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ABSTRACT

The efficient use of the power budget in small satellite appli-
cations is of primary importance because of the reduced size
of the power sources. Unfortunately, high efficiency in power
amplifiers (PA) is strongly related to non-linearities and hence
distortion. In this paper a digital architecture for the lineariza-
tion of switched mode PAs is implemented, and a circuit to
detect the phase shift and the CORDIC algorithm to correct
that phase as well as to compute the magnitude are devel-
oped. The results show that linearity is improved by 20 dB
for a system with a bandwidth of 9.6 kHz for a loop gain of
10 and 400 ns of system delay. The circuit, implemented in a
FPGA consumes a total of 33.3 mW.

Index Terms— Cartesian feedback, linearization,
phase alignment, CORDIC.

1. INTRODUCTION

One of the key aspects of the transmitter is a highly ef-
ficient, power agile, switching power amplifier. As a con-
sequence of having a high efficient PA no power losses oc-
cur due to dissipation, improving the lifetime of the batter-
ies and/or making a better use of the power delivered by the
solar panels. However, the high efficiency of the switching
PA has one important drawback in non-linearity. Therefore,
to achieve a highly efficient switching PA in a transmitter,
a mechanism to linearize it is required. A powerful means
to linearize a system is the Cartesian feedback linearization
technique [1]-[2], which proves to be an efficient solution to
the linearization problem, although difficulties such as stabil-
ity and phase shift have to be considered. The system has to
be stable in order to accomplish its function, and the phase
shift, introduced by delays in the system and distortion of the
PA, has to be detected and corrected. Most of the previous
work on Cartesian feedback have focused on linear-mode, rel-
atively inefficient PAs such as Class A, B, AB. As a result, to
improve efficiency a different class of PA such as switched
mode PA is utilized.

In this paper a digital implementation of Cartesian feed-
back for the switched mode PA is proposed. This is a digital
circuit that takes the input and feedback signals, computes the
phase difference between them and generate the output sig-

nals with the adequate phase correction as well as magnitude
by means of the CORDIC algorithm.

2. MIXED-SIGNAL CARTESIAN FEEDBACK

The mixed-signal Cartesian feedback system (Figure 1)
consists of the digital to analog (DAC), the analog to digi-
tal (ADC) converter and the digital block for signal process-
ing (in grey color). The low pass filter in the forward path
(anti-imaging filter) is used to smooth the sampled and held
signal delivered by the DAC, and the low pass filter in the
feedback path (anti-aliasing filter) is used to eliminate second
order harmonics of the carrier frequency that arise as a result
of the down-conversion. The up and down converters modu-
lates the quadrature signals around the carrier frequency. The
supply voltage of a Class E switched mode PA is modulated
using the envelope elimination restoration (EER) technique
[3]. The digital block is implemented with a phase detection
that computes the instant phase difference and drives an inte-
grator which accumulates the phase shift. The rotation block
performs the phase correction on the error signals. A mag-
nitude block computes the magnitude of the error signal that
drives the EER. The error signals are obtained by an addition
between input signals and feedback signals.

The Cartesian feedback faces two challenges: stability
and phase shift. The anti-imaging filter in the forward loop

Fig. 1. Mixed-signal Cartesian feedback system.



Q

I

k1

k2

Q

I I’

Q’

θ

θ′

∆θ

Fig. 2. Automatic phase alignment concept [4].

adds two dominant poles to the system as a requirement to
reduce the sampling frequency. As a consequence the system
is unstable and hence compensation has to be applied. A lead
compensator is included in the feedback path. The analysis by
means of the root locus method is applied to locate the poles
and zeros in such a way that stability is reached. It is impor-
tant to note that for a stable system with 60 degree of phase
margin and an input signal bandwidth of 9.6 kHz, a resulting
loop gain of 10 and a system delay of 400 ns was achieved.

