
I

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991 383

Parallel VLSI Matrix Pencil Algorithm for High
Resolution Direction Finding

Alle-Jan van der Veen, Student Member, IEEE, and Ed F. Deprettere, Senior Member, IEEE

Abstract-In this paper, we consider algorithms to find the directions
of arrival (DOA’s) of multiple signals from measurements on an array
of antenna doublets (ESPRIT method), and their parallel implemen-
tation in VLSI. In particular, we look for algorithms that allow large
scale pipelining and use only robust, unitary transformations. The main
problem is to find the generalized Schur decomposition (GSD) of a ma-
trix pencil. We tackle it using a modified Stewart Jacobi approach for
which convergence is improved and parameter computations are sim-
plified. The resulting architecture is a two-layer Jacobi array that can
handle all the subproblems: two QR factorizations, two SVD’s, and a
single GSD. An ideal processing element is the pipelined CORDIC.

I. INTRODUCTION
FUNDAMENTAL problem in (real-time) signal process- A ing is the recovery of deterministic signal parameters from

noisy observations. One interesting case is the estimation of the
directions of arrival (DOA’s) of a number of waves impinging
on an array of sensors or antennas. Equivalent problems are the
harmonic and echo retrieval problems. Our objective here is to
study how these problems can be translated into VLSI architec-
tures that exhibit the special properties of “integral parallel-
ism” or pipelining, and intrinsic numerical accuracy.

The keynote related to integral parallelism is that at no point
in the algorithm a large accumulation of data is allowed to oc-
cur. An algorithm may typically be represented by a precedence
or activity graph [2]. If this graph contains long critical cycles,
then the processing of a new set of data has to wait for the
conclusion of the current cycle. The data involved has to be
stored temporally, and the algorithm essentially breaks down
into two distinct stages. An example is the traditional solution
of a system of linear equations A x = b using a QR factorization
of A : A = QR. The backsubstituting stage Rx = Q - ’ b will use
the data from the factorization in reverse order, requiring large
amounts of internal storage: the precedence graph shows a large
critical cycle. The difficulty here is solved by utilizing a differ-
ent algorithm, called orthogonal Faddeev [3].

The algorithms for DOA may be studied for a similar pur-
pose. We strive for what we call a “maximal pipelining” of
data: a data flow that allows a regular timing and that is as much
unidirectional from input to output as is possible. Another con-
sideration is the uniformity of the various stages comprising the
pipeline. If all stages share a common structure, the mapping
of the algorithm onto a reduced size processor array will be
feasible. For the same reason, we want to minimize the broad-

Manuscript received July 22, 1989; revised March 3, 1990. This work
was supported by the Dutch National Applied Science Foundation under
Contract STW DEL 47.0643. This work was presented at the SPIE Con-
ference on Advanced Algorithms and Architectures 111, 1988.

The authors are with the Department of Electrical Engineering, Delft
University of Technology, 2628 CD Delft, The Netherlands.

IEEE Log Number 9041155.

cast of data and control parameters among processors. Massive
pipelining and optimal processor utilization becomes possible
this way.

A requirement related to such integral parallelism is that all
processing must be accurate, since iterative (convergence) loops
are to be avoided. As a result, we shall only allow operations
without error amplification, in practice orthogonal (unitary)
transformations. Our architecture synthesis problem then con-
sists of finding a pipelined architecture of processing elements
executing unitary transformations.

In this paper, we focus on the DOA problem using the ES-
PRIT model [4]. This problem is solved by a matrix pencil ap-
proach in which the generalized eigenvalues are determined of
a pair of data matrices. The resulting pencil algorithm can be
subdivided into a sequence of a few stages, each of which can
be implemented on a parallel machine. It turns out that the same
processor array can be used for each stage. Moreover, as only
unitary transformations are to be applied, the main processing
element turns out to he a CORDIC, which is a device that can
compute the angle of a two-dimensional vector or that is able
to rotate a two-dimensional vector over a given angle.

The outline of the paper is as follows. In Section 11, the ES-
PRIT technique for the DOA problem is quickly reviewed. In
Section 111, we present a parallel algorithm to solve the problem
with a high degree of pipelining and robustness. The algorithm
consists of two parallel SVD’s, followed by a generalized Schur
decomposition (GSD). Both decompositions are first phrased in
terms of the Jacobi iteration algorithm (Section IV), and then
more explicitly using CORDIC processors (Sections V-VII). In
Section VII, we also discuss a modification to the Schur decom-
position algorithm due to Stewart 151. It is based on the use of
“inner rotsltions” followed by permutations, rather than “outer
rotations,” and reveals improved convergence in a number of
examples. Finally, in Section VIII, we consider the mapping of
the subproblems on a single parallel array of CORDIC proces-
sors.

11. ESPRIT DIRECTION-OF-ARRIVAL ESTIMATION MODEL
The aim of the direction-of-arrival (DOA) estimation prob-

lem is the determination of the angles of arrival of a number of
signals impinging on a sensor array. The ESPRIT model of Roy
[4] and Paulraj et al. [6] for high-resolution DOA estimation is
discussed below. The model can be extended to include wide-
band signals [7] and is also directly applicable to the spectral
estimation problem 181. Various other DOA models exist, see,
e.g., 191 for an overview.

Consider a planar array composed of m pairs of pairwise
identical sensors (doublets). The displacement A between the
two sensors in each doublet is constant, but the sensor charac-

1053-587X/91/0200-0383$01 .OO 0 1991 IEEE

384 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991

\

Fig. 1 . Angle of arrival (one doublet).

teristics are unknown and the geometry of the doublets is arbi-
trary. We thus have two identical, although displaced, arrays.
Incident on both arrays are d narrow-band noncoherent signals
s k (t) = ikeJwor, each having an unknown complex amplitude &,
and a known center frequency wo which is the same for all sig-
nals. Noise is present at each sensor, and is assumed to be ad-
ditive, stationary, and of zero mean. The signal received by
sensor i in the first array at time t, can then be modeled by

d

x i ($) = k = 1 + (2.1)

where alk is the gain of sensor i in the direction of signal sk, and
n,, is the noise present at sensor i. If the number of time samples
is N , we can collect the N observations of the m sensors in a
matrix X :

X = AS + N, (2.2)
where x 4 [X , (f J)] , A [a , k] , s 4 [s k (t ,)] , and N, 4
[n,, (tJ)] . X is called the data matrix (dimension m X N), A is
the array gain matrix (rn X d), and S is the signal matrix (d x
N) . Matrices A and S are not known.

We also measure the signals at the sensors of the displaced
arrays. Due to the spatial distance between the two sensors in
a doublet, each signal sk experiences a phase shift (delay) + k ,

which is directly dependent on the incident angle Ok of the signal
sk and is in complex notation given by +k = e - J ~ O ’ s l n e k / c (see
Fig. l) , where A is the constant displacement and c is the signal
propagation velocity. Thus, the signal received by sensor i of
the second array, at time tJ , can be modeled as

d

Y z (~ J) = k = I a i k + k s k ($) + nyi($) (2.3)

and the data matrix for this array, Y say, will now obey

Y = AcPS + Ny
where (P = diag (. . , +d). The direction finding problem
thus reduces to estimating cP, from which the Ok can be com-
puted directly.

111. A PENCIL SOLUTION TO THE DOA PROBLEM
A . Problems

concise way.

that

We are now able to state the DOA problem in the following

Given two data matrices X and Y (dimensions m x N), such

X = AS + N,

Y = AcPS + Ny (3 .1)

where A is an unknown array gain matrix (m X d) , S is an

a diagonal matrix of phase shifts, and N, and Ny are independent
noise matrices (m x N).

