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ABSTRACT
Image formation in radio astronomy is a large-scale inverse problem that is inherently ill-
posed. We present a general algorithmic framework based on a Bayesian-inspired regularized
maximum likelihood formulation of the radio astronomical imaging problem with a focus
on diffuse emission recovery from limited noisy correlation data. The algorithm is dubbed
PRIor-conditioned Fast Iterative Radio Astronomy and is based on a direct embodiment of the
regularization operator into the system by right preconditioning. The resulting system is then
solved using an iterative method based on projections onto Krylov subspaces. We motivate
the use of a beam-formed image (which includes the classical ‘dirty image’) as an efficient
prior-conditioner. Iterative reweighting schemes generalize the algorithmic framework and
can account for different regularization operators that encourage sparsity of the solution.
The performance of the proposed method is evaluated based on simulated 1D and 2D array
arrangements as well as actual data from the core stations of the Low Frequency Array
radio telescope antenna configuration, and compared to state-of-the-art imaging techniques.
We show the generality of the proposed method in terms of regularization schemes while
maintaining a competitive reconstruction quality with the current reconstruction techniques.
Furthermore, we show that exploiting Krylov subspace methods together with the proper
noise-based stopping criteria results in a great improvement in imaging efficiency.

Key words: methods: numerical – methods: statistical – techniques: image processing –
techniques: interferometric.

1 IN T RO D U C T I O N

1.1 The image formation problem

The advent and development of increasingly large radio interferom-
eters such as the Low Frequency Array (LOFAR; Van Haarlem et al.
2013) and the Square Kilometer Array (Dewdney et al. 2009) has
sparked renewed interest in the image formation task. The increased
resolution, bandwidth, sensitivity, and sky coverage of these instru-
ments result in many more sources, including unresolved sources
and extended structures, rendering the traditional imaging algo-
rithms based on point source detection and CLEAN iterations less
effective. At the same time, image formation is expected to be the
main computational bottleneck in the processing pipeline of next
generation radio telescopes (Jongerius et al. 2014).

� Earlier versions of this paper were presented at ICASSP’17 [Naghibzadeh
& van der Veen (2017b)] and CAMPSAP’17 [Naghibzadeh & van der Veen
(2017a)].
†E-mail: s.naghibzadeh@tudelft.nl

Image formation is based on solving the measurement equation,
which generically has the form (Leshem & Van der Veen 2000;
Wijnholds & van der Veen 2008)

r = Mσ + e,

where r is a vector of the measurements (antenna pair correlations
or visibilities), M is the system matrix that models the antenna
sampling pattern, σ is a stack of the pixels of the source brightness
image, and e is an additive noise term. For high-resolution images,
computing σ by least-squares (LS) minimization of ‖r − Mσ‖2

leads to an ill-posed problem. The solution σ̂ = M†r (where M† is
a left inverse of M) includes a magnified noise term M†e or, if M is
a ‘wide’ matrix, a unique and physically meaningful solution may
not even exist.

Regularization is needed, in the form of prior knowledge, struc-
ture, or other constraints on the solution σ . Classically, one of the
options is to add a term to the cost function, e.g. ‖σ‖2

2 (an �2

constraint or Tikhonov regularization), ‖σ‖1 or ‖σ‖0 (an �1 or �0

constraint), a total variation constraint or a maximum entropy con-
straint. These options induce smoothness or sparsity of the solution.
Another structural constraint is the requirement of the image pixels
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to be positive. Iterative solution methods such as conjugate gradient
are usually needed to compute the solution, and another form of
regularization is to prematurely stop the iterations, restricting the
solution to a particular data-dependent subspace. More formally,
many of these regularization techniques can also be formulated in a
Bayesian framework, where σ is modelled as a random variable, and
prior knowledge on σ is given in the form of a prior statistical dis-
tribution p(σ ), often containing unknown parameters (e.g. scale)
which can be modelled statistically as well as using hyperpriors
(Tipping 2001; Wipf & Rao 2004).

It is clear that, in this generic form, the problem has been widely
studied in many areas of mathematics, engineering, signal pro-
cessing, and computer science (e.g. machine learning; Kaipio &
Somersalo 2004). In recent years, some of these techniques are now
gradually being introduced in the context of radio astronomy. Con-
siderations in algorithm selection are (i) the accuracy (fidelity) of the
resulting image, related to the definition of the optimization prob-
lem, (ii) computational complexity, related to the scalable solution
of the optimization problem, and (iii) the automation and flexibility
of the process regarding the selection of unknown parameters or
settings such as iteration counts. For future radio telescopes, not
all measurement data can be stored and image formation has to be
done in an automated and quasi-real time process.

1.2 State-of-the-art imaging algorithms

Classical Radio Astronomical (RA) imaging algorithms are based
on the CLEAN algorithm (Högbom 1974; Schwab 1984) and its
multiresolution and multiscale variants (Wakker & Schwarz 1988;
Cornwell 2008; Rau & Cotton 2011; Offringa & Smirnov 2017).
The considered cost function is the LS objective, implicitly regular-
ized by an �0 constraint (Marsh & Richardson 1987) which favours
maximal sparsity of the solution. The CLEAN algorithm was re-
cently interpreted as a gradient descent method combined with a
‘greedy’ procedure to find the support of the image (Onose et al.
2016).

Alternatively, the problem can be regularized by posing a non-
negativity constraint on the solution (Briggs 1995). The resulting
Non-negative LS (NNLS) optimization can be implemented using
the active set method (Sardarabadi, Leshem & van der Veen 2016)
and similarly consists of two levels of iterations: (i) an outer loop to
iteratively find the sparse support of the image and (ii) an inner loop
in which a dimension reduced version of the LS problem is solved.

Another classical RA imaging algorithm is the maximum entropy
method (MEM; Cornwell & Evans 1985). The regularization term
is the entropy function σ T log(σ ), and the problem is solved using
computationally expensive non-linear optimization methods such
as Newton–Raphson.

Finding the non-zero support of an image using an �0 constraint is
an NP-complete problem. Instead, this constraint may be weakened
to an �1 constraint, which still promotes sparsity of the solution, but
admits a solution based on the theory of compressed sensing and
convex optimization, for which efficient techniques exist. Recently,
many algorithms in this direction have been proposed (Wiaux et al.
2009; McEwen & Wiaux 2011; Carrillo, McEwen & Wiaux 2012,
2014; Dabbech et al. 2014; Girard et al. 2015; Onose et al. 2016).
These methods are based on a gradient descent approach. Instead of
a constraint on ‖σ‖1 (sparse image), also a more general constraint
‖�T σ‖1 or ‖α‖1 where σ = �α can be used, in which � is an
overcomplete dictionary of orthonormal bases. For example Spar-
sity Averaging Reweighted Analysis (SARA; Carrillo et al. 2012)
employs a concatenation of wavelet dictionaries. The advantage

of the methods based on convex optimization is the simplicity of
imposing additional constraints on the solution, the existence of
many well-developed methods with guaranteed convergence and
the ability to split the work into simpler, parallelizable subproblems
(Combettes & Pesquet 2011; Onose et al. 2016). The disadvantage
of these algorithms is that the gradient descent steps make the al-
gorithm convergence rather slow. Also, as remarked in Offringa &
Smirnov (2017), many of these algorithms have not yet been tested
on real data.

Taking another direction, the RESOLVE algorithm introduced
techniques from Bayesian statistics to propose priors that regularize
the solution (Junklewitz et al. 2016), aimed specifically at extended
sources, and modelled these a priori using lognormal distributions.
Unfortunately, the resulting method appears to be extremely slow
(Junklewitz et al. 2016).

1.3 Results

In this paper, our interest is in developing a new method for science
cases where a considerable amount of complex diffuse emissions
are present such as in the studies of galactic magnetism, the epoch
of reionization, and polarized imaging.

We start from a Bayesian statistical approach for regularization,
but formulate a shortcut that immediately connects to a numerical
method called prior-conditioning, i.e. a data-dependent Jacobi-like
right preconditioner that scales the columns of M. In this general
framework, the prior conditioner can take the form of a beam-
formed image, such as the classical dirty image, or the Minimum
Variance Distorsionless Response (MVDR) image, or any other low
resolution prior image that is strictly positive on the true support of
the image. This could also be determined iteratively, which gives a
connection to reweighted LS solutions, often used to approximate �0

or �1 norm optimization by LS optimization, in particular the Focal
Underdetermined System Solver (FOCUSS) algorithm (Gorodnit-
sky & Rao 1997) and the algorithm presented in Daubechies et al.
(2010).

Next, we propose to solve the obtained regularized LS problem by
a fast and efficient iterative algorithm based on the Krylov subspace-
based method of LSQR (Paige & Saunders 1982). Krylov methods
often exhibit a faster convergence than methods based on gradient
descent (Saad 1981). Therefore, they appear to be good candidates
as alternative iterative solution methods for the RA imaging prob-
lem. The stopping criterion of the LSQR algorithm is based on the
norm of the residual, which provides another form of regularization,
called iterative regularization or semiconvergence (Hansen 2010;
Berisha & Nagy 2013). The resulting algorithm is straightforward
to implement and computationally very efficient.

We compare the proposed method to classical RA imaging meth-
ods as well as methods based on convex optimization both in terms
of speed and quality of the estimate. It will be seen that the pro-
posed method is accurate and converges extremely fast (around 10
iterations).

The paper is organized as follows. In Section 2, we introduce
the signal processing data model for RA imaging. In Section 3, we
discuss RA imaging problem as a source power estimation problem
and consider different problem formulations. In Section 4 we intro-
duce our imaging problem formulation and generalize it based on
different priors. In Section 5 we introduce the PRIor-conditioned
Fast Iterative Radio Astronomy (PRIFIRA) algorithm. We com-
pare PRIFIRA with the state-of-the art RA imaging algorithms in
Section 6.
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1.4 Notation

Matrices and vectors are denoted by boldface letters. A boldface
italic letter such as a denotes a column vector, a boldface capital
letter such asA denotes a matrix. For a matrixA, ai is the ith column
of A, and ai, j is its i, jth entry. 1 is a vector consisting of ones, I
is an identity matrix of appropriate size, and Ip is a p × p identity
matrix.

