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ABSTRACT
A fast iterative method based on projection onto Krylov
subspaces has been proposed for Radio Astronomical (RA)
image reconstruction from telescope array measurements.
The image formation problem is formulated as a linear least
squares (LS) estimation problem by discretizing the Field of
View (FoV) of the telescope array into a number of pixels.
The ill-posed imaging problem is regularized by the Krylov
iterations and the system matrix is prior conditioned by the
weights attained from the matched filter beamformed data.
The performance of the proposed method is shown based on
simulated data from a single station of the the Low Frequency
Array Radio Telescope (LOFAR) antenna configuration on
a test radio astronomical image. It has been shown that the
prior conditioning of the system matrix results in a more
accurate image estimate by reducing the artifacts introduced
in the empty parts of the image. Furthermore, it was shown
that Krylov-based methods fit very well in the context of
large scale RA image reconstruction due to their speed and
computational benefits.

Index Terms— Image formation, interferometry, regular-
ization, radio astronomy, Krylov-based imaging

1. INTRODUCTION

In many array processing and image reconstruction applica-
tions, it is required to estimate the location and the intensity
of the sources or image pixels given an incomplete and noisy
set of measurements from an array of antennas. One such ap-
plication area is RA imaging in which the goal is to obtain an
sky map over the FoV of the radio telescope. In a technique
called interferometry [1, 2], the signals from two or more ra-
dio telescopes are combined through correlators to synthesize
a larger radio telescope. In this context, the term baseline is
used to refer to the vector pointing between each pair of the
antennas. The resolution of the telescope array is dictated by
the Point Spread Function (PSF) of the array and is inversely
proportional to the maximum baseline length.

In a point source modeling of the RA imaging problem,
the FoV of the array is decomposed in a number of pixels
over which the intensity is estimated [3, 4]. In the current
and future radio telescopes, such as the Low Frequency Array
(LOFAR) and the Square Kilometer Array (SKA), fine reso-
lution images with a high number of pixels are required. We
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define the RA image reconstruction as a linear LS regression
problem with the noisy covariance measurements as the avail-
able data and the pixel powers as the unknowns. The system
matrix performs the transform from the correlation domain
to the image domain. High resolution imaging requirements
leads to a large system matrix and an underdetermined system
of equations. Furthermore, noisy and incomplete covariance
measurements result in an ill-posed inverse problem. To en-
sure a unique solution and avoid noise amplification, regular-
ization schemes are necessary.

A direct solution method for the LS RA imaging problem
based on the spectral decompositions of the system matrix
have been proposed in [5]. Moreover, two methods for the
regularization of the direct solution have been proposed in [6];
(i) based on spectral weighting and (ii) based on conditioning
of the system matrix based on an initial estimate of the image
obtained from the matched filter beamformed data.

Direct methods require explicit formation and storage of
the system matrix and computation of a Singular Value De-
composition (SVD) on the system matrix. High resolution
RA imaging leads to large system matrices where the spectral
decomposition methods are infeasible due to the computation
and storage constraints. Krylov subspace-based methods [7]
appear to be a good candidate as an alternative iterative solu-
tion method for LS RA imaging problems.

Krylov subspace-based methods were first investigated in
the context of RA imaging by Mouri Sardarabadi et al. [8].
The algorithm, dubbed Nonnegative Least Squares (NNLS),
consists of (i) an outer loop based on the greedy method of
active set [9] to iteratively find the sparse support of the im-
age and (ii) an inner loop in which a dimension reduced ver-
sion of the LS problem is solved using the Krylov subspace-
based method of LSQR [10]. It has been shown that the algo-
rithm has similar working principle and improved reconstruc-
tion quality compared to the most widely used image recon-
struction method in radio astronomy, the method CLEAN [4].
NNLS algorithm was further extended to account for the ex-
tended emissions by modeling the emissions in terms of point
sources and Gaussian beams in [11].

We present an efficient iterative imaging algorithm based
on the Krylov subspace-based method of LSQR and intro-
duce an initial estimate of the support of the image by prior
conditioning the system matrix by an estimate of the image
obtained from the matched filter beamformed data. Further-
more, we exploit the preconvergence characteristics of the
krylov subspace-based methods to regularize the imaging
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problem by the iteration count. The performance of the pro-
posed method is investigated based on simulated data from
a single station LOFAR antenna configuration on a radio
astronomical image.

