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ABSTRACT
In Principal Component Analysis (PCA), the dimension of the sig-
nal subspace is detected by counting the number of eigenvalues of a
covariance matrix that are above a threshold. Random matrix theory
provides accurate estimates for this threshold if the underlying data
matrix has independent identically distributed columns. However,
in time series analysis, the underlying data matrix has a Hankel or
Toeplitz structure, and the columns are not independent. Using an
empirical approach, we observe that the largest eigenvalue is fitted
well by a Generalized Extreme Value (GEV) distribution, and we
obtain accurate estimates for the thresholds to be used in a sequen-
tial rank detection test. In contrast to AIC or MDL, this provides a
parameter that controls the probability of false alarm. Also a lower
bound is presented for the rank detection rate of threshold-based de-
tection for rank-1 problems.

Index Terms— PCA, structured Wishart matrix, rank detection,
Generalized Extreme Value

1. INTRODUCTION

A fundamental problem in array processing is the detection of the
number of source signals present in a data matrix. Consider an
antenna array with M elements and N temporal samples, result-
ing in an M × N data matrix X and a related covariance matrix
R̂ = (1/N)XXH . Under narrowband conditions, each source
gives a rank-1 contribution to the matrix. If the background noise is
white, zero mean, i.i.d. with a Gaussian distribution, then the noise
covariance matrix is Rn = σ2

nI with a Wishart distribution. To de-
tect the number of sources, one common technique is to count the
number of eigenvalues of R̂ that are significantly above σ2

n. The re-
quired threshold depends on M and N and the desired probability
of false alarm. We consider the noise to have a complex Gaussian
distribution; alternative techniques that use eigenvalues are AIC and
MDL [1].

For the rank-0 hypothesis (no sources), we essentially need to
know the distribution of the largest eigenvalue of a random matrix
with a Wishart distribution. The first results date back a century,
and currently we know that this distribution converges to a Tracy-
Widow (TW) distribution [2], resulting in accurate thresholds that
are straightforward to compute. With some loss of accuracy, these
results can be translated to the detection of higher ranks [3].

Subspace-based techniques for e.g. system identification [4], de-
lay estimation [5] or sinusoidal signal detection/harmonic retrieval
(e.g., MUSIC, ESPRIT) [6] proceed by forming an M ×N Toeplitz
or Hankel data matrix X with entries xij = x[i − j], for which
M + N − 1 samples are needed. In the antenna array context, a
similar data repetition technique is known as spatial smoothing (ap-
plicable to uniform linear arrays) [7].

As we show in this paper, the existing thresholds for unstruc-
tured matrices are not accurate for covariance matrices derived from

Toeplitz/Hankel data matrices, as the columns of X are not indepen-
dent. As a result, significantly higher thresholds need to be used.
Our objective is to derive such thresholds. To this end, we first de-
scribe the distribution of the largest eigenvalue of R̂. We will do this
using an empirical approach, where observed distributions for the
largest eigenvalue from simulations for a range of (M,N) and rank
d are parametrically fitted to theoretical distributions. This results
in new detection thresholds that are straightforward to compute and
use.

2. THRESHOLDS FOR COVARIANCE MATRICES FROM
UNSTRUCTURED DATA

We review the results summarized in [3, 8, 9] on bounds of the
largest eigenvalue of Wishart matrices. Consider a zero mean com-
plex white Gaussian noise random vector x[n] of dimensionM , with
unit variance entries. If we have N samples, the sample covariance
matrix is R̂ =

∑N
n=1 x[n]x[n]H , note that the scaling by 1/N is

omitted to simplify subsequent expressions. The largest eigenvalue
of R̂ is denoted by λ̂1.

Let M,N → ∞, γ := M
N

constant and M ≤ N . Define
centering and scaling constants as1

µM,N = (
√
M +

√
N)2 = N(1 +

√
γ)2 , (1)

σM,N = (
√
M +

√
N)

(
1√
M

+
1√
N

) 1
3

= N
1
2M−

1
6 (1 +

√
γ)

4
3

Then [10]

s :=
λ̂1 − µ
σ

D−→ F2(s)

where F2(s) is the TW distribution of order 2 [2]. A useful approxi-
mation of this distribution in terms of a Gamma distribution is given
in [8], and we use this approximation in subsequent plots.