E{ · } is the expectation operator, (·)T is the transpose op-
erator, (·)∗ is the complex conjugate operator, (·)H is the Her-
mitian transpose. ‖a‖p is the p-norm of a vector a, defined as
‖a‖p

p = ∑ |ai |p.trace(·) computes the sum of the diagonal elements
of a matrix. vect(·) stacks the columns of the argument matrix to
form a vector, vectdiag(·) stacks the diagonal elements of the ar-
gument matrix to form a vector, diag(·) is a diagonal matrix with
its diagonal entries from the argument vector (if the argument is a
matrix diag(·) = diag(vectdiag(·))).

Let ⊗ denote the Kronecker product, ◦ the Khatri–Rao product
(column-wise Kronecker product), and � the Hadamard (element-
wise) product. The following properties are used throughout the
paper (for matrices and vectors with compatible dimensions):

(BT ⊗ A)vect(X) = vect(AXB)

(B ⊗ A)H = (BH ⊗ AH )

(B ⊗ A)−1 = (B−1 ⊗ A−1)

(BT ◦ A)x = vect(Adiag(x)B)

(BC ⊗ AD) = (B ⊗ A)(C ⊗ D)

(BC ◦ AD) = (B ⊗ A)(C ◦ D)

(BHC � AHD) = (B ◦ A)H (C ◦ D)

vectdiag(AHXA) = (A∗ ◦ A)H vect(X).

2 DATA MO D EL

We employ the array signal processing framework and data model
for RA imaging as developed in van der Veen, Leshem & Boonstra
(2005), van der Veen & Wijnholds (2013), and Wijnholds & van
der Veen (2008).

Assuming a telescope array of P distinct receiving elements, the
baseband output signals of the array elements are sampled and split
into narrow sub-bands. We assume that the narrow-band condition
holds, so that propagation delays across the array can be replaced
by complex phase shifts. For simplicity, we will consider only a
single sub-band in this paper.

Although the sources are considered stationary, because of the
earth’s rotation the apparent position of the celestial sources will
change with time. For this reason the data is split into short blocks
or ‘snapshots’ of N samples, where the exact value of N depends on
the resolution of the instrument.

The sampled signals are stacked into P × 1 vectors xk[n], where
n = 1, . . . , N is the sample index, and k = 1, . . . , K denotes the
snapshot index. Similarly, assuming Q mutually independent source
signals sq[n] impinging on the array, we stack them into Q × 1
vectors sk[n]. We model the receiver noise as mutually independent
zero mean Gaussian signals stacked in a P × 1 vector nk[n].

The output of the telescope array is a linear combination of the
source signals and receiver noise:

xk[n] = Ak sk[n] + nk[n], (1)

where Ak = [a1, . . . , aQ] of size P × Q is called the array response
matrix, and aq is its qth column. Ideally, entry (p, q) of Ak follows

from the geometric delay of source q arriving at antenna p:

ap,q = 1√
P

e−j 2π
λ vT

p zq , (2)

where the scaling by
√

P is such that ‖aq‖ = 1, λ is the wavelength
of the received signal, vp is a 3 × 1 vector of the Cartesian location
of the pth array element (at time-index k) with respect to a chosen
origin in the field of array, and zq contains the direction cosines
of the qth pixel in the image plane. In practice, the position of the
celestial sources are unknown. One approach is to decompose the
field of view (FoV) of the telescope array into a fine grid where
each grid point denotes an image pixel. In the rest of the paper we
assume that Q indicates the number of image pixels.

In practice, the array also suffers from antenna-dependent gains
and direction-dependent gains that need to be estimated and mul-
tiply with Ak . This estimation is done in an outer loop (the selfcal
loop) and therefore, for the purpose of this paper, we can assume
that Ak is known (although not necessarily of exactly the form 2).
Nonetheless, before selfcal has converged, the data will suffer from
a model mismatch.

Without loss of generality, we will from now on consider only a
single snapshot k, and will drop the index k.

Assuming that the signals and the receiver noise are uncorrelated
and the noise on different antennas are mutually uncorrelated, the
data covariance matrix of the received signals is modelled as

R := E{x[n]xH [n]} = A�sA
H + �n, (3)

where �s = diag{σs} and �n = diag{σ n} represent the covariance
matrices associated with the source signals and the received noise,
σ = [σ 2

s1, σ
2
s2, . . . , σ

2
sQ]T and σ n = [σ 2

n,1, σ
2
n,2, . . . , σ

2
n,P ]T . We as-

sume that the receiver noise powers �n are known from the cali-
bration process.

An estimate of the data covariance matrix is obtained using the
available received data samples. The sample covariance matrix for
a single snapshot is calculated as

R̂ = 1

N

N∑
n=1

x[n]xH [n], (4)

and is used as an estimate of the true covariance matrix R.
The radio astronomical imaging process amounts to estimating

the image pixel intensities σ based on the covariance data measured
by a telescope array R̂ over the FoV of the array. To obtain a linear
measurement model, we vectorize the covariance data model (3) as

r = (A∗ ◦ A)σ + rn = Mσ + rn, (5)

where r = vect(R), rn = vect(Rn) = (I ◦ I)σ n, and M = A∗ ◦ A is
the system matrix of the linear measurement model of size P2 ×
Q. Based on (2), one element of M corresponding to the baseline
between the ith and jth antenna and the qth pixel is computed as

Mij ,q = a∗
iqajq = 1

P
ej 2π

λ (vi−vj )T zq . (6)

This expression is modified in the presence of calibration parameters
(antenna-dependent gains and direction-dependent gains) which we
assume to be known at this point.

Similarly, we vectorize the covariance measurement matrix as

r̂ = vect(R̂) (7)

and compensate r̂ for the (known) receiver noise powers,

r̃ = r̂ − rn, R̃ = R̂ − Rn. (8)
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This results in a linear measurement equation for estimating σ based
on the measured r̃:

r̃ = Mσ + e, (9)

where e represents the error due to the finite sample modelling of the
covariance data. For a large number of samples N we can assume
that e is distributed according to a zero-mean complex Gaussian
distribution CN(0,Ce) where Ce = 1

N
(RT ⊗ R) (Ottersten, Stoica

& Roy 1998; Sardarabadi, Leshem & van der Veen 2016), which
will be estimated from R̂.

Incidentally, we remark that many recent papers on radio astron-
omy image formation start from (9) and model the covariance of
e as spatially white, Ce ∝ I. However, this is correct only under
two assumptions, i.e. (i) the additive noise n is much stronger than
the astronomical signals s, and (ii) the additive noise is spatially
white, Rn = σ 2

n I. This requires a whitening operation after calibra-
tion of the antenna-dependent gain parameters. These assumptions
are usually considered valid in radio astronomy practice.

We also remark that in actual instruments, the autocorrelations
of the data are often not formed (or at least not used for imaging)
because they are considered to be too much contaminated. In that
case, r̃ is not computed from (8), but rather by omitting the auto-
correlation terms from r̂ (they correspond to the non-zero entries
of rn). Equation (9) holds but some rows of M have been dropped.
Unfortunately, with this missing data we lose the estimate for Ce.1

3 R A D I O A S T RO N O M I C A L I M AG I N G
PROBLEM FORMULATION

Estimating σ from r̃ depends on the properties of the matrix M.
Due to the physical constraints on the measurement process, M is
ill-conditioned and in some cases where the requested resolution
(number of pixels) Q is very large it may become wide. There-
fore, the RA imaging problem is often ill-posed and in some cases
underdetermined. Additional prior information or constraints on σ

are needed to obtain a unique and physically meaningful solution.
Generally, this is done by imposing different statistical assumptions
on the noise and image (Kay 1993; Bertero & Boccacci 1998).

3.1 Beamforming-based estimation

An initial estimate of the image can be obtained via beamforming.
In this case, the ith pixel of the image is estimated as

σ̂ i = wH
i R̃wi = wH

i (R̂ − Rn)wi , i = 1, . . . ,Q, (10)

where wi is a spatially dependent beamformer (a spatial filter). We
consider two common beamforming approaches: Matched Filtering
(MF) and MVDR beamforming (Krim & Viberg 1996). The image

1In the signal processing community, measuring the autocorrelations is con-
sidered essential since without the autocorrelations, R̂ would not constitute
sufficient statistics for the collected data {xk[n]}, i.e. information is lost. If
these autocorrelations are deemed to be ‘more noisy’ then that should be
represented in the data model. Estimates of the variance of the measure-
ments are equivalent information and usually available in radio astronomy
via the natural weights (Briggs 1995) or System Equivalent Flux Density
(SEFD; Van Haarlem et al. 2013). We believe that in any case the autocor-
relations will have been used in the calibration and subsequent whitening
of the system noise, so that we arrive at the implicit assumptions where
Rn = σ 2

n I and astronomical signals much weaker than the noise.

estimate obtained by the MF beamformer is obtained by setting
wi = ai , so that

σ̂ MF,i = aH
i (R̂ − Rn)ai ⇔ σ̂ MF = MH r̃. (11)

This estimate is known as the ‘dirty image’ in the radio astronomy
community. The expected value of this image is

σ MF,i = aH
i (R − Rn)ai , i = 1, . . . , Q.

Similarly, the MVDR beamformer is defined as (van der Veen &
Wijnholds 2013)2

wi = R−1ai

aH
i R

−1ai

, i = 1, . . . , Q, (12)

leading to the MVDR dirty image

σ MVDR,i = aH
i R

−1R̃R−1ai

(aH
i R

−1ai)2
= 1

aH
i R

−1ai

− aH
i R

−1RnR
−1ai

(aH
i R

−1ai)2
.

(13)

In this expression, the first term is the ‘classical’ MVDR solution,
while the second term is a correction for the unwanted contribution
of the noise covariance to this image. Since we do not have access
to the true covariance matrix, we use the sample covariance matrix
R̂ instead to obtain the beam-formed images.3

It is shown by Sardarabadi et al. (2016) that, if the corrections by
Rn are ignored in (11) and (13), then

0 ≤ σ true ≤ σ MVDR ≤ σ MF. (14)

Without ignoringRn, we can prove that the same result holds at least
if Rn = σ 2

n I (see Appendix A). This indicates that the MVDR dirty
image is always closer to the true image than the MF beamformer.

3.2 LS estimation

The most straightforward formulation of the source intensity esti-
mation problem is via LS. In this problem formulation, no statistical
assumptions are made about the sources, only the available mea-
surements are fitted to the model in an LS sense. Due to the absence
of probabilistic assumptions on σ , claims about statistical optimal-
ity of the solution and its statistical performance cannot be made
(Kay 1993).

