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ABSTRACT

Contrary to the suboptimal (two-step) geolocation procedures,
we propose a maximum likelihood estimation for the posi-
tion of a stationary transmitter which its delayed and Doppler
shifted signal is observed by moving receivers. The position
is estimated based on the same data used in common meth-
ods. However, it is performed in a single step by maximizing
a cost function that depends on the unknown position only.

Index Terms— Emitter location, Maximum likelihood
estimation, Differential Doppler, Ambiguity function.

1. INTRODUCTION

Passive geolocation of a stationary transmitter based on the
delayed and Doppler shifted signal observed by moving re-
ceivers is a well known technique as can be concluded from
[1]-[4]. Since the receivers’ location and velocity along their
trajectory are known, the transmitter location can be estimated.

Common methods use two steps for localization. Each
receiver first estimates the time delay and Doppler frequency
along its trajectory. In the second step the system estimates
the transmitter’s position based on the results obtained inthe
first step. The two step methods are not guaranteed to yield
optimal location results since in the first step the delay and
Doppler estimates are obtained by ignoring the constraint that
all measurements must be consistent with a single position.
Thus, the lines of position obtained from the delay and Doppler
estimates are not necessarily intersect in a single geographical
location.

In a previous publication we proposed a single-step solu-
tion for narrowband signals by considering the Doppler shift
only [9]. Herein we propose a maximum likelihood position
estimation using a single step for wideband signals by also
taking into account the time delay of the signal.
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2. PROBLEM FORMULATION

Consider a stationary radio transmitter located at position p

andL moving receivers. The receivers are synchronized in
frequency and time. Each receiver intercepts the transmitted
signal atK short intervals along its trajectory. Letpℓ,k and
vℓ,k wherek = 1, . . . ,K andℓ = 1, . . . , L denote the posi-
tion and velocity vectors of theℓ-th receiver at thek-th inter-
ception interval, respectively. The complex signal observed
by theℓ-th receiver at thek-th interception interval at timet
is

rℓ,k(t) = bℓ,ksk(t−τℓ,k)ej2πfℓ,kt+wℓ,k(t), 0 ≤ t ≤ T (1)

whereT is the observation time interval,sk(t) is the observed
signal during thek-th interception interval,bℓ,k is an unknown

complex path attenuation, andτℓ,k
∆
= 1

c
‖pℓ,k − p‖ is the sig-

nal’s delay wherec is the signal’s propagation speed. Simi-
larly to [5] we assume thatτℓ,k ≪ T . Also,wℓ,k(t) is a white,
zero mean, complex Gaussian noise with flat spectrum and,

fℓ,k
∆
= fc [1 + µℓ,k(p)] (2)

µℓ,k(p)
∆
=

1

c
vT

ℓ,k(p − pℓ,k)/‖p− pℓ,k‖ (3)

wherefc is the known nominal carrier frequency of the trans-
mitted signal. Each receiver performs a down conversion of
the intercepted signal byfc and thus (2) can be replaced by
f̄ℓ,k = fcµℓ,k(p). Assume that we collectN time samples,
sampled with sampling intervalTs, of the down converted
version of (1). Define

rℓ,k
∆
= [rℓ,k(t1), . . . , rℓ,k(tN )]T

wℓ,k
∆
= [wℓ,k(t1), . . . , wℓ,k(tN )]T

sk
∆
= [sk(t1) . . . , sk(tN )]T (4)

Aℓ,k
∆
= diag{ej2πf̄ℓ,kt1 , . . . , ej2πf̄ℓ,ktN }

From the down converted version of (1) we get

rℓ,k = bℓ,kAℓ,kFℓ,ksk + wℓ,k (5)



whereFℓ,k is a down shift operator, i.e.,Fℓ,ksk shiftssk by
⌊τℓ,k/Ts⌋ indices. We assume that the covariance ofwℓ,k is
σ2I.

The problem discussed herein can be stated as follows:
Given{rℓ,k}

L,K
ℓ,k=1, estimate the the transmitter’s positionp.

3. THE DIRECT GEOLOCATION APPROACH

The log likelihood of{rℓ,k} is equivalent, up to an additive
constant and scaling to

C(p) =
K

∑

k=1

L
∑

ℓ=1

‖rℓ,k − bℓ,kAℓ,kFℓ,ksk‖
2 (6)

The path attenuation scalars that minimize (6) are given by

b̂ℓ,k = [(Aℓ,kFℓ,ksk)HAℓ,kFℓ,ksk]−1(Aℓ,kFℓ,ksk)Hrℓ,k

= (Aℓ,kFℓ,ksk)Hrℓ,k (7)

where we assume, without loss of generality, that‖sk‖
2 = 1.