For the largest eigenvalue, we are interested in a threshold u for
which the probability that λ̂1 > u is 1 − p, a desired false alarm
rate (p is the confidence level). Compute f2 = F−1

2 (p) (where F−1
2

denotes the inverse Cumulative Distribution Function (CDF); with
the approximation in [8], it can be found from an inverse Gamma
distribution), and set

u = µ+ σf2 .

Then

P(λ̂1 > u) = 1− p ⇔ P
( λ̂1 − µ

σ
<
u− µ
σ

)
= p

⇔ u− µ
σ

= F−1
2 (p)

so that, indeed, u is the required threshold.

1For real-valued matrices, slight modifications are needed [8].
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Fig. 1. CDF of the largest eigenvalue of an unstructured covariance
matrix. M = 10, N = 20. Here and in subsequent plots, the
covariance was scaled by 1/N .
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Fig. 2. CDF of the largest eigenvalue of a Toeplitz-structured covari-
ance matrix, compared to the fitted TW distribution and the GEV
distribution. M = 10, N = 20.

Fig. 1 shows a simulation where an empirical CDF F̂λ(x) for
λ̂1 is obtained using Monte-Carlo (MC) runs, and compared to its
model, F2(

x−µ
σ

). It is seen that the fit is tight; the deviation for low
probabilities is due to the approximation [8].

3. THRESHOLDS FOR COVARIANCE MATRICES FROM
HANKEL-STRUCTURED DATA MATRICES

3.1. Proposed distribution

Moving now to Hankel-structured data matrices, consider a zero
mean complex white Gaussian noise random vector x with unit vari-
ance. Stack M + N − 1 samples into an M × N Hankel matrix
X = (x[i + j])i,j . The sample covariance matrix is R̂ = XXH

(omitting the scaling by 1/N ), for large N it converges to a Toeplitz
matrix.

Fig. 2 shows a simulation where the empirical CDF of the largest
eigenvalue (solid line) is compared to the same TW model as before,
F2(

x−µ
σ

) (dotted line). It is seen that in this case the fit is poor. The
reason is that the columns of X are not independent. Selecting new

values for µ and σ to fit the right tail (dashed line) shows that the
TW distribution is not a good model.

To obtain a better approximation, we use the matlab fitdist
function to fit to a GEV distribution, it is seen in Fig. 2 that this fit
is excellent (dash-dot line, overlaps completely the empirical curve).
The CDF of the GEV distribution is given by [11]

F (s; ξ) = e−(1+ξs)−1/ξ

, where s =
x− µ
σ

. (2)

Other values for centering µ and scale σ are needed, and the GEV
distribution has an additional shape parameter ξ that essentially con-
trols the slope of the right tail of the distribution (which is of interest
to us as the threshold for small false alarm rates is found here).

Although we make no theoretical claims, a fitting to the GEV
distribution is motivated as it is the limit distribution of the maxi-
mum of a sequence of independent and identically distributed ran-
dom variables [11], in this case the eigenvalues. This would require
M and N to be sufficiently large.

From (2), the GEV distribution has a closed-form expression for
the inverse CDF,

Q(p;µ, σ, ξ) = µ+ σ
(− ln(p))−ξ − 1

ξ
. (3)

Thus, given values for µ, σ, ξ and a desired false alarm rate PFA =
1− p, we can easily compute the required threshold.

3.2. GEV distribution parameter estimates

We obtained best-fitting parameters for (µ, σ, ξ) for a range ofM,N .
Although these could be used in a table look-up, it is often more con-
venient to have “friendly” polynomial expressions. Using an empir-
ical approach, we obtained the following approximations:

µ̂ = N
(
a1MNa5 + a2M

1/2N−1/2 + a3N
a6 + a4

)
σ̂ = N1/2M−1/6(b1MN−0.1138 + b2M

1/2N−0.2721

+ b3N
−0.6820 + b4

)
ξ̂ = c1M

−0.2 exp
(
c2
M

N

)
(4)

a = [0.4003 1.5601 −3.8142 0.9748 −0.6521 −0.6391]
b = [0.1888 1.5819 −5.6885 0.6129]

c = [−0.2189 −3.1877] .