Then find d (the number of signals impinging on the array)
and cP, assuming that the matrices A and S are of full rank d,

H
Assume for the moment that there is no noise present. To

solve the problem in this case, it is sufficient to form the matrix
pencil X - AY [lo], and to find for i = 1 , , d those values
A, for which the rank of X - A, Y is one less than the rank of X
and Y . Indeed, we now have X - AY = A (I - A+) S, so when
h equals one of the (P;’, the rank of the pencil is reduced by
one. Hence, from these rank reducing numbers we can deter-
mine the signal parameters. These numbers are equal to the gen-
eralized eigenvalues of X and Y in case these matrices are
square, as generalized eigenvalues h are defined to be the non-
trivial solutions to X x = XYx [lo].

In practice, however, the data is corrupted by noise. Noise
introduces new rank reducing numbers that do not correspond
to incident signals, and also reduces the accuracy of the other
rank reducing numbers. To improve accuracy, a large quantity
of data samples are taken (N large), resulting in nonsquare data
matrices X and Y. However, generalized eigenvalues are not
defined for nonsquare matrices, and a different method is needed
to compute the rank reducing numbers. Some solution methods
are discussed by Golub and van Loan [lo], Roy [4], Speiser
[1 1 1 , van Loan [121, and Ouibrahim [131. Most methods reduce
the problem to the generalized eigenvalue problem by comput-
ing data covariance matrices. In general, the implicit squaring
of data involved here tends to make matrix condition numbers
worse, thus deteriorating numerical stability and accuracy. One
method that operates directly on the observed data is the total
least squares approach discussed by Roy [4]. Details about TLS
techniques can be found in [101, [141, [151.

TLS, like ordinary least squares, is a technique for solving
an overdetermined set of linear equations F x = b . An exact
solution x exists only if b is in the column space of F. If b has
been disturbed by noise, an LS approximation is obtained by
projecting b onto this column space. TLS recognizes the fact
that F may also contain errors, and projects F and b onto a
“common” subspace, having minimal distance to both b and
the columns of F. This technique is also valid if x and b are
extended to matrices. From the observation that, without noise
in (3.1), X and Y share a common column space s p a n (d) and
a common row space span (S”), it is concluded that the TLS
technique can be used to estimate these spaces if there is noise,
in which case the data matrix X corresponds to F, and the data
matrix Y to b. By exploiting these subspace properties, the fol-
lowing pencil algorithm can be derived, as was done by Roy

unknown signal matrix (d X N) , cP = diag * * * 7 (P d) is

and N 2 m 2 d. Note that all matrices are complex.

*

[41.

B. Original TLS Pencil Method

The original TLS pencil method [4] is as follows.
1) Use the TLS technique to determine the common row

space of X and Y . In the noise free case this space is equal to
the row space of S and is of dimension d. X and Yare projected
onto this space, which reduces their dimension to m x d.

2) In the same way, determine the common column space of
X and Y, thus estimating the column space of A . This estimation
is used to further reduce the dimensions of X and Y to d x d.

3) Next, proceed as in the noise free case. Compute the gen-
eralized eigenvalues of the resulting pair of d x d data matrices,

I

VAN DER VEEN AND DEPRETTERE: PARALLEL VLSI MATRIX PENCIL ALGORITHM

d

385

v,”

Fig. 2. TLS estimation of span(A) .

U2 x2 v ;’
Fig. 3 . TLS estimation of span(S H) .

which make up the entries of 9. From these, compute the angles
of arrival.

C. Parallel TLS Pencil Method

In the above method, first the common row space is com-
puted, and the matrices are projected onto this space; then, from
the resulting matrices the common column space is computed.
We will now describe a method to compute both subspaces in
parallel, and reduce the dimensions of X and Y to d X d at the
same time. Simulations show that both methods yield essen-
tially the same numerical results.

The TLS approximation to project X and Y onto their d-di-
mensional common column space can be computed directly from
the singular value decomposition of [X Y 1:

[X Y] = uIclvy (3 . 2)
which is visualized in Fig. 2 . In this decomposition, U I and V I
are unitary matrices characterizing the column space and row
space of [X Y] , respectively. The positive diagonal matrix E,
collects the singular values U,, U , 2 u2 2 . * . 2 urn, that are
weighting the importance of vectors in U, and V I . The (m -
d) smallest U ’ S as well as the corresponding columns in U I and
V I are removed by TLS so as to bring the system back to a
noise-free-like case in which only d nonzero singular values are
present. Thus, from Fig. 2 the data matrices X and Y are ap-
proximated by

where c l is the d X d diagonal matrix containing the d largest
singular values of [X Y] . The matrix U , is the TLS approxi-
mation of the column space of A .

In the same way, and concurrently, we can estimate the com-
mon row space of X and Y by computing the SVD

(3 . 4)

which is visualized in Fig. 3. Proceeding in exactly the same
way as above we construct noise-free-like versions of the data

matrices X and Y satisfying

x = u,122P;
Y = U,, c^,P,”. (3 .5)

The matrix P2 characterizes the estimated common row space
of X and Y, hence the row space of S. Again, c, is the d X d
diagonal matrix of the d largest singular values of [;].

We now have two TLS approximations (3.3) an! (3.5) of X
and Y: one in terms of a commo; column space U , , the other
in terms of a common row space V,. The idea, now, is that they
can be combined into one approximation by stating

X = U,E,PF

Y = U I E , P f (3.6)

thereby introducing square matrices E, and E, (dimensions d X
d), which are such that the generalized eigenvalues of the ma-
trix pair (E,, E,) are equal to the rank reducing numbers of the
pencil of these TLS approximations of X and Y .

The matrices E, and E, can be computed conveniently in the
following way. Using (3.6) and the d x d identities

oyo, = I d X d

LyP, = IdXd (3.7)
we derive

E, = U:(U , E , P f) V2 = 0 y X P 2
E, = U?(U , E,$;) V2 = U y Y f , . (3 .8)

We can also derive from (3.4) and V ; e 2 = [I d $ d] the equal-
ities

xP2 = u,,2,
YP2 = u2,2,. (3 .9)

Combining (3.8) and (3.9) we arrive at the following elegant
decomposition of E, and E,:

E, - 0 f ’ U I I g 2

E, - 0 f ’ U 2 , f 2 . (3.10)

386 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2 , FEBRUARY 1991

As we are only interested in the generalized eigenvalues of the
pair (,E,, E,) we can even omit the nonsingular matrix multi-
plier E,.

D. TLS Pencil Algorithm
We are now ready to state the essential steps of the TLS pen-

cil algorithm:
1) Stack the measurements X and Y to form [X Y] and [$1.

X and Y have dimension m X N . Since N will eventually be
large, these matrices are wide and relatively flat. Before pro-
ceeding with the TLS stage, we can reduce these matrices to
square, upper triangular matrices R , and R, of dimension m and
2m, by performing a preprocessing QR factorization

(3 . 1 1)

As the unitary matrices Q , and Q 2 are part of the unitary ma-
trices V y and V y in the SVD’s in (3 . 2) and (3 . 4) , respectively,
and as we will not use these matrices, we can throw them away
and subsequently use the new, upper triangular matrices RI and
R, instead of X and Y. This substantially reduces the amount of
computations.