Substituting (7) in (6) yields,

C1(p) =

K
∑

k=1

L
∑

ℓ=1

‖rℓ,k‖
2 − |(Aℓ,kFℓ,ksk)Hrℓ,k|

2 (8)

Since‖rℓ,k‖
2 is independent of the parameters, then instead

of minimizing (8) we can now maximize

C2(p) =

K
∑

k=1

L
∑

ℓ=1

|(Aℓ,kFℓ,ksk)Hrℓ,k|
2 =

K
∑

k=1

sH
k Qksk

(9)

where we defined theN ×N hermitian matrix

Qk
∆
= VkV

H
k (10)

Vk
∆
= [FH

1,kA
H
1,kr1,k, · · · ,F

H
L,kA

H
L,krL,k] (11)

If the signal waveform is known, thenC2(p) should be used.
However, often the signal waveform is unknown and then

one should look for{sk} that maximizeC2(p). This cost
function is maximized by maximizing each of theK quadratic
forms w.r.t. sk. Thus, the vectorsk should be selected as
the eigenvector corresponding to the largest eigenvalue ofQk

denoted byλmax{Qk}. The dimension of the matrixQk in-
creases with the number of data samples. Determining the
eigenvalues ofQk can in turn result in high computation ef-
fort. However, the non-zero eigenvalues ofQk are identical

to the eigenvalues of theL×L matrixQ̄k
∆
= VH

k Vk. See [6,
pp. 42-43]. This leads to a substantial reduction of the com-
putation load wheneverL ≪ N . Therefore, (9) is equivalent
to

C3(p) =

K
∑

k=1

λmax{Q̄k} (12)

The estimated transmitter’s position is then given by

p̂ = argmax
p

{C3(p)} (13)

A possible algorithm for unknown signals is displayed in Al-
gorithm 1.

It is interesting to observe that the(i, j)-th element ofQ̄k

can be written as,

Q̄k(i, j) = rH
i,kAi,kFi,kF

H
j,kA

H
j,krj,k

∼=
1

Ts

ej2π(f̄i,kτi,k−f̄j,kτj,k)ρ
(k)
i,j (14)

where

ρ
(k)
i,j

∆
=

∫ T

0

r∗i,k(t+τi,k)rj,k(t+τj,k)ej2π(f̄i,k−f̄j,k)t dt (15)

Note thatf̄j,k, f̄i,k, τj,k, τi,k are all functions of the assumed

target positionp and thatρ(k)
i,j is recognized as the complex

ambiguity function evaluated at the geographical pointp [5].

Define the area of interest and determine a suitable grid
of locationsp1,p2 · · ·pg.
for j = 1 to g do

SetC3(pj) = 0
for k = 1 to K do

for ℓ = 1 to L do
Evaluateτℓ,k, f̄ℓ,k

EvaluateAℓ,k, Fℓ,k

end
EvaluateVk according to (11)
EvaluateQ̄k = VH

k Vk

LetC3(pj) = C3(pj) + λmax{Q̄k}
end

end
Find the grid point for whichC3 is the largest. This
grid point is the estimated position.

Algorithm 1 : A possible implementation of the DPD
algorithm for unknown signals.

4. RELATIONS BETWEEN THE DIRECT AND
INDIRECT APPROACH

To simplify the exhibition consider the case of only two mov-
ing platforms (L = 2), as discussed in [7],[8]. Then̄Qk is a
2 × 2 hermitian matrix, and its largest eigenvalue is given by

λmax{Q̄k} =
1

2
(Q̄k(1, 1) + Q̄k(2, 2) + (16)

√

(Q̄k(1, 1) − Q̄k(2, 2))2 + 4|Q̄k(1, 2)|2)



where

Q̄k(i, i) ∼=
1

Ts

∫ T

0

|ri,k(t)|2 dt , i = 1, 2 (17)

Q̄k(1, 2) ∼=
1

Ts

ej2π(f̄1,kτ1,k−f̄2,kτ2,k)ρ
(k)
1,2 (18)

Assuming thatQ̄k(1, 1) ∼= Q̄k(2, 2), the cost function
C3(p) can be replaced with

C̃3(p) =

K
∑

k=1

|Q̄k(1, 2)| ∼=
1

Ts

K
∑

k=1

∣

∣

∣
ρ
(k)
1,2

∣

∣

∣
(19)

where|ρ(k)
1,2| has been used in [5] for estimating the delay and

Doppler at each of the interception intervals along the trajec-
tory. Therefore, the proposed method selects the position that
maximizes the sum of the distinct cost functions used in the
two-step method.

5. CRAMÉR-RAO LOWER BOUND

The Cramér-Rao Lower Bound (CRLB) is a lower bound on
the covariance of any unbiased estimator. The bound is given
by the inverse of the Fisher Information Matrix (FIM). For
complex Gaussian data vectors with parameters embedded in
their mean,m, and not in the covariance, the(i, j)-th element
of the FIM is given by [10]

[J]i,j =
2

σ2
Re

{

∂mH

∂ψi

∂m

∂ψj

}

(20)

whereψi is thei-th element of the unknown parameter vec-
tor. For simplicity, we assume that the parameter vector is the
target coordinate vector only, i.e.,ψ1 = x, ψ2 = y. Also,
from (5), the data mean is given by

m
∆
= [mT

1 ,m
T
2 , · · ·m

T
K ]T

mk
∆
= [mT

1,k,m
T
2,k, · · ·m

T
L,k]T

mℓ,k
∆
= bℓ,kAℓ,kFℓ,ksk = bℓ,kAℓ,k s̃ℓ,k (21)

where

s̃ℓ,k
∆
= [sk(t1 − τℓ,k), . . . sk(tN − τℓ,k)]T (22)