Starting from (1), these expressions were obtained by fitting the co-
efficients of similar polynomials inM andN , over a range of values:
M = 2, · · · , 120 and N = 20, · · · , 500, with M < N . Mat-
lab fminsearch was used for the fitting, and in total 1110 pairs
(M,N ) were used.

To test the resulting model (3), (4) for the CDF, we took a de-
sired PFA = 0.01, computed the threshold based on the model, and
evaluated the resulting PFA. The results for a range of M and N
are shown in Fig. 3. The computed thresholds are decently accurate
for M > 3: the effective PFA is mostly between 0.09 and 0.011
(with mean = 0.010, std = 0.0011 over the range M = 4, · · · , 120,
N = 20, · · · , 500, M < N , total 1030 pairs (M,N)).

4. SEQUENTIAL RANK DETECTION

We now consider a data model X = Xs +N, where Xs is a rank-d
deterministic signal matrix, and N is a noise matrix as before. To de-
tect the number of signals from the corresponding covariance matrix
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Fig. 3. Effective PFA when the desired PFA = 0.01 is inserted into
the model (3), (4), for a range of M and N . Each dot represents the
result for a specific (M,N). The apparent outliers for 4 < M < 20
occur for N = 300, 400, 500.

R̂, we select a threshold and compute the number of eigenvalues λ̂i
that are larger than it. The threshold should be selected such that a
certain false alarm rate PFA is obtained. In more detail, we consider
the “null hypothesis”Hk: the signal rank is k, and we test it against
H′k: the signal rank is larger than k. The threshold Tk depends on k
and defines PFA(k). In a sequential test, we start with k = 0, and if
we acceptH′0, increase k and test again until we acceptHk.

Input: {λ̂i},M , N , PFA
Output: d̂, the estimated signal rank
d̂ = 0;
repeat

k = d̂;
Tk = tresh(k,M,N, PFA); // see eqn. (6)

d̂ = #{λ̂i > Tk};
until d̂ = k;

Assuming the tests are independent (not quite true), the overall
false alarm rate is PFA = PFA(0)(1 + PFA(1))(· · · ) ≈ PFA(0).
The probability of correctly detecting the signal rank depends on the
SNR, but will not be larger than 1−PFA(k), since we only stop once
the null hypothesis Hk is accepted. Thus, the test has a tendency to
slightly overestimate the signal rank.

It remains to determine the value of the kth threshold Tk, un-
der the hypothesis Hk, to achieve a desired PFA(k). For the un-
structured case, [3, prop.1.2] states that the eigenvalues of the noise
subspace of a covariance matrix with a rank-k signal subspace is
dominated by the distribution of a noise-only covariance matrix of
dimension M − k by N . This result can be made slightly more
precise: also N has to be replaced by N − k:

Proposition 1. Let X = Xs + N, and suppose that the rank of Xs

is k and that the non-zero singular values of Xs are much larger
than those of N. Then the noise eigenvalues of R̂ converge to the
distribution of a noise-only covariance matrix of sizeM−k byN−
k.

Proof. Let Xs = UsΣsV
H
s be the ‘economy-size’ SVD of Xs

(i.e., Us and Vs have k columns), and complete Us and Vs to
square unitary matrices U, V. If the singular values of Xs are
sufficiently large, then N will hardly disturb the directions of the
corresponding singular vectors, and these are the dominant singular
vectors of X. Consider X′ := UHXV. With the same arguments
as in the recursive definition of the SVD [12], we find

X′ =

[
Σs 0
0 N′

]
.

N′ has size M − k × N − k, while the rotations do not disturb
the distribution of the entries, i.e., N′ has zero-mean i.i.d. Gaussian
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Fig. 4. CCDF of the d + 1-st eigenvalue of a covariance matrix
with d signal components, compared to the corresponding model
with parameters (M − d,N − d), for various d. (a) Unstructured
data and TW model; (b) Hankel-structured data and GEV model
(M = 10, N = 20).

entries. As a result, the distribution of the k + 1-st eigenvalue of R̂
is equal to the distribution of the largest eigenvalue of a noise-only
matrix of size M − k by N − k. 2

Following this proposition, the threshold for detection of rank k
in the sequential detection algorithm should be based on Eqn. (1), but
using (M − k,N − k) as parameters. To demonstrate this, Fig. 4(a)
shows the empirical Complementary CDF (CCDF) of the d + 1-st
eigenvalue of the covariance matrix of a data matrix consisting of
a rank-d source matrix in white noise, compared to the theoretical
TW curve with parameters (M − d,N − d). It is seen that the fit is
excellent.