The latency of the digital process and the signal process-
ing time required for the DACs and ADCs characterize con-
tributions to that delay. When comparing the input signal
against the feedback signal this phase shift becomes critical.
Similarly, aging, temperature fluctuations and non-linearities
of the up and down converters and the PA contribute with
phase shift [5]. To cope with this problem first, the phase
shift has to be detected, and second it has to be corrected.
A digital automatic phase detection [6] require two dividers,
two look-up tables and one comparator. However, dividers
are complex arithmetic units, and a look-up table requires a
large amount of area when the bit length increases beyond 8
bits. In an analog automatic phase alignment [4] (Figure 2),
the phase detection is obtained from

QI′ − IQ′ = κ1κ2sin(θ − θ′) (1)

where κ1 and κ2 are the magnitude of the input and feedback
signals respectively. In comparison with [6] the arithmetic
operations are simpler and the resulting equation (1) is mono-
tonic over the range −π

2 < θ − θ′ < π
2 . Additionally no

memory elements are required.
One efficient mechanism to accumulate the phase differ-

ence in such a way that, in the steady state, the error signal
is reduced, is by a linearized model as in Figure 3 [7] . This
figure shows a model for the phase regulation loop. The error
transfer function is given by

θerror(s) =
s · (θ(s) + Phase distortion(s) + Drift(s))

(s + C0e−Ts)
(2)

where e−Ts model the system delay in the loop and C0 is
an integration constant. Assuming that the input, phase dis-
tortion and drift signals are ramp signals with slope equal to
ωin, ωPd and ωDr, respectively, the steady-state phase error
is found applying the final value theorem as
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Fig. 3. Phase regulation diagram in the frequency domain.

lim
t→∞

θerror(t) = lim
s→0

s · θerror(s)

=
ωin + ωPd + ωDr

κ1κ2C0
(3)

To reduce the phase error, C0 must be higher than the sum of
the input, the phase distortion and the drift signal frequencies:

C0 ≫ 2π
fin + fPd + fDr

κ1κ2
. (4)

3. DIGITAL IMPLEMENTATION

3.1. Datapath

The digital implementation consist of two main blocks:
the datapath block and the control block, as shown in Figure
4. The datapath includes all the logic for the arithmetics op-
erations: the comparators to compute the Ierror and Qerror,
the phase detection and the integrator filter which provides
the angle value for the CORDIC rotation, the CORDIC in
vectoring mode to compute the magnitude and adder to com-
pute the absolute value. The comparator is an adder that com-
putes Ierror and Qerror. It adds rather than subtracts the in-
put and feedback signals as the feedback signal is already 180
degrees shifted due to the inversion of the PA. The selection
of CORDIC for the implementation is due to the low power
requirements for the digital circuit as well as the available
system delay.

The implementation of (1) requires two multipliers and
one comparator. For the digital integrator the most practical
implementation is from its analog counterpart by means of the
bilinear transformation [8], where a mapping from the s-plane
to the z-plane is performed with

H(z) =
C0

s
|
s= 2

Ts

„

1−z−1

1+z−1

« (5)

The discrete transfer function H(z) is given by

H(z) =
C0Ts

2

„

1 + z−1

1 − z−1

«

(6)

where Ts is the sampling frequency. The realization of the
filter, in transposed direct form II, is shown in Figure 5.



Fig. 4. Architecture realization of digital block.

The phase shift correction is carried out by a counter-
clockwise rotation of the quadrature signals

„
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„
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·
„
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«

(7)

The matrix product (7) is implemented by means of a
CORDIC algorithm in circular rotation mode [9]. In total a
folded CORDIC implementation requires three adders, two
barrel shifters and one small look-up table. In this implemen-
tation we decompose the rotation angle into smaller partial
rotations of predefined angles in such a way that the rota-
tion through each predefined angle can be accomplished with
shift-and-add operations

Ii+1 = Ii − σi · Ii · 2−i (8)

Qi+1 = Qi + σi · Qi · 2−i (9)

θi+1 = θi − σi · tan−1(2−i) (10)

in which I0 = Ierror, Q0 = Qerror, θ0 = θshift and σi is
computed in such a way that θi+1 tends to zero.