2. DATA MODEL

Radio astronomical source recovery was first considered in
the context of array signal processing by van der Veen et al. [3,
12]. We employ a similar array processing framework and
data model as suggested in [3, 11]. The notations p.qT ,p.qH ,
p.q˚, ˝, b and p.q: respectively denote transpose, the Hermi-
tian transpose, complex conjugate, Khatri-Rao product, the
Kronecker product and Moore-Pensore pseudo inverse. The
telescope array under consideration is composed of P distinct
receiving elements and the FoV of the array is decomposed
into Q pixels.

The celestial sources are assumed to be stationary. Due to
the earth rotation, the observation time of the celestial sources
is divided into a number of time snapshots over which the ob-
served positions of the celestial sources by the earth-bound
telescope array are considered stationary. The signals re-
ceived on each antenna element and over each time snapshot
k are first time-sampled into N samples and divided into
narrow frequency bands. The sampled received signals on all
the array elements for one frequency band is represented as

ykrns “ Aksrns ` nkrns, n “ 1, ¨ ¨ ¨ , N. (1)

In this representation, ykrns, srns and nkrns respectively de-
note the Pˆ1 vector of the received signal sample over all the
antennas, the Qˆ 1 vector of the sampled source signals and
the P ˆ1 vector indicating the sampled noise signal on all the
receivers. Ak is the P ˆ Q array response matrix. Without
loss of generality, in the rest of the paper we consider a single
time snapshot and frequency band and therefore drop the in-
dex k. Each element of the array response matrix is computed
as

apq “
1
?
P
e´j 2π

λ vTp zq (2)

where λ is the wavelength of the received signal , vp is a 3ˆ1
vector of the Cartesian location of the pth array element with
respect to a chosen origin in the field of array and zq contains
the direction cosines of the qth pixel in the image plane. As-
suming the signals and the receiver noise are uncorrelated, the
autocovariance of the received signals is computed as

R “ EtyrnsyH rnsu “ AΣsA
H `Σn, (3)

where Σs “ diagtσu and Σn “ diagtσnu represent the co-
variance matrices associated with the source signals and the
received noise respectively. An estimate of the data covari-
ance matrix is obtained using the available received data sam-
ples. The sample covariance matrix is calculated as

R̂ “
1

N

N
ÿ

n“1

yrnsyH rns. (4)

The linear measurement equation is obtained by vectorizing
the covariance data model and the covariance measurement
data

r̂ “ r` e, (5)

where r̂ “ vecpR̂q, r “ Mσ ` rn, in which M “ A˚ ˝A
and rn “ vecpΣnq “ pI ˝ Iqσn, and e represents the error
due to the finite sample modeling of the covariance data. The
system matrix M has dimensions P 2ˆQ. One element of M
corresponding to the baseline between the ith and jth antenna
and the qth pixel is computed as:

Mij,q “ a˚iqajq “ e´j 2π
λ pvi´vjq

T zq . (6)

3. PROBLEM FORMULATION

The RA image formation problem can be formulated as a lin-
ear LS regression problem [3]. In this problem formulation,
the aim is to fit the available noisy and incomplete covariance
data to the covariance model. Assuming the knowledge of the
receiver noise powers, we denote r̂´ rn by r̃. Therefore, the
RA imaging problem reduces to

σ̂ “ argmin
σ

‖ r̃´Mσ ‖22 . (7)

4. SOLUTION METHOD BASED ON KRYLOV
SUBSPACES

Instead of performing a direct inversion on the system matrix,
the Krylov subspace-based methods solve Equation 7 by it-
eratively and implicitly forming a polynomial approximation
of the pseudo inverse. This is done implicitly by iteratively
projecting the system matrix over the Krylov subspaces

Kt “ spantMH r̃, pMHMqMH r̃, ¨ ¨ ¨ , pMHMqt´1MH r̃u,
(8)

where K denotes the Krylov subspace and t shows the iter-
ation count. As denoted in the algorithm description in [7],
the subspace is formed iteratively by matrix-vector multipli-
cations of the form Mu and MHv for arbitrary vectors u
and v. Due to the storage constraints in RA imaging, using
the available knowledge on the generation function of M as
indicated in Equation 6, we can implement a subroutine that
directly computes the solution of the aforementioned matrix
vector products without the need to store M in the memory.
Furthermore, since the basis vectors that span the Krylov sub-
space are formed from the system matrix and the available
data they adapt to the particular problem. This is in contrast
with the SVD based basis vectors that are only based on the
system matrix.