Unfortunately, this proof does not carry over to a Hankel-
structured data matrix with a rank-d signal component. Indeed,
simulations indicate that in this case the distribution of λd+1

does not follow the distribution of the largest eigenvalue of an
(M − d) × (N − d) size noise-only matrix. The GEV model still
fits, but the parameters depend on d in a more complicated way.
Fig. 4(b) (solid lines) shows the same curves as Fig. 4(a), but for
Hankel-structured data. For d not too large, say d < 1

2
M , the curves

are regularly spaced and have a constant slope as function of d. For
d ≈ 1

2
M , the curves become very close, and for larger d, the slopes

get much more steep and the curves are widely spaced.
To capture the more regular behavior for d < 1

2
M in a model,

we took the previous model and inserted modifications for d, for
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Fig. 5. Effective PFA when the desired PFA = 0.01 is inserted into
the model (6), (5), for a range of M , N and d. Each dot represents
the result for a specific (M,N, d).

each M and N in the model. We derived approximations based on
M ranging from 6 to 38, N from 15 to 100 in steps of 5, and d from
0 to 20, with d < M/2 and M < N . In total 1110 data points
(M,N, d) were generated; the empirical distributions were obtained
using 5× 105 Monte Carlo runs. The resulting model is as follows:

µ̂ = N
(
a1(M − d1k)(N − d3k)a5+

a2(M − d2k)1/2(N − d4k)−1/2 + a3(N − d5k)a6 + a4
)

σ̂ = N1/2M−1/6(b1(M − e1k)N−0.1138+

b2(M − e2k)1/2N−0.2721 + b3N
−0.6820 + b4

)
ξ̂ = c1(M − f1k)−0.2 exp

(
c2
M − f2k
N − f3k

)
(5)

a, b, c as in (4)
d = [−0.0982 1.2442 0.2531 −2.0890 0.6487]

e = [−0.3360 1.0001]

f = [−0.3424 −0.0060 0.5902] .

In summary, we propose to take the value of the kth threshold in
the sequential detection algorithm as

Tk = Q(1− PFA; µ̂, σ̂, ξ̂), for k < 1
2
M (6)

whereQ is shown in (3) and the values of the parameters are defined
in (5). Note that unnormalized covariances were assumed (R̂ =
XXH ); otherwise, adjust µ̂, σ̂ accordingly. For d ≥ 1

2
M , we cur-

rently do not have an accurate model.
The dashed lines in Fig. 4(b) shows the model fit for M = 10,

N = 20 and a range of d. For d < 1
2
M , the fit is very good.

To demonstrate the accuracy of the model over the range of
(M,N, d) for which the model was fitted, the effective PFA for a
requested PFA = 0.01 is shown in Fig. 5. The fit is of similar qual-
ity as for Fig. 3. The mean of the effective PFA is 0.0100 and
the standard deviation is 0.0010, as estimated over 1110 data points.
This accuracy should be adequate in practice.

5. SINGLE SOURCE DETECTION RATE

Apart from the false alarm rate, the probability of detection PD is
also of interest. A detection is called successful if d̂ = d. For sim-
plicity, we focus on the rank-1 case. In this case, the matrix X is a
superposition of the (deterministic) signal matrix Xs and N, where
Xs = us

√
Nλsv

H
s . To compute the detection rate, the CDF of the

largest eigenvalue λ̂1 of (1/N)XXH is required, and such a result
is (to our knowledge) unknown. Let us define

L1 =
1

N
uHs XXHus, (7)

such that λ̂1 ≥ L1 and P(λ̂1>T1) ≥ P(L1>T1). We will derive the
CDF of L1, as a function of Xs. Thus write L1 as