We are interested in the derivatives of the mean w.r.t. the
target coordinatesp = [x, y]T . Using the chain rule we get

∂mℓ,k

∂x
=
∂mℓ,k

∂f̄ℓ,k

∂f̄ℓ,k

∂x
+
∂mℓ,k

∂τℓ,k

∂τℓ,k
∂x

(23)

where

∂mℓ,k

∂f̄ℓ,k

= bℓ,kȦℓ,k s̃ℓ,k,
∂mℓ,k

∂τℓ,k
= bℓ,kAℓ,k

˙̃sℓ,k

Ȧℓ,k = j2πdiag{t1ej2πf̄ℓ,kt1 , . . . , tNe
j2πf̄ℓ,ktN}

˙̃sℓ,k = −[ṡk(t1 − τℓ,k), . . . ṡk(tN − τℓ,k)]T (24)

Note that

c

fc

f̄ℓ,k =
vT

ℓ,k(p − pℓ,k)

dℓ,k

(25)

c

fc

˙̄f
(x)
ℓ,k =

c

fc

∂f̄ℓ,k

∂x
=
vx

ℓ,k

dℓ,k

−
‖vℓ,k‖

dℓ,k

cosφℓ,k cos θℓ,k

c

fc

˙̄f
(y)
ℓ,k =

c

fc

∂f̄ℓ,k

∂y
=
vy

ℓ,k

dℓ,k

−
‖vℓ,k‖

dℓ,k

cosφℓ,k sin θℓ,k

where,φ is the angle between the platform velocity vector
and the line connecting the platform and the transmitter,θ is
the angle between the line connecting the platform and the

transmitter and thex axis, andcτℓ,k = dℓ,k
∆
= ‖p − pℓ,k‖.

Also note that

cτ̇
(x)
ℓ,k

∆
= c

∂τℓ,k
∂x

= cos θℓ,k; cτ̇
(y)
ℓ,k

∆
= c

∂τℓ,k
∂y

= sin θℓ,k

The elements of the FIM are given by

[J]1,1 =
2

σ2

∑

k,ℓ

|bℓ,k|
2‖Ȧℓ,k s̃ℓ,k

˙̄f
(x)
ℓ,k + Aℓ,k

˙̃sℓ,kτ̇
(x)
ℓ,k ‖

2

[J]2,2 =
2

σ2

∑

k,ℓ

|bℓ,k|
2‖Ȧℓ,k s̃ℓ,k

˙̄f
(y)
ℓ,k + Aℓ,k

˙̃sℓ,kτ̇
(y)
ℓ,k ‖

2

[J]1,2 =
2

σ2

∑

k,ℓ

|bℓ,k|
2 Re{[Ȧℓ,ks̃ℓ,k

˙̄f
(x)
ℓ,k + Aℓ,k

˙̃sℓ,kτ̇
(x)
ℓ,k ]H

[Ȧℓ,k s̃ℓ,k
˙̄f
(y)
ℓ,k + Aℓ,k

˙̃sℓ,kτ̇
(y)
ℓ,k ]} (26)

with [J]2,1 = [J]1,2.

6. NUMERICAL EXAMPLES

In this section we describe numerical examples which com-
pare the proposed method with the two-steps approach [5].
Figure 1 shows a stationary emitter and two receivers flying
at the same speed of 300 [meters/sec] from left to right. The
receivers estimate the emitter position and the resulting mean
square location error (RMSE) is displayed in Figure 2.

The transmitted signal is a modulated carrier at 1 [GHz].
The modulating signal is a pulse train with a bandwidth of 3.3
[MHz] and a duty cycle of 15%. The sampling rate used by
the receivers is 8.4 [MHz]. The observation time interval is
61 [µsec].

Each of the receivers intercepts the signal 7 times, once
every 1000 [meters].

As observed in Figure 2, the proposed approach outper-
forms the two-step approach. Also, as expected, better results
are obtained when the signal waveform is known.

7. CONCLUSIONS

We presented a maximum likelihood estimator for position
determination of a stationary radio transmitter based on the
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Fig. 1. Receivers and transmitter geometry.
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Fig. 2. RMSEs of the DPD method, the 2-step method, and
the CRLB versus SNR for known and unknown transmitted
signals.

delayed and Doppler shifted signals observed by moving re-
ceivers. Contrary to the conventional methods the positionis
determined by a single step without first explicitly estimating
the Doppler shift and the differential delays. As expected,the
performance of the single step approach is better. However,in
order to carry out the proposed method all the observed sig-
nals must be transmitted to a common processor. The signal
transmission requires more bandwidth than the transmission
of just Doppler and delay measurements.
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