated
DOA of the MLE and the proposed method versus the SNR. The SNR
was varied from �10 to 10 [dB] with a step of 2 [dB]. At each SNR,
we evaluated the MSE of the DOA with �	
� � �		 MC independent
trials. The results are presented in Fig. 2. We also plotted the associated
CRLB of the DOA. As can be seen, the DOA estimates approach the
CRLB for sufficiently high SNR, while the ML estimate is superior for
low SNR.

In the third simulation, we corroborated the narrow-band assump-
tion leading to (1). We examined the MSEs of the MLE and the
proposed method (both derived using the narrow-band assumption)
given data generated according to the wide-band signal model, as de-
tailed in Section II. As in [8, p. 345] we used a frequency sampling
of ��� � 
����Hz�. Also � � �		, and SNR � �� �dB�. Notice
that the (continuous) signal occupies the bandwidth ��0.4��� 0.4���

around the carrier frequency ��, where 1/2� is the aliasing free
bandwidth of the signal. Recall that (1) was obtained under the as-
sumption that ���� � �. We therefore varied �� from 10���1/2��

to 10� � �1/2�� with a step of 5� 10� � �1/2��. At each value
of ��, we calculated the MSE of �
 for the MLE and the proposed
method, with �	
� � �		 MC independent trials. The results are
presented in Fig. 3. We also plotted the CRLB of ��, ��, and ��
(calculated using the narrow-band assumption). As can be seen up
to a ratio of 0.005 (associated with �� � 		
��� �MHz�), the MSEs
of all the estimates agree with the CRLB. Moreover, even at a ratio
of 0.01 (associated with �� � 		�	�� �MHz�), the MSE of �� is the
same as that of the CRLB, while the MSEs of �� and �� are about 3
and 7 [dB] above the MSEs of their CRLBs.

In the forth simulation we compared the MSE on estimating �

of the proposed method with the instantaneous frequency rate (IFR)
method [3, p. 386]. The IFR method in [3] was suggested for a
single sensor. Therefore, we first estimated the DOA of the signal
according to (20). We then defined the signal ��
� � �
�����	�
�

and used the IFR method to estimate � from ���
��	 ����
	�	 . We

consider the same quadratic frequency modulated signal used in the
simulation results in [3, Sec. IV, p. 389] with the parameters � � �,
�� � �, �� � ��
, �� � 				�, �
 � 					�, 
� � ��������, and
� � ���. We used 1000 MC independent trials. The SNR used here
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Fig. 3. MSEs of the estimated �� � using the proposed method and the
MLE, and their associated CRLBs, versus the ratio between the signal band-
width and the carrier frequency.

Fig. 4. MSEs of the estimated �� � with the proposed method and the IFR
method [3].

is identical to the definition in [3, following (39), p. 391]. The results
are shown in Fig. 4. As a comparison, the CRLB is also plotted.
The results of the MLE are omitted due to its high complexity in
this case. In the two right plots, the asymptotic MSE of �� and �� is
also plotted [3, Table I, p. 387]. The asymptotic MSEs of �� and ��

were not added to the left plots since they coincide with the CRLB.
As can be seen, and also mentioned in [3], the estimation of �� and
�� converges to the CRLB, while the estimate of �� and �� is 38.5%
and 45.5% above the CRLB. Notice that the MSEs of the proposed
method converge to the CRLB. Only the MSE of ��, using the IFR
(related to the frequency rate), is better than that of the proposed
method.

VII. CONCLUSIONS

In this paper, an efficient method to estimate the parameters of a
polynomial phase signal observed by a sensor array was proposed. The

method applies the ideas of the extended invariance property. Whereas
the direct maximum likelihood method involves extensive complexity,
the proposed algorithm only requires a simple one-dimensional search
in the direction of arrival space. Monte Carlo simulations show that the
estimated parameters converge to the Cramér–Rao lower bound at high
signal-to-noise ratio.
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