L1 =
1

N
uHs XXHus =

1

N
tHt (8)

where t := XHus =
√
Nλsvs+tn with tn = NHus. The entries

of tn are linear combinations of Gaussian Random Variables (RVs),
therefore they are Gaussian distributed as well, but colored due to
the Hankel-structure of N. Thus pose

t ∼ CN (µt,Σt) (9)

where µt =
√
Nλsvs, and Σt is calculated below. As a result,

L1 is the Hermitian quadratic form of a colored, complex Gaussian
random vector, which can be reformulated as a linear combination of
N independent non-central χ2 distributed RVs [13]. In other words,

L1 =

N∑
k=1

αkXk (10)

where Xk is an independent χ2 distributed RV with 2 degrees of
freedom (for complex data) and non-centrality parameter β2

k, while
the weight of Xk is denoted by αk. Let Σt = CDCH be an eigen-
value decomposition of Σt, then [13]

α = 1
2
diag(D) , β =

√
2

N
D−

1
2 CHµt . (11)

To compute Σt for some us, we use that the random vector
tn = NHus (where N has a Hankel structure) can be viewed as a
convolution/filtering operation in matrix notation. Equivalently, we
can view tn as the output of a filter with coefficients us and input a
complex white Gaussian noise signal with unit variance. It follows
that Σt can be written as

Σt[k, l] =

{
uHs Zk−lus , k > l

uHs
(
ZT
)k−l

us , otherwise
(12)

where Z is a shift (delay) matrix, containing ones on the first diago-
nal below the main diagonal and zeros otherwise.

At this point, all ingredients are available to compute the closed-
form CDF of L1 using e.g. [14]. The rank-1 detection rate PD is
now simply the probability that λ̂1 exceeds the respective threshold,
while λ̂2 remains smaller than the threshold, i.e.

PD≥P{L1>T1, λ̂2<T2}≈P{L1>T1}(1− PFA) (13)

where for the approximation we have assumed independence, which
is strictly speaking not true.

To verify the modeling, we show in Fig. 6 the empirical CCDF of
λ1 and L1, and the theoretically derived CCDF of L1, for a single,
unit-circle, complex exponential source in the presence of noise.2

The simulations show a perfect fit between the model and the em-
pirical distribution of L1. The CCDF of L1 is indeed a lower bound
for the CCDF of λ1 and their convergence with increasing SNR and
x is confirmed. Therefore, we expect the theoretical detection rate
to be a conservative lower bound for the empirical detection rate,
converging with increasing SNR and decreasing PFA.

2For higher signal ranks, the model provides accurate results if the signal
eigenvalues are well separated.
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6. SIMULATIONS–COMPARISON TO AIC AND MDL

In this section, we compare the detection rate of the threshold-based
rank detector with the widely-used AIC [15, Eqn. (7.506)] and MDL
[15, Eqn. (7.508)] for a rank-1 situation, as used in the previous
section, with varying SNR, or equivalently λs.

In Fig. 7, we observe at high SNR that MDL has a 0.045 prob-
ability of incorrect estimating the signal-rank compared to 0.17 for
AIC. On the other hand, AIC has a higher detection rate at low SNR.
Both observations are in line with [15] and illustrate the inherent
tradeoff in performance in low SNR vs high SNR regimes. Using
the proposed threshold-based rank detector (THR), a similar trade-
off can be made simply by changing the (desired) false alarm rate
PFA. For PFA = 0.01, approximately the same detection rate as
MDL is obtained at lower SNR, but the detection rate is improved at
high SNR. When the false alarm rate is increased (PFA = 0.1), the
detection rate at low SNR is slightly better than AIC, but with im-
proved detection rate at high SNR. For very small false alarm rates
(PFA = 0.001), the performance at low SNR is reduced, but with
almost perfect detection at high SNR.

7. CONCLUSIONS

We proposed rank detection thresholds valid for Hankel or Toeplitz
data matrices, as occurs in time series analysis, delay estimation, or

harmonic retrieval. The thresholds are straightforward to evaluate
in closed form, and are accurate for ranks up to half the matrix size.
Compared to AIC and MDL, the detection performance is improved,
with the benefit of a parameter that controls the false alarm rate. On
the side, we improved on a result on the distribution of the d + 1st
eigenvalue of a rank-d covariance matrix in the unstructured case.
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