The LS RA imaging problem can be stated as

σ̂ = arg min
σ

‖r̃ − Mσ‖2
2. (15)

The solution to (15) satisfies the normal equations

MHMσ̂ = MH r̃, (16)

where the left-hand side shows the convolution of the image pixels
with the beampattern of the array via MHM, and the right-hand
side σ̂ MF = MH r̃ is recognized as the MF dirty image which is the
same as the image obtained by matched filtering the data.

2Actually, a correct derivation based on minimization of (10) subject to
wH

i ai = 1 would give a result where R−1 is replaced by (R − Rn)−1 in
(12), but this inverse is not numerically stable if R is replaced by its estimate
R̂.
3If the autocorrelations are not available, then R̃ represents the sample
covariance matrix with the main diagonal replaced by zero. Moreover, R−1

cannot be formed. Under the earlier mentioned assumptions (white noise,
weak signals), the factors R−1 in the nominator and denominator cancel
each other and the MVDR reduces to the matched filter beamformer in (11).
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In RA imaging, the columns of M corresponding to neighbour-
ing pixels are nearly parallel, making MHM poorly conditioned
and the problem ill-posed. For large Q, MHM is not even invert-
ible and a unique solution cannot be obtained without regularizing
assumptions.

3.3 Maximum likelihood estimation

Equation (9) shows the linear measurement model for RA imaging.
For such a model, Maximum Likelihood Estimation (MLE) results
in an efficient estimator that is also a Minimum Variance Unbi-
ased (MVU) estimator (Kay 1993). If σ is considered deterministic
(i.e. a parameter vector without associated stochastic model), the
likelihood function for (9) with complex Gaussian noise e is

p(r̃|σ ) = 1

πP 2 det(Ce)
exp[−(r̃ − Mσ )HC−1

e (r̃ − Mσ )], (17)

where, as mentioned before, Ce = 1
N

(RT ⊗ R); det(·) denotes the
determinant of the matrix. Maximizing the likelihood function is
equivalent to minimizing the cost function

J(σ ) = (r̃ − Mσ )HC−1
e (r̃ − Mσ ), (18)

which results in the weighted LS (WLS) formulation of the imaging
problem as shown in Wijnholds & van der Veen (2008) and van der
Veen & Wijnholds (2013).

σ̂ = arg min
σ

‖�(r̃ − Mσ )‖2
2, (19)

where C−1
e = �H �. The corresponding normal equations are

MHC−1
e Mσ̂ = MHC−1

e r̃,

and the WLS (or MLE) solution is given by4

σ̂ = (MHC−1
e M)−1MHC−1

/bme r̃. (20)

As before, the inversion problem is ill-posed. A regularization term
prevents overfitting of the model to the data and penalizes the solu-
tion based on the available additional information about the image.
We can write the general regularized WLS RA imaging problem as

σ̂ = arg min
σ

‖�(r̃ − Mσ )‖2
2 + τR(σ ), (21)

where τ is a regularization parameter and R(·) denotes the regular-
ization operator. Alternatively, we can rewrite the problem formu-
lation (21) as

minσR(σ ) subject to ‖�(r̃ − Mσ )‖2
2 ≤ ε. (22)

There is a data-dependent one-to-one correspondence between τ in
(21) and ε in (22) for which the two optimization problems have the
same solution. Therefore, they can be used interchangeably. Both ε

and τ are related to the level of noise in the data. As discussed in
the introduction, many choices for R(·) are possible, e.g. ‖σ‖2

2 or
‖σ‖1 or ‖�T σ‖1.

3.4 Bayesian estimation

An alternative approach to regularization is the Bayesian frame-
work. Both the noise term and the image are assumed random

4The weighting by Ce is omitted if the autocorrelations are not known, or if
we may assume that the noise is white and much stronger than the sources.

variables, and a prior distribution p(σ ) is posed. The Maximum A
Posteriori estimator is defined as (Kay 1993)

σ̂ = arg max
σ

p(σ |r̃) = arg max
σ

p(r̃|σ )p(σ )∫
p(r̃|σ )p(σ )dσ

= arg max
σ

p(r̃|σ )p(σ ). (23)

Here, p(σ |r̃) denotes the posterior probability density function of
the image given the observation, and Bayes’ rule is used to replace
it by p(r̃|σ )p(σ ), which is a product of the likelihood of the obser-
vation given an image with the prior probability of that image. The
likelihood is given in (17). Assuming for simplicity that the prior for
the image is also distributed according to a Gaussian distribution,
with mean μσ and covariance Cσ , then σ ∼ N(μσ ,Cσ ), or

p(σ ) ∝ exp

[
−1

2
(σ − μσ )T C−1

σ (σ − μσ )

]
. (24)

The log of the posterior likelihood is then

log p(σ |r̃) ∝ −(r̃ − Mσ )HC−1
e (r̃ − Mσ )

− 1

2
(σ − μσ )T C−1

σ (σ − μσ ). (25)

If we define the Cholesky factorization of the inverse image covari-
ance matrix as

C−1
σ = LT L, (26)

we can equivalently write this as

log p(σ |r̃) ∝ −‖�(r̃ − Mσ )‖2
2 − 1

2
‖L(σ − μσ )‖2

2. (27)

Therefore, maximizing the posterior likelihood is equivalent to solv-
ing the minimization problem

σ̂ = arg min
σ

‖�(r̃ − Mσ )‖2
2 + τ‖L(σ − μσ )‖2

2, (28)

where τ = 1
2 . This is also known as ridge regression and a specific

case of (21), with the advantage that there is some insight in the
role of L. For example if we have accurate prior knowledge, then
Cσ is small and L is large, and the solution σ̂ will be close to μσ . If
instead of a Gaussian prior we assume a Laplace distribution for σ ,

p(σi) = 1

bi

exp

(
− |σi − μi |

bi

)
,

we obtain an �1 constraint (or LASSO). The Laplace distribution
is more concentrated around zero and has long tails, which models
images that are mostly zero with occasional outliers, explaining
why �1 constraints lead to sparse solutions. Similarly, a lognormal
density prior will lead to constraints that generate a maximum-
entropy solution (Kaipio & Somersalo 2004), and such a prior was
used in RESOLVE (Junklewitz et al. 2016). Thus, the Bayesian
framework is a general method to derive constrained optimization
problems.

Returning to the Gaussian prior, we can rewrite (28) as

σ̂ = arg min
σ

∥∥∥∥
[

�M√
τL

]
σ −

[
� r̃√
τLμσ

]∥∥∥∥
2

2

.

The corresponding normal equations are

(MHC−1
e M + τC−1

σ )σ = MHC−1
e r̃ + τC−1

σ μσ , (29)

and the solution is

σ̂ = (MHC−1
e M + τC−1

σ )−1(MHC−1
e r̃ + τC−1

σ μσ ).
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For the specific case where μσ = 0, and assuming white processes
Ce = ν2I and Cσ = η2I, equation (29) can be written as

(MHM + τ I)σ = MH r̃, τ = 1

2

(
ν

η

)2

, (30)

which is recognized as a Tikhonov regularized LS problem (Bertero
& Boccacci 1998). Thus, these standard regularization methods are
all included in the Bayesian framework.

The main question in the Bayesian framework is the selection of
a suitable prior. For example we can select a Gaussian prior where
μσ is the currently best known estimate for the image (the cur-
rent sky map), with Cσ related to the accuracy of that knowledge.
As it is hard to quantify this, Cσ could be modelled as a diago-
nal matrix, with the unknown variances on the diagonal modelled
in turn as statistical parameters, for which a distribution (with un-
known parameters called hyperparameters) has to be proposed. The
estimation of these hyperpriors from the data is known as Sparse
Bayesian Learning (Tipping 2001) and in the context of our problem
has been worked out by Wipf & Rao (2004). The RESOLVE method
(Junklewitz et al. 2016) follows a similar approach. Unfortunately,
the computational complexity is reported to be rather high.

Since the prior in this framework is data-dependent, the question
at this point is whether it would be possible to use a (perhaps less
optimal) data-dependent prior that is easier to estimate.

4 PRO P O S E D SO L U T I O N ME T H O D

4.1 Problem reformulation

We focus on the Tikhonov regularized WLS problem formulation
and will use μσ = 0 and restrict L to be diagonal. Our aim is thus
to propose a suitable L. Since C−1

σ = LHL, the diagonal entries of
L model the precision of our prior knowledge, and a large entry of
L will result in a dark pixel (since μσ = 0), whereas a small entry
of L will make that pixel to be determined by the data.

With change of variables α = Lσ , we can rewrite the objective
function (21) in terms of α as

α̂ = arg min
α

‖�(r̃ − ML−1α)‖2
2 + τ‖α‖2

2. (31)

The image can be recovered from α̂ by the linear transform σ̂ =
L−1α̂.

Equation (31) is equivalent to the solution of

(L−HMHC−1
e ML−1 + τ I)α = L−HMHC−1

e r̃. (32)

With the choice of C−1
σ = LHL and C−1

e = �H � and change of
variables M̄ = �ML−1 and r̄ = � r̃ we can rewrite this as

(M̄H M̄ + τ I)α = M̄H r̄. (33)

Such a scaling of the columns of M by a matrix L−1 related to
the prior distribution is known as prior-conditioning (Calvetti &
Somersalo 2005), as it is similar in shape to the preconditioning
that is sometimes done in iterative solvers to improve convergence.
The difference is that preconditioning only involves M whereas
prior-conditioning is not just based on M but on the interaction of
M with the data r̃ .

To obtain a prior, data-dependent, estimate of Cσ , the idea is to
compute from the data an unbiased estimate for the image, using
minimal assumptions, i.e. we consider σ deterministic. The variance
of this estimate can then be used as estimate for Cσ .

The best possible estimate under this assumption is the MLE
estimate, in this case equal to the WLS estimate

σ̂ MLE = (MHC−1
e M)−1MHC−1

e r̃. (34)

It is known that this estimator is an efficient MVU estimator (Kay
1993) with covariance

Cσ̂ = (MHC−1
e M)−1, (35)

where Ce = 1
N

(RT ⊗ R). Therefore

MHC−1
e M = N (A∗ ◦ A)H (R−T ⊗ R−1)(A∗ ◦ A)

= N (AT R−T A∗) � (AHR−1A). (36)

If we denote the variance of σ̂ as Var(σ̂ ), it consists of the diagonal
elements of Cσ̂ , i.e.