2) Compute (in parallel) the SVD’s of the triangular matrices
RI and R2

U y R , V l = C,

UyR2V2 = C2. (3 . 1 2)

At the same time, construct a matrix E (2 m x 2 m) defined
by

(3 . 1 3)

3) Estimate, if necessary, the number of signals d using C,
and E,. Then, from E , select the d x d su!xnatrices E (I : d ,
1 : d) and E (m + 1 : m + d , 1 : d) to obtain U: U , , and 07 U,, ,
respectively, as defined in the previous subsection.

4) Compute the generalized eigenvalues of the matrix pair
(i’r U , ,, U,,). These are the TLS pencil solutions to the
original matrix pencil X - AY. The generalized eigenvalues can
be computed using a generalized Schur decomposition (GSD).

The three major steps in this algorithm are the QR factor-
izations, the double SVD, and the GSD. In the following sec-
tions, we shall derive a VLSI parallel array on which both the
double SVD, as needed here, and the GSD can be computed.
The QR factorization can also be performed on the same array,
as in Luk [16], but this will not be discussed in this paper.

E. Parallel Array Dejinition

We close this section with a definition of the actual compu-
tations we want the processing array to perform. To begin with,
in an actual parallel array implementation of the double SVD
(3 .12) and (3 .13) , it is convenient to avoid the duplication of
U , rotations, as implied by (3 .13) , and to operate on matrices
of equal dimension. At the expense of repeating computations,
this can be done by replacing the SVD of the matrix R I by an

SVD of an augmented matrix R I , defined by

(3.14)

This leads to the following parallel computation task:

U:R2V2 = C2

- UYlU, = E. (3 . 1 5)

E is the desired matrix, and both I?, and R, are upper triangular.
In the next sections we will show how cl, C, can be computed
by iteratively operating upon l?,, R,; at the same time, the
U-operations can be applied to the identity matrix I , resulting
in the parallel construction of E . All matrices are now of equal
dimension 2m x 2m. This is the first decomposition the array
has to support.

Then, to compute the generalized eigenvalues, we use a gen-
eralized Schur decomposition algorithm. The GSD of a pair of
matrices (A , B) is defined as

QHAZ = S Q , Z unitary

Q H B Z = T S , Tupper triangular. (3.16)

The generalized eigenvalues of the pair (A , B) are equal to
those of the pair (S , T) , and can simply be extracted from their
diagonals. The computation of the pair (S, T) is the second
decomposition the array has to support.

In the first part of this paper we have seen that the DOA prob-
lem can be modeled by a nonsquare matrix pencil of two data
matrices. A two stage unitary method to solve this pencil con-
sists of i) a TLS approximation that separates the signal space
from the noise space, which is done by computing two SVD’s
in parallel, and ii) a GSD that solves the problem in the noise
free case. The basic operations in both decompositions are two-
sided unitary transformations (U , V , or Q , Z) , operating on two
data matrices. So, both decompositions are of the same type,
and in fact both can be computed using generalizations of the
Jacobi method. This is the topic of the second part of the paper.
Since the Jacobi method can often easily be extended from one
matrix (single SVD/Schur decomposition) to two matrices
(double SVDIGSD), we will focus on the single matrix case as
much as possible.

IV. THE JACOBI ITERATION METHOD

lowing general type of decomposition of a matrix A :
Jacobi iteration methods are algorithms to compute the fol-

QHAZ = R Q , Zunitary. (4 . 1)

The result matrix R typically contains a lot of zero entries. It
can be diagonal, in which case the SVD of A is obtained, or
upper triangular for a Schur decomposition. In the latter case,
Q = Z . Some recent papers dealing with SVD using Jacobi
methods are due to Brent et al. [171, and Brent and Luk, [181,
see also [1 9] . In contrast to the Jacobi-SVD, the Jacobi ap-
proach to the computation of the Schur decomposition of non-
Hermitian matrices is not so well understood. Heuristic algo-
rithms have been derived by Stewart [S I and Eberlein [20]. We
restate the most important issues here.

The basic operation in the Jacobi method is a plane rotation
Q,) (e) in the (i , j) plane, which is defined as a matrix which

I

11 12 13 14 15 16

VAN DER VEEN AND DEPRETTERE: PARALLEL VLSI MATRIX PENCIL ALGORITHM

221 21 24 23 261 25 is an identity matrix, except for the entries (i , i), (i , j), (j , i)
and (j , j) which together form the 2 X 2 rotation matrix

. (4.2) I COS (e) sin (e)
-sin (0) cos (e)

(In the next section, we extend this to the complex case.) TO
compute the decomposition (4.1) iteratively, Q and Z are com-
posed of a sequence of plane rotations Qij and Zu , operating on
the pair of rows (i , j) and the pair of columns (i , j) of A ,
respectively. All Jacobi methods are based on the following
three notions:

1) The basic operation is the computation of the desired de-
composition for the 2 X 2 submatrix [“ (I “ t ~] , i < j . The two

resulting plane rotations Q,(e,) and Z,(e,) are then applied to
the matrix A via A : = Q 7 A Z i j . This results in the annihilation
of the entries (a i j , aji) in case of SVD, or the entry aji in case
of the Schur decomposition. The new matrix A differs from the
old A only in rows and columns i and j . GSD is a relatively
simple extension of the ordinary Schur decomposition to a pair
of matrices (A , B): rotation angles are computed from corre-
sponding 2 x 2 submatrices of A and B , and the resulting plane
rotations are applied to both A and B in order to annihilate the
entries ujj and bji simultaneously. The basic 2 X 2 problems
(the calculation of 0, and e,) for SVD and GSD are deferred to
Sections VI and VII.

2) Step 1 must be done systematically (according to some
feasible ordering) for all pairs (i , j), i < j , to zero each pair
of entries (a j j , aj i) , respectively the entry aj,, at least once. This
set of operations is called a sweep. In practice, a limited number
of sweeps (say 10) is needed for global convergence in case of
SVD, and convergence is proven to be ultimately quadratic [21].
For GSD, the number of sweeps depends on the normality of
the matrix. For strongly nonnormal matrices, convergence may
be slow or even absent, and no convergence proof has been
given so far.

3) Independent pairs of rows and columns can be operated
upon in parallel. This is what makes the Jacobi methods highly
suitable for parallel implementations.

In most multiprocessor implementations of algorithms, only
nearest neighbor communication is allowed, implying here that
only adjacent rows and columns are paired. The simultaneous
processing of as many independent pairs (i, i + 1) as possible
results in a partitioning of the matrix into 2 X 2 submatrices
(Fig. 4(a)). This subdivision can be done in two ways: the al-
ternative grid is also shown (Fig. 4(b)). Each 2 X 2 block cor-
responds to a processor in which the four entries reside. To
annihilate an entry a, + I , i , the diagonal processor in which this
entry resides computes rotations e,, , + I (8 ,) and Zi, + I (e,),
which subsequently are applied to the corresponding rows and
columns.