In a folded implementation of the CORDIC, each partial
rotation takes one clock cycle and the total operation depend
on the amount of precision bits required

Irot = Iscaling · IN−1 (11)

Qrot = Qscaling · QN−1 (12)

θrot = 0 (13)

where

Iscaling = Qscaling =
1

QN−1
i=0

q

1 + σ2
i · 2−2i

(14)

and N is the number of steps or micro rotations. When the
CORDIC is implemented in radix-2, σi can take only two
values, -1 or 1, which means that Iscaling and Qscaling are
constant with the value

Fig. 5. IIR in transposed direct form II.

Iscaling = Qscaling = 1.646760258 (15)

In order to recover the envelope, the value of the magni-
tude which drives the EER is required. As the signals I and Q
are perpendicular, we applied Pythagoras’ theorem.

Magnitude =
q

I2
e + Q2

e (16)

As (16) shows, two multipliers or two squarers and one
square rooter are required. The magnitude is implemented by
means of a CORDIC algorithm in circular vectoring mode [9]
in which I0 = Ierror, Q0 = Qerror and σi is computed in
such a way that Ii+1 tends to zero

Ii+1 = Ii − σi · Ii · 2−i (17)

Qi+1 = Qi + σi · Qi · 2−i (18)

After N iterations the value of the magnitude is computed
as

Magnitude =Qmag = Qscaling · QN−1 (19)

Imag = 0 (20)

where Qscaling is given by (14). The CORDIC requires much
less area than a square rooter, although with the penalty of
longer latency. However, as the input bandwidth of the exam-
ined system was bound at 9.6 kHz, increased latency did not
limit the system operation. In the CORDIC system, the value
of the magnitude has to be corrected in sign due to the limited
range of the CORDIC in vectoring mode. The absolute value
is obtained by xoring the magnitude with its sign and adding
1 to the less significant bit.

3.2. Control blocks

Two finite state machines (FSMs) are implemented. One
generates the CORDIC rotation control signals and the other
generates the CORDIC magnitude control signals. Two 4 bits
binary counters are used to keep track of the iteration steps of
the CORDICs.

3.3. Optimization

It was shown in (4) that C0 has to be much higher than
the information signal bandwidth in order to reduce the phase



shift error. For a sampling frequency of 633 kHz, C0Ts

2 must
be higher than 0.048; this condition is fulfilled by choosing
C0Ts

2 = 0.0625. The multiplication can be substituted by a
4 bits wired right shift. In general, the CORDIC implemen-
tation scales the output values, and usually that scaling factor
has to be removed (by means of a division or multiplication).
However, as the digital block is part of a loop it can contribute
with gain. To this end each CORDIC contributes with a factor
of 1.647 to the loop gain.

4. RESULTS

Simulations were carried out with an input bitstream of
19.2 Kbps, modulated in π/4-DQPSK. As the results indi-
cate, 12 bits are required for a proper error computation of
the quadrature signals. The frequency spectrum for the input
signal and open and closed loop system is illustrated in Fig-
ure 6 and Figure 6b, respectively. In both, open and closed
loop system, 20 dB amplification can be observed. Addition-
ally, the closed loop achieves a distortion attenuation close to
20 dB with respect to the open loop. The design was imple-
mented in the Xilinx Spartan3 X3s50-4tq144 FPGA. Table 1
shows the logic utilization and distribution. The minimum pe-
riod achieved was 11.988 ns with a latency of 180 ns, and total
power dissipation of 33.31 mW, running at 83.3 MHz clock
frequency. Figure 7 shows the post place and route floor-plan
and routing.

5. CONCLUSIONS

Mixed-signal Cartesian feedback proves to be an efficient
linearization method for a stable system with sufficient phase
margin. Such a feedback improves linearity when provided
with adequate amount of loop gain. As the results obtained
indicate, the use of the CORDIC algorithm proves to be a
simple, low-power and robust solution, for the low bandwidth
input signal.

(a) Input signal spectrum (b) Output spectrum

Fig. 6. Frequency spectrum results.

Table 1. FPGA logic utilization and distribution.
Logic Utilization Used Available Percentage
Number of Slice Flip Flops 126 1,536 8%
Number of 4 input LUTs 428 1,536 27%
Number of MULT18x18s 2 4 50%

(a) Post P&R floorplan (b) Routing

Fig. 7. FPGA implementation.
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