Var(σ̂ ) = diag(Cσ̂ ). (37)

Based on equation (36), the ith diagonal element of MHC−1
e M can

be computed as N (aH
i R

−1ai)2. Although equation (36) shows that
the estimated pixel intensities are correlated, we ignore that and set
Cσ̂ ≈ diag(Var(σ̂ )) where

Var(σ̂i) = 1

N (aH
i R

−1ai)2
, i = 1, 2, . . . , Q, (38)

with Var(σ̂i) denoting the variance of the ith pixel estimate. Com-
paring (13) and (38) we conclude that (if Rn is ignored in 13)

Cσ̂ ≈ diag(Var(σ̂ )) = 1

N
diag(σ MVDR)2. (39)

Since the true data covariance matrix is not available, we will use
the sample covariance matrix R̂, and obtain the estimated MVDR
image σ̂ MVDR. This leads to the choice to set

L−1 = diag(σ̂ MVDR) (40)

as regularizing operator (A factor
√

N is absorbed in τ .).
While this choice is obviously a shortcut from a truly Bayesian

approach (e.g. the mean value of the initial image is ignored and
only the variance is taken into account), we will show in the simula-
tions that this simple idea is very effective in obtaining regularized
solutions. Moreover, it is computationally not very involved as it
amounts to constructing a beam-formed image (similar to comput-
ing the classical dirty image), followed by solving (33). We propose
to use Krylov subspace iterations to do this efficiently (Section 5.1).

4.2 Discussion and generalizations

Before we develop an efficient algorithm for finding the solution
of the problem stated in Section 4.1, we discuss some of the prop-
erties of the problem and address potential generalizations of the
framework.

(1) RA images contain substantial black background of radio-
quiet zones. The working principle of greedy algorithms such as
CLEAN and NNLS is to first obtain the support of the image,
also called the active set, and to solve only for the elements of the
image in the active set. Therefore, as shown by Marsh & Richardson
(1987), these methods solve the regularized LS or MLE problem
(21) with R(σ ) = ‖σ‖0,

σ̂ = arg min
σ

‖�(r̃ − Mσ )‖2
2 + τ‖σ‖0, (41)

with the addition of a non-negativity constraint for NNLS. Mini-
mizing the �0 norm produces satisfactory results both in terms of
the support of the image and the intensity estimates if the underly-
ing image is sufficiently sparse and only consists of scattered point
sources.

In line with our problem formulation, the �0 constraint can be
translated into a right preconditioner. If we assume for the moment
the knowledge of the true σ , denoted as σ true, we can define a
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diagonal matrix D as

[D]i,i =
{

1, if [σ true]i > 0
0, if [σ true]i = 0.

(42)

Therefore, in terms of the LS formulation, we need to solve the
problem

α̂ = arg min
α

‖�(r̃ − MDα)‖2
2 + τ‖α‖2

2, (43)

where the image estimate is found by the transform σ̂ = Dα̂. Thus,
σ̂ will be zero where Di,i is zero, and D would be the optimal
prior conditioner. In reality we do not know σ true. Finding the
active set in greedy algorithms is done iteratively through outer
iterations. This increases the cost of the algorithms substantially.
Clearly, problem (43) is connected to problem (31) considered in
Section 4.1 via D = L−1. In this context, our use of a beam-formed
image D = diag(σ̂ MVDR) or D = diag(σ̂ MF) can be interpreted as a
surrogate for this.

(2) Low resolution initial estimates of the image can be ob-
tained via MF or MVDR beamforming. Previously, we sug-
gested in Naghibzadeh, Sardarabadi & van der Veen (2016b) and
Naghibzadeh & van der Veen (2017b) to use the MF dirty image
diag(σ̂ MF) for regularization purposes. Moreover, we showed the
relation to Bayesian estimation when applying MVDR-based right
prior-conditioning weights in Naghibzadeh & van der Veen (2017a).
If the noise is lower or comparable to the signal, we have the relation
(14),

0 ≤ σ true ≤ σ MVDR ≤ σ MF. (44)

Therefore, the prior variance Cσ based on the MF dirty image is
higher than when the MVDR dirty image is used, and the latter
provides a better start. The correction by Rn introduced in (13)
moves the MVDR image even further towards the true image. It is
also important to note from this relation that the true image is black
wherever the initial image is black. This way the initial estimate
provides a rough estimate for the true support of the image.

If we do not know the autocorrelations in the measurement data,
we can use the MF estimate without the diagonals or the MVDR
image obtained by diagonal loading. However, we must take care
that all brightness estimates are strictly positive by adding a con-
stant value to the image since negative weights will be completely
wrong while zero weights will result in pixels that will stay black
throughout the iterations and in the final solution. We note that
without autocorrelation information the results will be suboptimal.
Appendix B gives a brief analysis and provides additional remarks
related to the proposed imaging techniques.

(3) We show that applying MF or MVDR dirty images as prior
conditioners favours smooth reconstructions and is therefore more
interesting for the recovery of diffuse structures and smooth features
of the sky map rather than point sources. We motivate our claim for
prior-conditioning with the MF. Analysis for MVDR-based prior-
conditioning would be similar.

Assuming for the moment that there is no noise and error on the
covariance measurements, i.e. e = 0 and rn = 0, based on (11) we
can write the true dirty image as

σ MF = MH (Mσ ). (45)

If we consider the image only contains a unit norm point source in
the middle of the FoV, we can rewrite (45) as

b = (MHM)emid, (46)

where emid is the unit vector with the element in the middle of the
FoV equal to 1. In this case the dirty image is called the dirty beam,

indicated by b. Dirty beam is also known as Point Spread Function
(PSF) and impulse response or the beam pattern of the telescope
array. If we insert an arbitrary image σ in the FoV of the array,
resulting σ MF would be the convolution of dirty beam with the
image. Dirty beam by construction acts as a low-pass filter with the
main beam corresponding to the resolution of the array. Therefore,
the resulting dirty image will be a low-pass filtered version of the
sky map and is smooth.

When we use the dirty image as a prior, the smoothness will
be preserved in the resulting image from (31). Since the extended
emissions exhibit a smooth structure, in the reconstruction they
will be preserved. By the same token, isolated point sources will
not be imaged sharper than the resolution of the instrument and
will be spread out. This spreading is similar to the post-processing
applied to the CLEAN solution to restore the natural resolution
of the telescope array. In our method, since the prior obeys the
resolution of the array, spreading is done automatically.

(4) Next, we show that applying the regularization operator as a
prior-conditioner opens the door to various regularizations. This can
be applied in cases where the underlying sky map contains isolated
point sources.

It is well-known that �1 constraints result in sparse solutions. The
associated regularized MLE problem is

σ̂ = arg min
σ

‖�(r̃ − Mσ )‖2
2 + τ‖σ‖1. (47)

One way to solve (47) is via the Iteratively Reweighted LS
method (Daubechies et al. 2010). The �1 constraint is transformed
to an �2 constraint by

‖σ‖1 =
Q∑

i=1

|σi | =
Q∑

i=1

|σi |2
|σi |

= ‖Wσ‖2
2, where W = diag(σ−1/2). (48)

Equation (48) suggests that ‖σ‖1 can be computed from a properly
weighted �2-norm. Although this optimal weight is unknown, we
can enter an iteration wherein, at each step, the weight is based
on the solution obtained at the previous step. It is thus sufficient
to solve only weighted LS problems. Specifically, we define the
weight matrix at iteration k as Wk = diag(σ̂−1/2

k−1 ) where σ̂ k−1 is the
solution obtained at the previous iteration k − 1. Therefore, (47) is
replaced by

σ̂ k = arg min
σ

‖�(r̃ − Mσ )‖2
2 + τ‖Wkσ‖2

2 (49)

which can be transformed into a right preconditioned system using
the transform α = Wkσ ,

α̂k = arg min
α

‖�(r̃ − MW−1
k α)‖2

2 + τ‖α‖2
2. (50)

After the estimate σ̂ k is obtained, problem (50) is solved again with
the new weights. Therefore, this method requires solving (50) mul-
tiple times where the outer iterations are indicated by k. Comparing
to (31), we see that (50) is a prior-conditioned problem where the
prior is iterated upon as more accurate images are being computed.

If we start the iteration with W0 = I, then the first estimate σ̂ 1

will be the MLE estimate (20). The next iteration will solve a right
preconditioned system where the square-root of this image is the
prior.

In contrast, the prior we proposed in (40) uses the MVDR image
and omits the square-root. Nonetheless, it is interesting to consider
what happens if we iterate this estimate in the same way as (50),
but with Wk = diag(|σ̂ k−1|−1). If this converges to a fixed point,
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the corresponding constraint is

‖Wσ‖2
2 =

Q∑
i=1,σi �=0

|σi |2
|σi |2 = ‖σ‖0. (51)

This shows that iteratively minimizing (50) in this way is a surrogate
for using the �0 norm as regularizer, and will result in a very sparse
image (even if the true image is not sparse). We show this effect
with simulations in a 1D setting.

Iterations of this form have been proposed in the context of
our problem by Gorodnitsky & Rao (1997), and are known as the
FOCUSS algorithm. As mentioned in that paper, sparsity by itself
does not form a sufficient constraint to obtain a unique estimate
for an underdetermined problem, and the use of a low-resolution
initial estimate provides the necessary additional constraint. The
paper proves the quadratic convergence to a local fixed point in the
neighbourhood of the initialization, and also mentions a technique
to impose a positivity constraint on the solution. Unfortunately,
the proposed solution method is based on the truncated Singular
Value Decomposition (SVD) and is not applicable for large-scale
problems.

Overall, the regularization penalty ‖σ‖0 assumes the image is
composed of a set of separate point sources. On the other hand,
the ‖σ‖2 penalty favours solutions with similar intensity levels over
different pixels to minimize the overall power and is suitable for
the recovery of diffuse emissions. The ‖σ‖1 penalty is intermediate
between smoothness and sparsity penalties but is not specifically
designed for extended or point sources. It is known that if the �0-
constrained problem (41) contains a sufficiently sparse solution, the
�1-constrained problem (47) as a surrogate for (41) will recover
it (Bruckstein, Donoho & Elad 2009). However, in cases where
both resolved and unresolved sources coexist in the sky map, (47)
recovers both types of sources but it is not optimal for any of them. In
Appendix C we discuss some attempts to generalize the formulation
such that both resolved and unresolved sources can be recovered.
This is done by means of introducing overcomplete dictionaries.
Appendix C shows the capability of the proposed framework for
generalization.