We now turn to the question of what ordering scheme is to
be used to zero the off-diagonal entries. The purpose is to an-
nihilate in turn each entry uji (for SVD also ajJ) for all pairs (i ,
j) , i < j i n a s w e e p . AsinFig .4 ,0n lyentr i e sa ,+ , , i andaj . i+I
along the first subdiagonals can be annihilated, we must move
the other off-diagonal entries towards the diagonal. This move-
ment is obtained by interchanging, for each 2 x 2 block, the
entries residing in this block, which takes place after the plane
rotation has been performed on these entries. A convenient
scheme to do this is the “odd-even’’ ordering proposed by
Stewart [5] . By using permutations to interchange the two ad-
jacent rows (i , i + 1) and also the two corresponding columns,

“It “JJ

387

2 1 - 4 3 - 6 5 (id): 1 - 2 3 - 4 5 - 6

Fig. 4. (a) Partitioning of the matrix, and (b) result after one step of the
odd-even ordering.

time
1 5 t s w ~ p : 1. 1-2 3 4 5-6

2. 2 1 4 3-6 5
3. 2-4 1-6 3-5
4. 4 2-6 1-5 3
5. 4-6 2-5 1-3
6 . 6 4-5 2-3 1

2”dsweep: 7. 6-5 4-3 2-1

Fig. 5 . Odd-even iteration scheme.

and by alternating the two possible processor grids (termed
“raster shifting”) on odd and even time steps, all pairs (i , j)
are obtained. This is demonstrated in Figs. 4(b) and 5 for rn =
6 , where dashes indicate an active (i , j) pair. Instead of the
above iteration scheme, other “equivalent” orderings can be
used (see [19], [22] for an overview), but we prefer the odd-
even ordering, as it preserves the initial upper triangular form
of the matrices 4, and R, (3.15) during SVD computations.

Instead of an ordinary permutation, a rotation over 7r/2 is
often used because it has essentially the same interchanging
properties, but can be combined nicely with the Q (0 ,) and
Z (e,) rotations. In general, more than one pair of rotation an-
gles (@,, e,) can be found that solves the 2 x 2 decomposition.
To ensure an effective movement of off-diagonal entries, the
combined effect of the rotation followed by the permutation
should result in “almost” a permutation. Because a large ro-
tation tends to undo the interchanging effect of the permutation,
the smallest rotation angle Os (“inner rotation”) is chosen, and
is often combined with the permutation into one rotation over
an angle of Os + a / 2 . Alternatively (and equivalently in the
case of SVD), if the largest rotation angle O L is close enough to
7r/2, this rotation can be used instead of the combination. This
rotation is then called an “outer rotation,” and will be dis-
cussed in more detail in Sections VI and VII.

V. BASIC CORDIC ARITHMETIC

As may be clear by now, the basic operation in the Jacobi
iteration consists of a plane rotation. The corresponding tool to
use is a CORDIC processor [23], which is a device that rotates
a real 2-D input vector over a given angle, or computes angles
in a vectorization mode by rotating an input vector to the pos-
itive X axis. The latter operation also yields the norm of the
input vector. Special purpose SVD CORDIC’s do exist and have
recently been designed in [24], [25] . However, as we also use
CORDIC’s for computing the Schur decomposition, we will use
a general purpose VLSI CORDIC. Our CORDIC [26] is bit-
level pipelined, resulting in a high throughput rate for vector
operations. The net effect of pipelining is that angles are com-
puted in a fraction of the time needed for computing the result

388

of a rotation. This is emphasized in the coming figures by draw-
ing the angle flow vertically (indicating parallelism), as op-
posed to the data, which flows from left to right. One side effect
of the way our bit-level pipelining is implemented is that the
angle bits are a nonbinary coding of the rotation angle. While
this results in a higher throughput rate, it also means that the
sum of two rotation angles and half the angle (as needed in the
next section) cannot be obtained simply from an addition or bit
shift of the corresponding angle code vectors.

Since we operate in the complex field, it is useful to construct
a complex CORDIC. This CORDIC will, of course, be com-
posed of real CORDIC's. First, we define a complex rotation
as follows:

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991

where c = cos 0; s = sin 0 .
Complex and real CORDIC representations of this rotation

are shown in Fig. 6, wherein [x y] = [x , + j x , y , + j y ,]
and [x ' y '] = [x y l R (0 , +,, 42) are complex 2-D row vec-
tors. Note that the first matrix in (5.1) is strictly speaking not a
rotation, unless $ I = -&. The definition presented here is cho-
sen to simplify the computation of a real 0 from complex vec-
tors. Indeed, in vectorization mode we want to compute (0 , +,,
4') so that [x y l R (0 , +,, 4') = [x' 01, from which

(5 .2)

To ensure that tan f J is real, we choose & and 4, so as to make
the numerator, respectively, the denominator in (5.2) real.
Using a complex CORDIC, this is done by vectorizing the vec-
tor [x y] , switching each CORDIC in Fig. 6 to vectorization
mode. Of course, c$, and & could be combined into one 4, but
the computation of this + would involve more operations than
is the case here. Moreover, we can now use the same structure
of Fig. 6 for both vectorization and rotation mode. As an aside,
note that in (5 . 2) negative angles are computed. This is because
CORDIC performs a vectorization by rotating its input vector
counterclockwise towards the positive X axis. Usually, the an-
gles obtained in this way are directly applicable to successive
vector rotations. In the rare cases where positive angles are
needed we will denote this by drawing a small " + " sign at the
output of the CORDIC.

Finally, a rotation operating on two m-dimensional column
vectors [x y] to obtain [x y] R (O , 4') can be imple-
mented by vertically stacking m complex rotors, acting in par-
allel (Fig. 7). This operation is used in the Jacobi iteration array
to apply plain rotations Q, and Zij to a pair (i , j) of rows or
columns, respectively. For notational convenience, the symbol
R (0) will be used for both real and complex rotations.

VI. SINGULAR VALUE DECOMPOSITION

In this section, we will focus on the SVD of a 2 X 2 complex
matrix A ,

Q H (e i)&(e,) = (6.1)
in which we assume (according to (3.15)) that A is upper tri-
angular with real main diagonal entries:

A = [: y], (6.2)

x*;;- (0 , Q l r @ 2) ;d&g:::
Y Y ' 7

Y',

Fig. 6. Basic complex rotation.

+
Fig. 7 . Plane rotation of two column vectors.

c eiu

Fig. 8 . Computing ;a from ce'"

Using complex rotations as defined in (5. l), a simple transition
to the real case can be made by first rotating this matrix in the
complex plane,

from which 4 = $a. We can compute $ from ceJa as suggested
by the geometry depicted in Fig. 8, leading to the CORDIC
implementation shown in Fig. 9(a). This also yields c . Next,
the real part of the complex rotations are used to solve the real
SVD:

from which the two angles e l and e2 can be computed as [17]

tan (e, + e,) = C
b - a

tan (e , - e,) =
b + a'

A (real) CORDIC implementation to compute O 1 is shown in
Fig. 9(b). In this figure, [x y] = [(b + a) c I R (0 , + 0 2) ,
and x' = J (b + a)' + cz is the norm of [x y]. Since the an-
gle between this vector [x y] and the positive X axis is 20,,
the angle between the vector [x + x ' y] equals e l . After com-

I

VAN DER VEEN AND DEPRETTERE: PARALLEL VLSI MATRIX PENCIL ALGORITHM

i
c e i a 4

(a)

e,+e,
b+a b:gjTl
b+a
C

(b)

Fig. 9. SVD (using real CORDIC’s). (a) Computation of Q, = fa . (b)
Computation of 8 , .

puting 8, from this vector, an easy way to obtain O 2 is by first
applying Q (B I) to A to get Q H A , as in Fig. 7, and then using
Z (8 ,) to make this matrix upper triangular (in fact: diagonal).
O2 thus follows from one vectorization.

VII. GENERALIZED SCHUR DECOMPOSITION
The last step in the direction finding algorithm is the com-

putation of the generalized Schur decomposition for two square
non-Hermitian matrices, A and B,

Q H A z = S Q , Z unitary

Q ~ B Z = T S , upper triangular. (7.1)
We will use the “Jacobi-like” Schur algorithm due to Stewart
[5], extended in a straightforward way to yield the generalized
decomposition. The same kind of extension has been used by
Luk to compute a generalized SVD [27]. The basic operation
in the extended algorithm is the computation of rotation angles
for Q and Z that make 2 x 2 submatrices of both A and B upper
triangular. Stewart’s algorithm uses the odd-even ordering, and
“outer rotations” that combine rotations with permutations. As
Eberlein has pointed out [20], this algorithm does not always
converge. She uses a different ordering scheme, both “inner”
and “outer” rotations, and some heuristics to improve conver-
gence. In this section, we derive an alternative modification to
the Stewart algorithm, that uses the original ordering scheme.
We give reasons why the modifications will fundamentally im-
prove the convergence behavior of the algorithm. Simulations
affirm that this is indeed the case, and that the modified algo-
rithm has convergence properties similar to a “clean” version
of Eberlein’s algorithm. But first, we present a CORDIC im-
plementation for solving the 2 X 2 GSD problem.

A. Solution of the 2 X 2 GSD Problem

The closed form solution of the 2 X 2 GSD problem gives
rise to two coupled quadratic equations, which, unlike the SVD
problem, are not easily implemented using CORDIC hardware.
To tackle this, we do not compute the exact decomposition, but
instead derive an accurate estimation using standard QZ itera-
tion, which is quite fast for 2 x 2 matrices. The QZ method
implicitly performs a QR iteration on A B - ’ , and was derived
by Moler and Stewart [28], see also [lo]. The idea is that, since
the Jacobi iteration algorithm is itself a convergence process, it

389

all
b i i m (e l , $ l r $ 2)

Fig. 10. GSD-computation of Q (0 ,) .

is possible to use eigenvalue estimations within this process
without affecting global convergence properties too much. We
have observed that a fairly limited number of QZ iterations (two)
provide estimations that are accurate enough for use in the Ja-
cobi algorithm. This will be shown in Tables I-VI.

One iteration of the QZ algorithm can be summarized as fol-
lows.

1) Determine Q so that Q H (A - a B) is upper triangular.
Here, a is a suitable shift (discussed below). Then apply Q to
A and B , yielding Q H A and Q H B .

2) Determine Z so that Q H B Z is upper triangular. Apply Z
to A and B, yielding Q H A Z and Q H B Z .

As in the QR iteration, a shift U is needed to ensure conver-
gence when both eigenvalues have almost equal absolute values
[lo], which frequently is the case in the DOA problem. The
shift should be close to an eigenvalue of AB -I, hence a suitable
and simple choice for U is a22/b22. It is known from QR itera-
tion theory that a,,/b,, will converge to the eigenvalue that is
closest to the a used in the iteration step, resulting in a Q ro-
tation which is closest to identity (again denoted as inner rota-
tion). We will take advantage of this knowledge in the next
subsection.

We now describe a CORDIC implementation for executing
this 2 x 2 QZ algorithm. From step 1, Q (8 ,) can be computed
as

in which the angle defined by

:,a22 -

c b22
(7.3 1

is computed using a CORDIC vectorization. After this, n and y
are found using CORDIC rotations over this angle, and (O 1 ,
&) can be computed in a second stage (Fig. 10). In general,
all matrix entries are complex, so complex CORDIC’s as in
Fig. 6 are used here. After applying Q to A and B , the proper
Z (8 ,) rotation (step 2) is found by making the new B upper
triangular. Again, this is done using one vectorization. Note the
close resemblance of Fig. 10 and the SVD computations in Fig.
9.

The QZ iteration algorithm consists of a repeated execution
of the above process on the same 2 X 2 block (we use two
iterations). This loop is a major difference with SVD, where no

390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991

TABLE I
GSD ESPRIT CONVERGENCE TEST. TEST MATRICES USED IN TABLE I1

1 .7018 - .0039i -.1682 - .0087i -.0013 - .0237i ,0184 - ,0122

,0220 - .0018i ,6928 - .0069i -.3152 - ,0335 -.I024 - .0188i

.oooO + .OOO4i ,0031 - .0016i ,6088 + . m i ,0309 - .1119i

.0003 - .0008i .OOO4 + .0005i ,0005 - .0935i ,4256 + ,33741

A = [

1 ,4557 - ,54671‘ .I124 - .1202i ,0329 + .0024i ,0030 + .0165i

-.0129 + .0165i ,4547 - .5076i ,2284 - .2181i ,0846 - .0708i

-.0003 - .OOO4i -.0013 + .0031i .4657 - .4164i -.0408 - .0073i

.OOO4 + .0007i .oooO - .OOOli ,0216 + ,06761’ -.2284 - .5650i

B = [

TABLE I1
GSD ESPRIT CONVERGENCE TEST

Stewart “Eberlein” Modified Modified
Sweep Exact Exact Exact Approx (2)

0 1.3e - 1 1 . 3 ~ - 1 1.3e - 1 1.3e - 1
1 5 . 5 ~ - 3 8.9e - 3 5.5e - 3 5.4e - 1
2 3.7e - 3 2.7e - 4 6.8e - 3 3.3e - 2

2.4e - 3 2.6e - 7 1.6e - 3 1.4e - 2 3
4 1.8e - 3 2.4e - 13 5.9e - 5 3 . 0 ~ - 3
5 1.2e - 3 2 . 1 ~ - 25 8. le - 8 1 . 7 ~ - 4
6 9. le - 4 1 . 5 ~ - 13 7.0e - 7
7 5 . 8 ~ - 4 5.6e - 25 1.2e - 1 1

9 2.9e - 4
10 2.2e - 4

Convergence is measured via the Frobenius norm of the strictly lower
(or upper) triangle of AB-’. Both exact 2 X 2 GSD’s and approximations
using 2 QZ iterations have been used. “Eberlein” is actually implemented
as parallel ordering, and use of Os and permutations only.

8 4.52 - 4 3 . 1 ~ - 21

TABLE 111
GSD ESPRIT CONVERGENCE TEST

Stewart “Eberlein” Modified Modified
Scenario Exact Exact Exact Approx (2)

1 no conv. 13-15 13-16 12-21
2 no conv. 11-14 12-17 12-17
3 no conv. 9-13 7-9 9-1 1

~

Test matrices in an 8 x 8 example are from ESPRIT Scenarios (1)-(3).
(1) Eight signals impinging on the array at angles increasing by 10”; (2)
same case but two of the signals are now spaced by 5” from other signals;
(3) 6 signals spaced by IO”, but evaluated for d = 8 (as due to overesti-
mation). For each test run, the sweep is marked for which the norm of the
error first drops below a dozen tests are run for each scenario; the
table lists the range of the set of marked sweeps.

iteration is needed and new 2 X 2 problems result after each
application of Q and Z due to the raster shifting. In an actual
implementation, we want the structure of the GSD and SVD
computations to be similar. A simple way to achieve this is
obtained by “unfolding” the loop and making the raster shift
conditional: to iterate, skip the raster shift, and the processors
will operate on the same 2 x 2 matrices in the next time step.
To end the loop, perform a raster shift.

B. Sweeps and Convergence
We have experimented with a generalized Schur decomposi-

tion based on Stewart’s Schur algorithm [5] . This GSD turned
out to have bad convergence properties in a number of simula-
tions (see Tables 1-111 for an ESPRIT simulation example). Be-
cause the same problem also arises in the single Schur
decomposition (Q H A Q = S) , we will focus on this decompo-
sition for a while. Of particular interest is the near-convergence
behavior of algorithms, for an algorithm should sustain this
convergence rather than diverge.