We see that by applying outer iterations, based on the prior-
conditioning formulation, we are able to also impose sparsity-
promoting norms into the framework of Section 4.1. Doing so,
we are able to benefit from the efficient algebraic algorithms that
exist for solving the �2 regularized problem to also recover images
with sparsity priors. In the next section, we present an efficient
algorithmic framework to solve the prior-conditioned problem.

5 TH E P R I F I R A A L G O R I T H M

The proposed solution method from Section 4 is now further worked
out into an algorithm which we call PRIFIRA.

5.1 Implementation using Krylov subspace methods

We solve problem (31) by an iterative method based on projections
onto Krylov subspaces. Let M̄ = �ML−1 and r̄ = � r̃ , then (31) is
written as

α̂ = arg min
α

‖r̄ − M̄α‖2
2 + τ‖α‖2

2. (52)

Define the t-dimensional Krylov subspace Kt , for t = 1, 2, . . . , as

Kt (M̄H M̄, M̄H r̄)

= span{M̄H r̄, (M̄H M̄)M̄H r̄, . . . , (M̄H M̄)t−1M̄H r̄}. (53)

Krylov subspace methods instead solve the problem

α̂ = arg min
α

‖r̄ − M̄α‖2
2

subject to α ∈ Kt (M̄H M̄, M̄H r̄) (54)

for t = 1, 2, . . . . As the iteration count t increases, the Krylov sub-
space gradually increases in dimension as well, so that the residual
‖r̄ − M̄α̂t‖2

2 decreases while ‖αt‖2
2 usually increases.

Due to the ill-posedness of the problem, ‖αt‖2
2 will grow out of

bound as the iteration progresses (Hanke 1995). One way to stop
the iterations while the solution is still numerically stable is via
the discrepancy principle (Hanke 1995; Nemirovskii 1986). In this
case, the iteration is stopped at iteration T once ‖r̄ − M̄αt )‖2

2 ≤ ε,
which then gives an approximate solution to (52).

The restriction to the Krylov subspace before it spans the
complete space provides a regularization, called semiconvergence
(Hansen 2010). If the iteration is allowed to continue, then the
residual converges to zero and the solution converges to the pseudo-
inverse minimum norm solution (20), so that we obtain the unreg-
ularized solution. In contrast to Tikhonov regularization or trun-
cated SVD where the regularization only depends on M and not
on the measured data, the regularization provided by Krylov sub-
space methods adapts to the data via the initial vector r̄ . While
problem (52) is not exactly equivalent to (54), their solutions are
considered very similar (Hansen 2005).

Krylov subspace methods are attractive because we do not need
to store M̄, rather we need to provide functions that return matrix-
vector products of the form M̄u and M̄H v (Saad 1981). With the
functional form of M as given in (6), we can implement such a sub-
routine. This greatly reduces storage requirements. Related details
are in Section 5.3.

To solve (54) iteratively for a non-square M̄ with arbitrary rank,
the LSQR method (Paige & Saunders 1982) is appropriate (Choi
2006). This is analytically equivalent to the Conjugate Gradient
method applied to the normal equations, but is numerically pre-
ferred (Hanke 1995). The LSQR method is based on the Golub–
Kahan (GK) bidiagonalization algorithm (Golub & Kahan 1965),
also referred to as Lanczos iterations. First define

β1 = ‖r̄‖, u1 = r̄/β1,

α1 = ‖M̄H u1‖, v1 = M̄H u1/α1.

Using these as initialization, in the GK process, at iteration t, two
orthonormal vectors vt and ut are computed as

βt ut := M̄vt−1 − αt−1ut−1,

αtvt := M̄H ut − βtvt−1 (55)

where β t and αt are chosen such that ut and vt are normalized. Let

Bt =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1

β2 α2

β3
. . .
. . . αt

βt+1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (56)

It can then be shown that solving (54) reduces to solving the bidi-
agonalized LS problem

min yt
‖Bt yt − β1e1‖2

2, (57)

where e1 is the unit vector with its first element equal to one. LSQR
uses QR updates to obtain yt at each iteration t (Paige & Saunders
1982).
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The complete algorithm to solve (54) and compute the estimate
of the image σ̂ is summarized in algorithm 1.

Algorithm 1: PRIFIRA (based on LSQR)

input : r̄, M̄ (or operator function), L−1, ε

output: image σ̂

1 Initialize: β1u1 := r̄, α1v1 := M̄H u1, ω1 := v1, α1 := 0,
̄1 := β1, ρ̄1 := α1, t := 1;

2 while stopping criteria not satisfied do
3 βt+1ut+1 := M̄vt − αtut ,
4 αt+1vt+1 := M̄H ut+1 − βtvt

5 Construct and apply orthogonal transform:
6 ρt = (ρ̄2

t + β2
t+1)1/2

7 ct = ρ̄t /ρt , st = βt+1/ρt

8 θt+1 = stαt+1, ρ̄t+1 = −ctαt+1

9 t = ct ̄t , ̄t+1 = st ̄t

10 Update:
11 αt+1 = αt + (t/ρt )ωt

12 ωt+1 = vt+1 − (θt+1/ρt )ωt

13 t := t + 1
14 end
15 α̂ = αt

16 Transform to the image: σ̂ = L−1α̂

If we are going to apply the generalized reweighted prior-
conditioning as discussed in Section 4.2, we can do so by defin-
ing an outer iteration loop around Algorithm 1 where the weights
are obtained using the values of σ̂ at the previous iteration. The
reweighted algorithm is summarized as Algorithm 2, where f (σ )
refers to an arbitrary function applied to σ which depends on the
constraint as discussed in Section 4.2, and PRIFIRA(·) denotes Al-
gorithm 1 with the mentioned input. The outer loop also allows
for applying more constraints such as projecting the solution into
the real and positive orthant but comes at a greater computation
expense due to the repeated application of the LSQR algorithm. As
initialization, we can choose the MVDR dirty image, the MF dirty
image, or simply set σ 0 = 1.

Algorithm 2: Reweighted PRIFIRA

1 Initialize:
2 σ0 = 1, W−1

1 = diag(f (σ0)), M̄1 = �MW−1
1

3 for k = 1, 2, . . . , K do
4 σk = PRIFIRA(r̄, M̄k, W−1

k , ε)
5 W−1

k+1 = diag(f (σk)),
6 M̄k+1 = �MW−1

k+1,
7 end
8 σ̂ = σK

5.2 Stopping criteria

Algorithm 1 requires an appropriate stopping rule. As mentioned,
this goes back to equation (54), where we increase the iteration
count t until ‖r̄ − M̄αt‖2

2 ≤ ε. This is known as the discrepancy
principle (Morozov 1968). The threshold ε on the residual norm
can be set using the expected error on the data at the ‘true’ solution
α,

E‖r̄ − M̄α‖2
2 = E‖�e‖2

2 = trace(Cov(�e)), (58)

where �e is the whitened error on the data, and Cov(·) denotes the
covariance. Note that, by definition of �,

Cov(�e) = E{�eeH �H } = I, (59)

where I is a P2 × P2 identity matrix. Therefore, we set ε = P2, or a
slightly larger value to account for finite sample noise.

If the autocorrelations of the measurements are not available, we
need to resort to the unweighted LS estimator (� = I). The stopping
criteria are based on an estimate of the noise on the visibilities.

5.3 Implementation details

As mentioned earlier, the system matrix M̄ is a full matrix. However
it exhibits a ‘data sparse’ structure. Since M = A∗ ◦ A, we can
represent the system matrix M of dimension P2 × Q with a lower
dimensional matrixA of dimension P × Q. In the case of M̄ we need
to apply the proper right and left preconditioners to A. Considering
the Cholesky factorization

R̂−1 = BHB, (60)

we find � = N1/2(B∗ ⊗ B) and therefore M̄ = Ā∗ ◦ Ā with Ā :=
N

1
4 BAL− 1

2 . If the dimensions of the imaging problem are such that
we can store matrix Ā in memory, we implement the matrix vector
operations M̄v and M̄H u as

M̄v = vect(Ādiag(v)ĀH ),

M̄H u = vectdiag(ĀHUĀ) = [āH
i Uāi]

Q
i=1, (61)

where diag(v) is a diagonal matrix with the vector v on its main
diagonal, vectdiag(·) selects the diagonal of a matrix and stores
it in a vector, and U is a P × P matrix such that u = vect(U).
The diagonal matrices are stored in a sparse manner for memory
considerations.

If the dimensions of A are also higher than the available physical
memory, the matrix–vector multiplications can be directly imple-
mented through the function representation of matrix M as denoted
in equation (6), or more efficiently through the W-projection algo-
rithm or its various implementations (Cornwell, Golap & Bhatnagar
2008).

5.4 Computational complexity of PRIFIRA

As can be seen from the description of Algorithm 1, the compu-
tational complexity of PRIFIRA is dominated by the two matrix–
vector multiplications M̄vt and M̄H ut . Therefore, the implementa-
tion of these matrix–vector multiplications determines the compu-
tational complexity of the algorithm. The first operation is in fact
equivalent to computing correlation data from an image (sky model)
using the measurement equation, while the second corresponds to
the computation of an MF dirty image from correlation data. These
are standard operations in any radio astronomy imaging toolbox,
and many fast algorithms (based on gridding and FFTs) have been
proposed and implemented.

Assuming that no fast transform is used to obtain the matrix–
vector multiplications, the complexity of computing M̄vt is
O(P 2Q), and computing M̄H ut has the same complexity. The com-
plexity of PRIFIRA is thus O(T P 2Q) where T denotes the required
number of iterations until the stopping criteria are satisfied. Simula-
tions indicate that T is usually quite small (around 5 to 10). In case of
the reweighted PRIFIRA, the complexity increases toO(KT P 2Q),
where K is the total number of reweighted outer iterations.
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To compare this complexity to the existing imaging algorithms,
we first note that all of them require basic operations of the formMv

(a forward step, computing correlation data from a sky model) and
MH u (a backward step, computing a dirty image from correlation
data), and often these are implemented efficiently using gridding,
FFTs, and W-projections.