In Stewart’s Schur algorithm, the odd-even ordering is used,
and 2 X 2 submatrices are made upper triangular using the larg-
est of the two possible angles (called os and OL). It is assumed
that this 0 , is close enough to $T to effect the required circula-
tion of off-diagonal entries. However, as Eberlein [20] has
pointed out, it is not guaranteed that O L is even larger than ~ / 4 .
In particular, if the current 2 X 2 matrix is almost upper trian-
gular (which is the case when the full matrix is near conver-
gence) :

then, for E small in comparison with cI1 - cZ2, the tangents of
Os and 0, can be approximated by

E
ts = ~

C I I - c22

(7.5)
CII - c22

c12
tL = -.

If the matrix is nonnormal, we could have cI2 > cI1 - cZ2,
hence 8, < ~ / 4 , and there is no rotation that is large enough
to satisfy the assumptions stated above, i.e., that effectively
permutes the matrix and keeps it upper triangular at the same
time.’ The choice to keep the matrix upper triangular, then,
obstructs the necessary permutation. As this can occur even near
convergence, the unconditional use of 0, is not the right thing
to do. This is confirmed by the simulation results.

We can overcome this problem by making the following two
observations:

‘Note that in SVD, a I OL 1 > r / 4 always exists because a permuted
diagonal matrix is again diagonal, so 0, = Os f u/2.

1

I

391 VAN DER VEEN AND DEPRETTERE: PARALLEL VLSI MATRIX PENCIL ALGORITHM

TABLE IV
GSD CONVERGENCE FOR STEWART MATRICES, cr = 0.1

Stewart “Eberlein” Modified Modified
Sweep Exact Exact Exact Approx (2)

0 1.7e + 0 1.7e + 0 1.7e + 0 1.7e + 0
1 4. le - 1 2.2e - 1 4.1e - 1 4 . 1 ~ - 1
2 1.le - 2 1.3e - 2 2.7e - 2 2.6e - 2
3 1.le - 4 2.0e - 5 6 . l e - 4 6. le - 4
4 3.2e - 7 8.4e - 10 5 . 0 ~ - 8 6 . 8 ~ - 7
5 1.6e - 9 3.0e - 15 2.7e - 11 9.0e - 12
6 5.9e - 12 8.7e - 23 7.6e - 20 2.5e - 19
7 3.le - 14
8 1.6e - 16

The point is that the resulting net angle 8, + ;T is not equiva-
lent to OL, as we now end up with a lower triangular matrix

During a sweep, using (7.6) as a basic step, a matrix that is
initially almost upper triangular is turned into an almost lower
triangular matrix:

TABLE V L€ E E

GSD CONVERGENCE FOR STEWART MATRICES, a = 1

Modified X

X

X

X

X

X

+ I: Stewart “Eberlein” Modified Approx
Sweep Exact Exact Exact (2)

0 2 . 1 ~ + 0 2. le + 0 2. le + 0 2. le + 0
1 1.2e + 0 9 . l e - 1 1.2e + 0 9.3e - 1

1.9e - 1 2 4.2e - 1 2.5e - 1 6.7e - 1
3 1.5e - 1 2.4e - 2 3 . 8 ~ - 1 3.52 - 2

5 1. le - 2 3. le - 6 3.8e - 2 I . l e - 5
6 3.8e - 3 3.3e - 10 3.9e - 4 7 . 1 ~ - 9
7 1.0e - 3 4.9e - 14 5.2e - 7 9.8e - 15
8 3.9e - 4 1.7e - 20 3.5e - 11

4 4.0e - 2 1.2e - 3 8.0e - 2 1 . 7 ~ - 3

9 1. le - 4 5 . 3 ~ - 18
10 4 . l e - 5
11 1.le - 5

X

o x x X X € ’ X

E x o X I - [) ;: X E ;]
E x x

0 x E l x E’ E‘ j-Li; i ;I+...
E x o

x x x
12 4.3e - 6
13 1.2e - 6
14 4.6e - 7 where x is generic for an arbitrary matrix element. The small

entries E are turned into 0 using (7.6), but fill-ins E ’ result from
subsequent rotations. After one sweep, the matrix has turned to
(almost) lower triangular form due to the permutations. In the
next (even) sweep, the matrix is made upper triangular again,
now using

TABLE VI
GSD CONVERGENCE FOR STEWART MATRICES, a = 10

Stewart “Eberlein” Modified Modified
Sweep Exact Exact Exact Approx (3)

0 1.5e + 1 1.5e + 1 1.5e + 1 1.5e + 1
1 3.4e + 0 3.5e + 0 3.4e + 0 4.4e + 0
2 1.4e + 0 3. le + 0 1.6e + 0 6.8e + 0

13
14
15
16
17
18
19
20
21
22
23

3.2e - 1 1.2e - 1 4.5e - 3 4.5e - 2
3.0e - 1 7.5e - 2 3.3e - 4 9.6e - 2
2.8e - 1 1.3e - 1 1.9e - 6 4.4e - 2
2.6e - 1 9.8e - 2 1.3e - 9 5.9e - 3
2.5e - 1 4.8e - 2 2.0e - 14 1.2e - 4
2.4e - 1 1.4e - 2 1.3e - 7
2.3e - 1 2.7e - 3 1.2e - 11
2. le - 1 6.9e - 5 2. le - 18
2.0e - 1 4.0e - 7
2.0e - 1
1.9e - 1

4.8e - 10
5.7e - 14

1) Near convergence, E is very small, hence (from 7.5) Os is
very small.

2) In the Jacobi algorithm, effective permutations are essen-
tial, hence the basic step should be the use of a rotation angle
as small as possible (which is 8,) followed by a permutation.

as a basic step. In an implementation, we can use the QZ iter-
ation algorithm of the previous subsection to rotate over 8,.
During odd sweeps, we subsequently apply the permutation,
yielding (7.6). During even sweeps, we first apply the permu-
tation, and then perform the QZ iteration, which yields (7.7).

We have run several ESPRIT test scenarios to demonstrate
the convergence properties of the GSD algorithms. ESPRIT data
typically has eigenvalues spaced closely together on the unit
circle in the complex plane (corresponding to the directions of
arrival), but we have also run tests in which some of the eigen-
values have random positions, as caused by an overestimation
of the number of signals. Comparing Stewart’s algorithm with
the modified algorithm described above (Tables I-HI), we ob-
serve that Stewart’s method hardly converges, whereas the
modified algorithm ultimately shows a quadratic convergence
behavior. This increase of speed is not because the use of 8,
produces smaller fill-ins E ’ : it can be shown using (7.5) that, in
principle, the magnitude of a fill-in can be the same as in the O L
case. Convergence is faster now due solely to the more effective

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991 392

permutation habit of this algorithm. We have run the same tests
on algorithms in which the 2 X 2 GSD is approximated using
a few QZ iterations. The results show that when two iterations
are used, on the average only a few extra sweeps are needed.

The algorithm described by Eberlein [20] uses a different or-
dering (the Brent-Luk “parallel” ordering [17]), and a rather
obscure combination of Os, O L and permutations, governed by a
number of (heuristic) decision rules. We have checked the per-
formance of a “clean” version of this algorithm, using Os only,
and permutations according to the parallel ordering scheme. By
doing so, the actual difference between this algorithm and our
modified Stewart algorithm narrows down to the use of a dif-
ferent ordering scheme. The tests show that the resulting con-
vergence speeds are similar. This suggest that both orderings
are equivalent for Jacobi-Schur, in the same way as has already
been derived by Luk for Jacobi-SVD [22].

All above results are confirmed by a test case that appeared
both in the Stewart and in the Eberlein papers (Tables IV-VI).
The convergence speed is measured for matrices of the form A
= U (D + a F) UH, where U is unitary, D is diagonal, F is
strictly upper triangular, and the parameter a! controls the de-
parture of A from normality. Only when a! = 10, two QZ iter-
ations are not sufficient to ensure convergence, and three
iterations are needed. It is remarked here that, for all Schur
algorithms until now, the speed of convergence still strongly
depends on the normality of the matrix. Although the use of 8,
in combination with permutations empirically results in faster
convergence, no rigid proof has been presented stating why this
is so. In literature until now, only for normal matrices a quan-
titative analysis of convergence is given [29].

VIII. SVD/GSD PARALLEL ARRAY ARCHITECTURE
The purpose of this section is to describe in general terms a

parallel array of processors on which Jacobi iteration algorithms
can be performed. According to (3.15), we need a three-layer
array for the SVD computations in the ESPRIT algorithm: two
layers for operating with plane rotations upon I?, and R2 to make
these matrices diagonal, and one layer to apply the correspond-
ing rotations to I to construct the result matrix E . (It will even-
tually be possible to combine l?, and R2 into one layer, since
both matrices remain upper triangular.) A two-layer array is
needed for the GSD computations in (3.17). Since the multi-
layer array is a rather straightforward extension from the one-
layer case, we will focus in this section only on the latter case.
Systolic arrays for the Jacobi algorithm have already been dis-
cussed by many authors (see, e.g., [17]-[19]). The major new
consideration here is that we require the array to make efficient
use of a number of pipelined CORDIC processors, which leads
towards a different architecture.

A. Stage Dejinition

The various operations of the Jacobi iteration algorithm
(computation of rotation parameters and application of plane
rotations) can be partitioned into a sequeoce of stages, defining
a stage as a set of independent parallel tasks. First we observe
that we can operate on all independent pairs (i , i + 1) of rows
or columns in parallel, but not on rows and columns at the same
time, because these have matrix entries in common. Hence Q
and Z rotations go into two different stages. Also, from Figs. 9

and 10, the computation of 8, for each 2 X 2 main diagonal
submatrix (i , i + 1) is partitioned into two stages: a prepro-
cessing stage to compute [x y] in Fig. 10 for GSD, or [x +
x’ y] in Fig. 9 for SVD, followed by the actual computation
of (O , , c $ ~) in the next stage. The basic time steps, then, are
as follows.

1) Compute parameters [x y] or [x + x ‘ y] for all 2 x 2
main diagonal submatrices (i , i + 1) in parallel.

2) Compute plane rotations Q,, , + , (1 9 ~) by vectorizing these
parameters. Immediately apply these rotations to the corre-
sponding rows, using hardware as in Fig. 7.

3) Compute plane rotations Z t , t + , (e 2) . In general, these fol-
low from simple 2 x 2 QR factorizations (one vectorization).
Immediately apply these rotations to the corresponding col-
umns.
4) If necessary, apply a raster shift to switch between oper-

ating on pairs (i , i + 1) for odd i and even i. SVD always needs
a raster shift. GSD, however, skips the first of every two shifts
to implement an unfolded QZ iteration loop of two cycles.

B. Pipelined Processor Array

At this point, we have divided the algorithm into a sequence
of stages. We can now map each stage onto a number of parallel
operating CORDIC’s, so that each processor in a stage operates
on pipelined data. We want the order in which the matrix entries
are processed and are shifted out of a stage to be suitable for
the next stage, so that this stage can commence processing as
soon as the first entries leave the current stage. This will create
a FIFO pipeline of stages, in which the number of stages ac-
tually implemented may be chosen independently of the dimen-
sion of the matrix. A simple, one-directional data movement
thus results.

The main problem here is to find a processing ordering of
data that enables a smooth transition from row to column pro-
cessing and also needs only local data communication. A suit-
able ordering is obtained by subdividing the matrix into
diagonals which are processed one after another. The main di-
agonal is to be processed first, because new rotations are com-
puted from these entries, but the other diagonals can be ordered
in a number of ways, one of which is shown in Fig. l l(a). The
numbers indicate the ordering of diagonals, hence correspond
to the time step at which a diagonal is processed in a stage.
Entries having equal number labels are processed in parallel.
Other subdivision schemes are possible (see, e.g., [17]), but
the scheme in Fig. 11 ensures that all diagonal vectors are of
equal length; consequently, the number of processors used in a
stage is constant at each time step. The resulting global timing
regime is both regular and simple. The FIFO’s in which the
rows of the matrix are stored send one entry into the array at
every time step. All processors in each stage consist of pipe-
lined CORDIC’s, and a number of stages may be active (in
pipeline) at the same time, each one processing diagonal vec-
tors.

As may be seen from the scheme and the matrix grid in Fig.
1 l(a), a row or column processor always operates on a pair of
entries that are separated at most two time steps. Thus, attached
to each processor is a buffer representing a delay of two time
steps, in which the processor collects the data it needs to op-
erate upon. Because all diagonals experience the same delay,
the global timing is kept regular.

I

VAN DER VEEN AND DEPRETTERE: PARALLEL VLSI MATRIX PENCIL ALGORITHM 393

MAmx

staee: 1 2 3 4 .

shift

(a) (b) (C)

Fig. 11. Pipelined stages of parallel CORDIC processors. (a) Matrix. (b)
Resulting ordering. (c) Parallel array.

The processors in stage 1 catch the relevant entries of the 2
X 2 main diagonal submatrices as they come along, and com-
pute the rotation parameters [x y] or [x + x ’ y] . The param-
eters are sent ahead of the data stream to the processors in stage
2 (labeled Q) . These processors first compute the correspond-
ing complex rotation angle by vectorizing the rotation parame-
ters, and immediately proceed to rotate the incoming pairs of
rows over this compound angle. A processor in stage 3 (column
operations) first computes the Z (19,) rotation by vectorizing a
pair of two relevant diagonal entries. The data entering this pro-
cessor is row oriented, hence the processing of columns is dis-
tributed over,all processors in a stage. This implies that a
processor can use an angle only twice, after which it must be
passed to its neighboring processors, resulting in a propagation
of angles at constant speed between adjacent processors. Angles
also wrap around between the top and bottom processors in a
stage, hence the processors are connected in a ring. The (con-
ditional) raster shift is performed by a down-shift of rows, also
with a wraparound to the top. The raster shift can be that simple
because the rows are ordered with diagonal elements first, and
this condition is preserved by the shift.

At the edges of the matrix some irregularities occur. After
applying the raster shift, some edge entries only need row op-
erations, others need only column operations, and no angle
computations are needed for these entries (see Fig. 4). To pro-
hibit the rotations that are not allowed, we have to tag the di-
agonal entries of the two rows at the boundaries of the matrix.
This enables the processors computing angles to detect that no
rotations are needed, thus to generate a “zero”-valued dummy
rotation angle. The regularity and generality of the stages 2 and
3 are kept intact this way.

The number of stages actually implemented in hardware may
be chosen independently of the dimension of the matrix. It is
not too difficult to further reduce the number of processors in
each stage to arrive at a fixed size array, but we omit the details
here for brevity.