Existing algorithms can be classified into (i) greedy algorithms
such as CLEAN and NNLS, which require an exhaustive search
over all the pixels of the image to find potential sources; and (ii)
compressed-sensing based algorithms, implemented using convex
optimization, such as SARA implemented using Alternating Direc-
tion Method of Multipliers (ADMM). The first category requires a
large number of iterations where the basic work is comparable to
PRIFIRA, although significant reductions are possible by utilizing
multiresolution and image partitioning techniques. NNLS also re-
quires a number of subiterations for each iteration to solve a system
of equations and is therefore more costly. These algorithms are sen-
sitive to grid mismatch due to misalignment of the sources with the
grid points.

Like PRIFIRA, compressed sensing algorithms consider the com-
plete image at once and therefore are less sensitive to grid mismatch.
CS algorithms are based on gradient descent steps which in the end
boil down to matrix–vector multiplications with M and MH . Less
costly subiterations and (non-linear) outer loops are used to sat-
isfy positivity and sparsity constraints through proximity operators.
While the amount of work per iteration is therefore comparable, the
simulations presented in Section 6 show that the prior-conditioning
used by PRIFIRA provides an order of magnitude faster conver-
gence. A good estimate of the image is already obtained after a
few iterations, resulting in major savings on the overall cost of the
imaging algorithm.

6 SI M U L AT I O N S A N D E X P E R I M E N TA L
RE SULTS

6.1 Terminology

We proposed several variants of the PRIFIRA algorithm, based on
the initial prior-conditioners and the optional use of reweighting
iterations. We therefore indicate the right prior-conditioner as a
prefix to the name of the algorithm; i.e. X-PRIFIRA where X indi-
cates the prior-conditioner. We consider X as MF, MVDR, IR0 and
IR1 where MF and MVDR respectively denote the matched filtered
and MVDR dirty images, and IR0 and IR1 indicate the iteratively
reweighted PRIFIRA resulting in �0 and �1 image norm minimiza-
tions respectively, as discussed in Section 4.2. For comparison and
to show the effect of right preconditioners on the reconstruction
quality, we also consider the LSQR algorithm which is equivalent
to PRIFIRA when there is no right preconditioner applied.

We compare variants of PRIFIRA with the MATLAB implemen-
tations of some of the state-of-the-art algorithms. Among the
greedy sparse reconstruction methods we use the NNLS optimiza-
tion implemented using the active set algorithm as discussed in
Sardarabadi et al. (2016). The CLEAN algorithm (Högbom 1974)
is implemented in MATLAB with both minor cycles and occasional
major cycles. MEM is implemented based on Newton–Raphson
iterations. Among the compressed sensing techniques based on
convex optimization we focus on �1 norm minimization and the
SARA formalism (Carrillo et al. 2012) implemented based on the
ADMM (Boyd 2011). Furthermore, we compare the results with
the conventional deconvolution method of Richardson–Lucy (RL;
Richardson 1972).

We mention that there is no shortage of RA imaging algorithms
and it is not possible to compare the proposed method with all
the implementations of the present methods. Therefore, we have
categorized the imaging methods and compare our algorithm with
the basic implementation of the main methods. It is also worth
noting that many of the imaging methods have been optimized
both in software and hardware to perform faster. There are many
possibilities to also optimize PRIFIRA in the future but for the
current paper we focus on the most basic implementation and for
a fair comparison compare it with basic implementations of the
state-of-the-art algorithms.

6.2 One-dimensional tests

We first demonstrate the effects of prior-conditioning using a 1D
test example. For this simulation, we use a non-uniform linear array
with P = 10 elements as shown in Fig. 1(a). The conditioning of
matrix M is shown via its singular value spectrum in Fig. 1(b).
Two Gaussian sources with the same height 2 and different width
positioned at direction cosines l = −0.5 and l = 0.5 are used to
model resolved and unresolved sources, respectively. The sources
are shown in Fig. 1(c). We discretize the line ‘image’ into Q = 201
pixels. The operating frequency is set to 80 MHz and the covariance
data contains correlated noise with power 100. The correlation data
R̂ is constructed from N = 105 samples.

The PSF of the antenna array is shown in Fig. 1(d) and as
can be seen contains large sidelobes. We can see based on the
PSF that the left Gaussian source, with a width larger than the
main beam, can be considered as a resolved source and the right
Gaussian, that is significantly narrower than the main beam, can
be considered as an unresolved source. The MF and the MVDR
dirty images are plotted in Fig. 1(e). As can be seen, due to the
large noise power, the MF and MVDR images are relatively close.
Fig. 1(f),(g),(h),(i), and (j), respectively, show the reconstruction re-
sults for LSQR, MF-PRIFIRA, MVDR-PRIFIRA, IR1-PRIFIRA,
and IR0-PRIFIRA. The total number of iterations until the stopping
criteria are achieved for LSQR, MF-PRIFIRA, MVDR-PRIFIRA,
IR1-PRIFIRA, and IR0-PRIFIRA are 4, 3, 3, 60, and 60, respec-
tively. 20 outer iterations are used for IR1- and IR0-PRIFIRA. For
IR0-PRIFIRA, the non-zero coefficients in α̂k converge to 1 after 20
iterations. Therefore, the solution σ̂ becomes invariant with the in-
crease of outer iterations. We have added two more reconstructions
based on IR1-PRIFIRA. Fig. 1(k) is a modified version of IR1-
PRIFIRA such that the prior-conditioning weights are computed
as W−1

k = diag(σ̂ 1/2
k−1 + ε) with ε = 0.2. Similar modifications are

proposed in Chartrand & Yin (2008) and Daubechies et al. (2010)
for stability reasons. The number of outer iterations is kept at 20
for this result. Furthermore, Fig. 1(l) shows an extreme case of
IR1-PRIFIRA with 100 outer iterations.

The figure shows that the LSQR reconstructed image has many
sidelobes, some of which are negative. MF-PRIFIRA and MVDR-
PRIFIRA stabilize the solution such that the sidelobes disappear
to a large extent with MVDR-PRIFIRA being more successful in
this regard. Both MF-PRIFIRA and MVDR-PRIFIRA recover the
resolved source reliably and smear out the unresolved source as
was expected from the third argument in Section 4.2. IR1-PRIFIRA
attempts to narrow the smearing while IR0-PRIFIRA aims for an
optimally sparse and spiky solution which is not the preferred solu-
tion in cases where retrieving extended emissions are of interest. The
modified version of IR1-PRIFIRA is more faithful to the recovery of
the extended emission while smearing the unresolved source. In the
extreme case, IR1-PRIFIRA recovers the unresolved source almost
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Figure 1. (a) Antenna positions, (b) singular value distribution of M, (c)
source distribution, (d) PSF, (e) MF and MVDR dirty images, (f) LSQR re-
construction, (g) MF-PRIFIRA reconstruction, (h) MVDR-PRIFIRA recon-
struction, (i) IR1-PRIFIRA reconstruction, (j) IR0-PRIFIRA reconstruction,
(k) modified IR1-PRIFIRA reconstruction, (l) IR1-PRIFIRA reconstruction
after 100 outer iterations.

Figure 2. (a) LSQR basis vectors, (b) MF-PRIFIRA basis vectors, and (c)
MVDR-PRIFIRA basis vectors.

perfectly while narrowing the extended emission into two peaks
similar to the effect observed with the recovery of IR0-PRIFIRA.
Both IR1- and IR0-PRIFIRA do not observe the natural resolution
of the instrument while MF and MVDR-PRIFIRA maintain this
resolution.

In Appendix B, we discuss the effect of removing the autocorre-
lations analytically and based on a simulation for a 1D scenario.

We now look more closely into the Krylov basis vectors pro-
duced by the various algorithms. As mentioned in Section 5,
Krylov subspace-based methods restrict the solution space to the
first t Krylov vectors. When applying the LSQR algorithm, the
Krylov vectors are reorthogonalized as Lanczos vectors indicated
by vt at iteration t. Therefore, the solution space is spanned by
[v1, v2, . . . , vt ]. It is informative to look at the Lanczos vectors with
and without the application of prior-conditioners. We show these
effects for the simple 1D test case. Fig. 2 shows the first four initial
Lanczos vectors. It is seen that the LSQR basis has a non-zero sup-
port where the true image is zero while MF- and MVDR-PRIFIRA
bases capture the support of the image already in the initial Lanczos
vectors. This indicates that the latter bases provide a good space to
represent the image.

6.3 Tests on model images

The proposed methods are now tested on noisy simulated data
using the configuration of antennas from the core stations of the
LOFAR telescope array. As test image, we consider an image of
the W28 supernova remnant, shown in Fig. 3(a), obtained from
https://casaguides.nrao.edu/index.php. The core stations contain
P = 273 antennas with a maximum baseline length of about
326 m as shown in Fig. 3(b). The operating frequency is chosen
as 58.975 MHz and a single time snapshot is considered. The u-
v coverage of the telescope array is shown in Fig. 3(c). Fig. 3(d)
illustrates the PSF of the array showing the limited resolution of
the array and the existence of sidelobes. To construct the sampled
covariance matrix, R is generated from the test image, R1/2 is used
to shape white Gaussian noise into data vectors x[n] that has the
required covariance structure, and white Gaussian receiver noise
with variance σ 2

n = 4 is added. N = 105 data samples x[n] are used
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Figure 3. (a) Test image in dB, (b) antenna placement, (c) u-v coverage,
(d) normalized PSF in dB, (e) MF dirty image in dB, and (f) MVDR dirty
image in dB.

to construct R̂. The image is discretized into Q= 84 681 pixels.
The dirty image obtained from the matched filtered beamformer is
shown in Fig. 3(e), and the MVDR dirty image is shown in Fig. 3(f).
The simulations were performed in MATLAB R2014b on a computer
with Intel i5-4670 CPU 3.40 GHz under 64-bit Windows 7 with
an 8 GB RAM. The images are shown in logarithmic scale and for
demonstration and for comparison reasons are limited to scales in
the range 1–10−3.5.