IX. CONCLUDING REMARKS

In this paper, we have described in three parts a parallel ar-
chitecture for a matrix pencil application based on the ESPRIT
narrow-band DOA model. Starting with the ESPRIT model, a
matrix pencil algorithm has been derived that consists of two
stages of related unitary matrix decompositions. The keynote of
the second part is that both decompositions can be computed in
the same way using two-sided rotations. It has been shown that
the computation of rotation angles can be unified to a reasonable

extent, which has led to an architecture on which both decom-
positions can be computed using only one type of processor.
The purpose of this paper has been the presentation of a frame-
work relating these three fields. Each of them deserves to be
explored further. In particular, future investigations should show
how the matrix pencil algorithm can be used for more general
ESPRIT-based models incorporating, e.g., wide-band, multi-
dimensional, correlated signals. Also, the GSD Jacobi method
is in need of a more formal proof stating conditions for conver-
gence of nonnormal matrices.

REFERENCES

[I] A. J. van der Veen and E. F . Deprettere, “A parallel VLSI di-
rection finding algorithm,” Proc. SPIE Int. Soc. Opt. Eng., vol.
975, pp. 289-299, 1988.

[2] G. Cohen, D. Dubois, J . P. Quadrat, and M. Vlot, “A linear-
system-theoretic view of discrete-event processes and its use for
performance evaluation in manufacturing,” IEEE Trans. Auto-
mat. Contr., vol. AC-30, no. 3, pp. 210-220, 1985.

[3] K. Jainandunsing and E. F. Deprettere, “A new class of highly
structured algorithms for solving systems of linear equations,”
SIAM J . Sri. Stat. Comput., Sept. 1989.

[4] R. Roy, “ESPRIT,” Ph.D. dissertation, Stanford University,
Stanford, CA, 1987.

[5] G . W. Stewart, “A Jacobi-like algorithm for computing the Schur
decomposition of a non-Hermitian matrix,” SIAM J . Sci. Stat.
Comput., vol. 6 , pp. 853-864, 1985.

[6] A. Paulraj, R. Roy, and T. Kailath, “A subspace rotation ap-
Droach to signal parameter estimation,” Proc. IEEE, vol. 74, no.
?, pp. 10441-1045, 1986.

[7] B. Ottersten and T . Kailath, “ESPRIT for wide-band signals,”
in Proc. 21st Asilomar Conf. Signal Syst. Comput., 1988, pp. “ - -
98- 102.

[8] S . Y . Kung, VLSI Array Processors. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[9] V. U. Reddy, A. Paulray, and T. Kailath, “Lecture notes on
array signal processing,” Stanford University, Stanford, CA,
1987.

[IO] G. H. Golub and C . F. van Loan, Marrix Computations. Bal-
timore, MD: John Hopkins University Press, 1984.

[I I] J. M. Speiser, “Some observations concerning the ESPRIT di-
rection finding method,” Proc. SPIE Int. Soc. Opt. Eng., vol.

[I21 C. F. van Loan, “A unitary method for the ESPRIT direction-
of-arrival estimation algorithm,” Proc. SPIE Int. Soc. Opt. Eng.,

[I31 H. Ouibrahim, D. D. Weiner, and T. K . Sarkar, “A generalized
approach to direction finding,” presented at IEEE Mil. Comm.
Conf., 1986.

[I41 G. H. Golub and C. F. van Loan, “An analysis of the total least
squares problem,” SIAM J . Numer. Anal., vol. 17, no. 6 , pp.

[I51 S. van Huffel, “Analysis of the TLS problem and its use in pa-
rameter estimation: Computation, properties, and applications,”
Ph.D. dissertation, Kath. University Louvain, Louvain, Bel-
gium, 1987.

[I61 F. T. Luk, “Architectures for computing eigenvalues and
SVD’s,” Proc. SPIE Int. Soc. Opt. Eng., vol. 614, pp. 24-33,
1986.

[I71 R. P. Brent, F. T. Luk, and C. F. van Loan, “Computation of
the singular value decomposition using mesh-connected proces-
sors,” J . VLSI Comput. Sysr., vol. 3, pp. 242-270, 1985.

[IS] R. P. Brent and F. T. Luk, “The solution of singular value and
symmetric eigenvalue problems on multiprocessor arrays,” SIAM
J . Sci. Stat. Comput., vol. 6 , pp. 69-84, 1985.

[I41 U. Schwiegelshohn and L. Thiele, “A systolic array for cyclic-
by-rows Jacobi algorithms,” J . Parallel Distributed Comput. ,

[20] P. J . Eberlein, “On the Schur decomposition of a matrix for par-
allel computation,” IEEE Trans. Compur., vol. C-36, pp. 167-
174, 1987.

8 2 6 , ~ ~ . 178-185, 1987.

vol. 826, pp. 170-176, 1987.

883-892, 1980.

vol. 4 , pp. 334-340, 1987.

T- --

394 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991

[21] K. V. Fernando, “Global convergence of the cyclic Kogbetliantz
method,” Numerical Algorithms Group Ltd., Oxford, NAG
Tech. Rep., 1986.

[22] F. T. Luk, “On the equivalence and convergence of parallel Ja-
cobi SVD algorithms,” Proc. SPIE Int. Soc. Opt. Eng., vol. 826,

[23] J. E. Volder, “The CORDIC trigonometric computing tech-
nique,” IEEE Trans. Electron. Comput., vol. EC-9, pp. 227-
231, 1960.

[24] J . R. Cavallaro and F. T. Luk, “CORDIC arithmetic for an SVD
processor,” in IEEE Proc. 8th Symp. Comp. Arithmetic, 1987,

[25] J. M. Delosme, “A processor for two-dimensional symmetric ei-
genvalue and singular value arrays,” in Proc. 21sr Asilomar Conf.
Signal Syst. Cornput., 1988, pp. 217-221.

[26] A. A. J . de Lange, A. van der Hoeven, J . Bu, and E. F. Depret-
tere, “A floating-point pipelined CMOS CORDIC processor,”
in Proc. ISCAS”?, 1988.

[27] F. T. Luk, “A parallel method for computing the generalized
SVD,” J . Parallel Distributed Comput., vol. 2, pp. 250-260,
1985.

[28] C. B. Moler and G. W . Stewart, “An algorithm for generalized
matrix eigenvalue problems,” SIAM J . Numer. Anal., vol. 10,
no. 2, pp. 241-256, 1973.

[29] P. Van Dooren and J. P. Charlier, “Jacobi-like algorithm for
computing the generalized Schur form of a regular pencil,” Proc.
SPIE Int. Soc. Opt. Eng., vol. 1152, Aug. 1989.

pp. 152-159, 1987.

pp. 113-120.

Ale-Jan van der Veen (S’87) was born in The
Netherlands in 1966. He graduated from the
Department of Electrical Engineering, Delft
University of Technology, in 1988. He is cur-
rently with the Network Theory Section at the
same university, where he is working towards
the Ph.D. degree. His research interests in-
clude system identification, model reduction,
time-varying network theory, and optimal con-
trol.

Ed F. Deprettere (M’83-SM’SS) received the
M.Sc. degree from the Ghent State University,
Ghent, Belgium, in 1968, and the Ph.D. degree
from the Delft University of Technology
(DUT), Delft, The Netherlands, in 1981.

In 1970, he became a Research Assistant and
Lecturer at the DUT, where he is now Associ-
ate Professor in the Department of Electrical
Engineering, Network Theory Section. His
current research interests are in VLSI and mod-
ern signal processing, in particular VLSI array - . - -

processing and mapping of signal processing algorithms, network
graphs, and matrix equations onto silicon.

1 ----- - - -