Fig. 4 compares the reconstructed images for the various
imaging algorithms. Fig. 4(a) and (b), respectively, show the
CLEAN and NNLS (Sardarabadi et al. 2016) reconstructions after
applying post-processing with a Gaussian main beam which was
fitted to the PSF. 10 major cycles of 500 minor cycles are chosen
for running the CLEAN algorithm. Fig. 4(c) shows the ADMM
reconstruction with an �1 sparsity constraint. Fig. 4(d) is the re-
constructed image based on the SARA formalism (Carrillo et al.
2012), implemented with ADMM. Fig. 4(e) is the reconstruction
based on the Richardson–Lucy algorithm (Richardson 1972). Fig.
4(f) is the maximum entropy reconstruction (Cornwell & Evans
1985) based on the implementation (Hanke, Nagy & Vogel 2000).
This method is very sensitive to the choice of the regularization
parameter and the starting vector, and we chose the scaled MF dirty
image as the starting vector. Figs 4(g),(h), (i), (j), and (k) show the
results for LSQR, MF-PRIFIRA, MVDR-PRIFIRA, IR1-PRIFIRA,
and IR0-PRIFIRA, respectively. Five outer iterations are chosen for
IR0-PRIFIRA and IR1-PRIFIRA.

Qualitatively, Fig. 4 shows that CLEAN and NNLS have less res-
olution than the other methods due to the correction with the main

Figure 4. (a) CLEAN, (b) NNLS, (c) ADMM, (d) SARA, (e) RL, (f) MEM,
(g) LSQR, (h) MF-PRIFIRA, (i) MVDR-PRIFIRA, (j) IR1-PRIFIRA, and
(k) IR0-PRIFIRA.
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Figure 5. (a) Relative residual per iteration, (b) �2 norm error, and (c) �1

norm error.

beam. MEM results in a rather ‘flat’ image outside the area of sig-
nificant emission. LSQR has significant remaining side lobes (ring-
ing effects indicating insufficient regularization), and MF-PRIFIRA
also shows this to a lesser extent. MVDR-PRIFIRA and IR1-
PRIFIRA are comparable, although the latter results in a ‘sharper’
image due to the imposed sparsity. IR0-PRIFIRA has converged to a
very sparse solution, indicating it is not suitable to capture extended
structures. These observations are consistent with the 1-D case.

The convergence in terms of relative residual, �1-norm error and
�2-norm error per iteration are compared in Fig. 5. The relative
�i-norm error for i = 1, 2 at iteration t, ei,t, is defined as

ei,t = ‖σ̂ t − σ‖i

‖σ‖i

, (62)

where σ is the model true image and σ̂ t is the reconstructed image
at iteration t. We use e1,t as an indicator of how accurately the al-
gorithm is capable of retrieving the source positions as well as the
intensities whereas e2,t is mostly concerned with retrieving the cor-
rect overall intensity in the image. ADMM, LSQR, MF-PRIFIRA,
and MVDR-PRIFIRA are shown in blue, black, and red graphs,
respectively. For comparison reasons, LSQR, MF-PRIFIRA, and
MVDR-PRIFIRA are run beyond the stopping threshold. The fig-
ure shows that methods based on LSQR exhibit a substantially faster
convergence than steepest descent-based ADMM while maintaining
comparable reconstruction quality.

The performance of the imaging algorithms is summarized in
Table 1, which shows the number of iterations, reconstruction time,
and error norm for the considered algorithms. The table shows that
methods based on LSQR and PRIFIRA with one iteration level
(i.e. no outer iterations), namely MF- and MVDR-PRIFIRA, ex-
hibit greatly reduced number of iterations and reconstruction time.
We can see that SARA, ADMM, and RL exhibit good reconstruc-
tion qualities but are considerably slower than the PRIFIRA-based
methods. Among the PRIFIRA-based methods IR1-PRIFIRA, MF-
PRIFIRA, and MVDR-PRIFIRA exhibit the best reconstruction
quality.

Table 1. Performance summary.

# iterations
Reconstruction

time (s)
‖σ̂ −
σ‖2

‖σ̂ −
σ‖1

CLEAN 5000 69.53 2.86 116.7
NNLS 2656 11.88 (h) 3.08 124.8
ADMM 79 134.61 1.45 3.01
SARA 200 353.66 1.76 2.85
RL 200 342.9 1.7 2.61
MEM 30 43.9 (min) 1.8 94.4
LSQR 12 22.57 2.27 9.8
MF-PRIFIRA 15 35.08 1.57 3.5
MVDR-PRIFIRA 15 32.57 1.76 2.79
IR1-PRIFIRA 66 128 1.34 2.53
IR0-PRIFIRA 84 165.45 6.42 8.34

Figure 6. (a) LOFAR single station antenna position and (b) PSF.

6.4 Tests on real data

Next, we test the proposed imaging algorithm on measured corre-
lation data from a single LOFAR station. The data set as introduced
in Wijnholds & Van der Veen (2011) and Wijnholds (2010) is used.
The station consists of an array of 48 antennas as shown in Fig. 6(a)
and the related full-sky PSF is shown in Fig. 6(b). An observation
from a single 10 s snapshot at frequency 50.3125 MHz is considered
to construct an image with Q = 8937 pixels. The normalized MF
and MVDR images are shown in Fig. 7(a) and (b). The power of
the additive noise on the antennas is unknown, and we compute an
estimate of it as

σ̂ n = |R̂−1|−�2vectdiag(R̂−1), (63)

as discussed in Wijnholds (2010), where the notation | · |−�2 de-
notes entrywise taking the absolute value, inverting, and squaring.
MF and MVDR images are computed based on the noise corrected
covariance data R̂ − Rn. The reconstruction results are shown in
Fig. 7. Since the ground truth of the sky map is unknown with
the real data, we show the residual image after reconstruction as
is customary in radio astronomical society. The residual image is
computed as

δ = MH (r̃ − Mσ̂ ), (64)

where δ indicates the residual image and σ̂ is the estimated image.
Figs 7(c), (e), and (g), respectively, show the reconstruc-

tion results for LSQR, MF-PRIFIRA, and MVDR-PRIFIRA af-
ter seven iterations and Figs 7(d), (f), and (h) show the cor-
responding residual images. Figs 7(i) and (k), respectively,
show the reconstructed images using IR1-PRIFIRA and IR0-
PRIFIRA after three inner iterations and four outer itera-
tions and Figs 7(j) and (l) are the corresponding residual im-
ages. The image scales on the residual images are cropped at
[−0.2, 0.2] for ease of comparison.
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Figure 7. (a) MF, (b) MVDR, (c) LSQR, (d) LSQR residual image, (e)
MF-PRIFIRA, (f) MF-PRIFIRA residual image, (g) MVDR-PRIFIRA, (h)
MVDR-PRIFIRA residual image, (i) IR1-PRIFIRA, (j) IR1-PRIFIRA resid-
ual image, (k) IR0-PRIFIRA, and (l) IR0-PRIFIRA residual image.

Since the ground truth is not known in this case, we use the
LS image generated from combining 25 frequency channels and
10 s integration per channel as discussed in Wijnholds (2010) as a
reference. The bright sources are identified as Cyg A and Cas A and
the presence of a Galactic loop emerging from Cyg A is identified as
loop III in the Haslam survey (Wijnholds 2010). Most of the middle
and west part of the image do not contain recognizable emissions.
This example is interesting as the data contains the contribution
from both point sources as well as extended emissions. It is worth
noting that we only use data from one frequency and snapshot
to test our algorithm. We can see from the LSQR reconstruction
in Fig. 7(c) that there is considerable excess power in the middle
and west part of the image due to the instability of the solution.
MF-PRIFIRA and MVDR-PRIFIRA correct to a large extent for
the faulty reconstruction in the middle and west part of the image
while reducing the residual power with MVDR-PRIFIRA showing
the smallest and smoothest residual image. IR1-PRIFIRA seems to
capture most of the relevant emissions with a similar residual level.
However, IR0-PRIFIRA only captures the point sources discarding
the extended emissions as predicted and is more appropriate for
images with only point sources.

7 C O N C L U S I O N S A N D FU T U R E WO R K

In this paper, we have introduced an algorithmic framework to effi-
ciently solve radio astronomical imaging problems with a focus on
the recovery of extended emissions. An initial image based on beam-
forming techniques is used to regularize the Maximum Likelihood
image estimation problem by means of prior (or right) precondition-
ing. We further generalize the proposed framework to also handle
images with sparsity priors. To achieve an efficient implementation,
we have proposed the use of Krylov subspace methods. We call the
algorithmic framework PRIFIRA which consists of different vari-
ants referring to the type of regularization applied.

We have compared the performance of PRIFIRA with several
state-of-the-art imaging algorithms and have shown the computa-
tional savings and improvements in accuracy of the estimations. In
particular, prior-conditioning using an MF or MVDR dirty image is
seen to provide very fast convergence of the Krylov iterations to a
solution that has comparable reconstruction quality as the state-of-
the art methods at a significantly reduced computational cost.

An initial PYTHON implementation of the algorithm is being made
with the goal to be included in the LOFAR imaging software and
benefit from the existing fast implementations of the gridding and
degridding operators.
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A P P E N D I X A : PRO O F O F ( 1 4 )

It is known that (Sardarabadi et al. 2016)

aH
i Rai ≥ 1

aH
i R

−1ai

.

Therefore, it is sufficient to prove that

aH
i Rnai ≤ aH

i R
−1RnR

−1ai

(aH
i R

−1ai)2
.

This is the same as

aH
i R

−1ai · aH
i Rnai · aH

i R
−1ai ≤ aH

i R
−1RnR

−1ai .

For this to hold, it is sufficient if

ai aH
i Rnai aH

i ≤ Rn.

While this is not true in general, the relation holds if ai is an
eigenvector of Rn, which includes special cases such as Rn = σ 2

n I,
this relation holds.

APPENDI X B: EFFECT OF MI SSI NG
AU TO C O R R E L AT I O N S

Traditionally in radio astronomy, the autocorrelations are not mea-
sured or are discarded for image formation, as they are consid-
ered inaccurate due to the addition of large noise power terms. We
briefly discuss the effect of missing autocorrelations on the proposed
method.
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If the autocorrelations are not available, we need to change the
data model accordingly. We redefine r̃ as

R̃ = R̂ − diag(R̂), r̃ = vect(R̃), (B1)

which includes ‘zero’ entries in place of the missing autocorrela-
tions. It is straightforward to derive that r̃ is related to r̂ as

r̃ = 	r̂, (B2)

where

	 = IP 2 − (Ip ◦ Ip)(Ip ◦ Ip)H (B3)

is an orthogonal projection matrix that projects out the diagonal
entries from r̂ . The resulting data model is

r̃ = M̃σ + ẽ,

where M̃ = 	M, and ẽ = 	e is the finite sample noise, modelled
as complex Gaussian with zero mean and variance

C̃e = 	Ce	 = 1

N
	(RT ⊗ R)	.

This has a number of consequences:

(i) r̃ does not correspond to a positive (correlation) matrix;
(ii) A straightforward estimate of C̃e is unknown as R̂ is unavail-

able. Moreover, C̃e is not invertible. Thus, the weight matrix � in
the regularized WLS problem (31) is not available, and we need to
resort to the unweighted LS formulation

α̂ = arg min
α

‖	(r̃ − ML−1α)‖2
2 + τ‖α‖2

2 ; (B4)

(iii) The MVDR beamformer weights cannot be formed, for the
same reason. We used this to form an initial image for the regular-
ization operator L. Instead, we should resort to the MF (classical)

dirty image (omitting autocorrelation terms), σ̃ MF = M̃
H

r̃ (cf. 11)
and set L−1 = diag(σ̃ MF) as a surrogate.

Under the usual assumptions in radio astronomy (noise much
stronger than the sources, noise powers have been whitened), it
can be argued that the difference between WLS and LS is small,
and also the difference between MF and MVDR is small. Alter-
natively, we can apply diagonal loading and replace R̃ by R̃ + ηI,
where η is a noise variance estimate.

More important is the fact that r̃ does not correspond to a pos-
itive matrix. The resulting MF dirty image σ̃ MF does not have to
be positive and sources can have negative sidelobes. Similarly, the

PSF, or dirty beam, is defined as b = MH 1, and becomes b̃ = M̃
H

1.
Since M = A∗ ◦ A, and assuming normalized array response vec-
tors ‖ai‖ = 1, it can be shown that b̃ = b − 1. Thus, also the modi-
fied PSF can have negative sidelobes, although it is straightforward
to correct this.

The negative sidelobes in σ̃ MF makes this unsuitable to be used
as weight in (B4). Some entries in this vector may be close to
zero, causing the resulting solution to have a black pixel at that
location. Negative values should be avoided by shifting up all the
pixels by (at least) the smallest negative value of the sidelobes. If
we assume the entries of A to contain only phases, as in (2), then all
entries have equal magnitude, and it is straightforward to show that
the difference between the original MF image and the MF image
without autocorrelations is a constant, equal to the total neglected
power. (This is essentially because the MF dirty beam is spatially
invariant.) Thus, to correct the MF dirty image we only have to
estimate a single shift common to all the pixels. For MVDR, the
PSF is spatially variant and we cannot use a single common shift to
obtain the MVDR image where autocorrelations are available.

Figure B1. Effect of missing autocorrelations: (a) Antenna positions, (b)
PSF, (c) MF dirty image, (d) MVDR dirty image, (e) MVDR-PRIFIRA,
(f) MVDR-PRIFIRA without autocorrelations, and (g) MVDR-PRIFIRA
without autocorrelations with correction to make sidelobes positive.

Discarding autocorrelations results in the PSF, MF, and MVDR
image to have negative sidelobes. Since MF and MVDR are applied
as weights to the columns of the M, any zero value in the weights
will enforce zero values in the estimated coefficients and eventually
in the solution. The upper bound property of MF and MVDR ensures
that none of the non-zero image pixels will not be set to zero.
However, when autocorrelations are missing we should avoid zero
values by shifting up all the pixels in the MF and MVDR image by
the smallest negative value of the sidelobes.

In Fig. B1, we illustrate with a 1D simulation the effect of drop-
ping the autocorrelations on the PSF, MF, and MVDR image, and
on the reconstructed MVDR-PRIFIRA image (MF-PRIFIRA would
give similar results). We use a similar setting as for the 1D exam-
ple presented in Section 6 but with a different antenna placing to
better show the effect of the negative sidelobes. We choose for this
experiment two Gaussian sources of heights 5 and 1 centred at di-
rection cosines l = −0.5 and l = 0.5, respectively, from left to right.
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Fig. B1(a), (b), (c), and (d), respectively, show the antenna place-
ment, PSF, MF dirty image, and MVDR dirty image. Lines related
to the setting where we have access to the complete correlation ma-
trix are shown in blue, while the red lines represent the case where
the autocorrelations are not available. Fig. B1(e) and (f) represent
MVDR-PRIFIRA, and MVDR-PRIFIRA when we do not have the
autocorrelations. Fig. B1(g) is when we make the MVDR image
strictly positive by adding the smallest negative sidelobe to the im-
age and apply it as the right preconditioner in MVDR-PRIFIRA. As
can be seen, this correction improves the estimation performance,
although the performance of the algorithm is still suboptimal com-
pared to the case where we have full information.

APPENDIX C : MULTIDICTIONA RY
GE NERALIZATION

In this appendix we include some early efforts on extending the
algorithmic framework presented in Section 4 to cases where point
sources and extended emissions coexist in the sky map. We explain
the idea here but further developments are deferred to a future
publication. The initial idea for this section is based on one of our
early works published in Naghibzadeh, Sardarabadi & van der Veen
(2016a).

We assume that we can model the sky map via an overcomplete
dictionary � as σ = �η such that the coefficient η is sparse. We
generalize the �0-norm regularization problem (41) such that we
have

η̂ = arg min
η

‖�(r̃ − M�η)‖2
2 + τ‖η‖0. (C1)

We choose a simple dictionary � = [I,D] with size Q × 2Q com-
posed of (i) I, the identity matrix, pixel basis, to model the point
sources and (ii)D, the Gaussian clean beam basis matrix.D consists
of all the shifts of the clean beam centred on all the pixel locations
and is used as a simple basis to model the extended emissions. We
apply IR0-PRIFIRA to obtain an estimate η̂. The image estimate σ̂

can be obtained as σ̂ = �η̂. We note that we need to normalize D
such that the norm of the image is preserved during this transform.

We show the effect of applying the overcomplete dictionary on
IR0-PRIFIRA based on a 1D test with a point source with size 4 and
a Gaussian source with height 2, modelling an extended emission
as shown in Fig. C1(a). We take as before P = 10 antennas with
a random linear placement as shown in Fig. C1(b). The number
of pixels in the image is Q = 201 as with the previous simula-
tions. Gaussian receiver noise with variance σ 2

n = 100 is added to
the measurements. The beam pattern and the clean beam used in
defining the dictionary are superimposed in Fig. C1(c). The MF and
MVDR dirty images are shown in Fig. C1(d). The estimated basis
coefficients η̂ and the reconstructed image based on the multidic-
tionary version of IR0-PRIFIRA superimposed with the image are
shown in Fig. C1(e) and (f), respectively. For this estimate 20 outer
iterations of IR0-PRIFIRA are performed. These simulation results
show that the original image is recovered faithfully.

This indicates that we can modify IR0-PRIFIRA by modelling
the sky map based on an overcomplete dictionary such that the
dictionary coefficients are sufficiently sparse. Doing so, we are able
to obtain a generalization of the proposed framework such that
images containing both extended emissions and point sources can
be reconstructed sufficiently well. Further investigation on optimal
basis designs is outside the scope of this work and is deferred to a
future work.

Figure C1. (a) Sources, (b) antenna positions, (c) PSF and the clean beam,
(d) MF and MVDR dirty images, (e) estimated basis coefficients, and (f)
multidictionary IR0-PRIFIRA estimates.

APPENDI X D : C OMBI NED REGULARI ZING
E F F E C T O F P R I O R - C O N D I T I O N I N G
A N D E A R LY STO P P I N G

In this appendix we discuss the combined regularizing effect
of the prior-conditioning and early stopping on the solution of
Problem (54). The SVD is a powerful tool for the analysis of
LS problems. It is well-known that the minimum norm solu-
tion of a linear LS problem is obtained via the pseudo-inverse
(Lawson & Hanson 1974). For example we consider Problem (20).
If the SVD of �M can be stated as �M = U�VH where U and V
contain the left and right singular vectors, respectively, and � is a
diagonal matrix containing the singular values of �M, the minimum
norm solution can be expressed as

σ̂ = (�M)† r̃ = V�†UH r̃. (D1)

Unfortunately, for ill-posed problems the pseudo-inverse solution
is unstable due to the noise amplification by the inversion of small
singular values (Hansen 2010).

Applying regularization stabilizes the solution. The solution of
many regularized LS problems can be stated in the form of a filtered
SVD (Hansen 2005). If regularization is applied on (20), the solution
in terms of filtered SVD can be stated as

σ̂ = V��†UH r̃, (D2)

where � is a diagonal matrix containing the regularization filter
factors and is dependent on the type of regularization applied. The
purpose of the regularizing filter factors is to filter out the effect
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of small singular values in � that cause noise amplification and
instability of the estimated solution when inversion is performed.

We present the solution of (54) in terms of filtered SVD to
show the regularizing effect of the iteration count and the prior-
conditioner. Assuming in this case the SVD of M̄ = �ML−1 is
given as Ū�̄V̄H , starting from (53) and following the approach
from Jensen & Hansen (2007), Hansen (2005) we obtain:

Kt (M̄H M̄, M̄H r̄) = span{V̄�̄ŪH r̄, V̄�̄
3
ŪH r̄, . . . , V̄�̄

2t−1
ŪH r̄}.

(D3)

Since the solution is a linear combination of vectors, the filtered
SVD solution of σ̂ can be stated as

σ̂ = L−1V̄�̄t�
†ŪH r̃, (D4)

where �̄t is a diagonal matrix of the form �̄t = Pt (�̄
2
)�̄

2
where

Pt indicates a polynomial of degree smaller than t − 1. This polyno-

mial is shown to be dominated by large singular values in the initial
iterations. As the iteration continues, more singular values are re-
covered and the effect of small singular values becomes prominent.
Therefore, choosing the right stopping iteration, T, limits the in-
fluence of the small singular values and therefore stabilizes the
solution (Hansen 2010).

We can conclude from equation (D4) that the sky map ob-
tained using PRIFIRA is in the form of a regularized LS solu-
tion. In this solution, both the prior-conditioning weights and the
iteration count contribute to the regularization filter factors for
filtering out the small singular values and thus stabilizing the
inversion.
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