As mentioned in [10], the Krylov subspace-based method
of LSQR is the preferred method when dealing with ill-
conditioned system matrices. The reason is that LSQR avoids
squaring of the condition number of the system matrix by
not forming the normal equations in contrast with the stan-
dard method of conjugate gradients. Therefore, we employ
the LSQR method for the solution of our image formation
problem.
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4.1. Iterative regularization

As mentioned before, the inverse imaging problem introduced
in Equation 7 is ill-posed. Instead of explicitly introducing
additional regularizing constraints, we show that the Krylov
subspaces perform regularization by spectral filtering. The
image at iteration t is a linear combination of the Krylov basis
vectors. Therefore, there exist coefficients b1, b2, ¨ ¨ ¨ , bt such
that the obtained image at iteration t, σ̂ptq, can be represented
as

σ̂ptq “ b1M
H r̃`b2pM

HMqMH r̃`¨ ¨ ¨`btpM
HMqt´1MH r̃.

(9)
To show the regularizing effect of the Krylov subspace-based
methods, following the explanation in [13], we show that σ̂ptq

has a filtered SVD expansion. The SVD expansion of the sys-
tem matrix can be represented as M “ USVH where U and
V contain the left and the right singular vectors, respectively
and S is a diagonal matrix that contains the singular values
in decreasing order. Inserting the SVD expansion, we can
rewrite Equation 9 as

σ̂ptq “ pb1 ` b2VS2VH ` ¨ ¨ ¨ ` btVS2pt´1qVHqVSUH r̃

“ Vpb1S
2 ` b2S

4 ` ¨ ¨ ¨ ` btS
2tqS´1UH r̃

“ VΦS´1UH r̃
(10)

where Φ is the diagonal weighting matrix. As can be seen,
the filtered SVD weights obtained from the Krylov subspace
expansion depend on the iteration count. Choosing the right
iteration count amounts to filtering out the insignificant and
noisy singular values and hence provides regularization. We
employ this semiconvergence property of LSQR to regularize
our imaging problem.

5. BEAMFORMING-BASED PRIOR CONDITIONING

RA images contain substantial black background of radio
quite zones. The least squares problem defined in 7 does
not contain any prior information on the potential position of
the empty sky and thus would lead to a more evenly-filled
estimated image. We propose to include the prior information
on the sky brightness distribution obtained from the matched
filter beamformer in the problem formulation to attain a more
realistic sky brightness distribution.

The matched filtered dirty image, denoted as σd, is com-
puted as σd “ MH r̃. denotes a weighted sum of the columns
of M. Each pixel of the dirty image contains the sum of the
received signals by all the antennas pointed towards that pixel
position in the FoV. Thus, for example, if a pixel is empty, i.e.
does not contain any radio source, the corresponding pixel in
the dirty image will only contain noise and sidelobes from the
other sources. As a result, the dirty image provides a crude
estimate of the support of σ.

We introduce a weighting matrix W “ diagpσdq and
weight the columns of M based on the corresponding pixel

in the dirty image as

M̃ “ MW. (11)

M̃ denotes the prior conditioned system matrix with columns
M̃ “ rσd,1m1, σd,2m2, ¨ ¨ ¨ , σd,QmQs, where σd,q and mq

respectively denote the qth pixel of the image and the qth col-
umn of M. Therefore, we recast the imaging problem as

σ̃ “ argmin
σ

‖ r̃´ M̃σ ‖22 (12)

and apply LSQR to find the solution. To show the equivalence
of the solution of Equations 7 and 12 we proceed as follows.
At the optimal point of problem 12 the normal equations

M̃HM̃σ̃ “ M̃H r̃. (13)

must hold. Substituting (11) in (13) we have

WHMHMWσ̃ “ WHMH r̃

MHMWσ̃ “ MH r̃
(14)

Comparing with the normal equations of the original prob-
lem 7, we conclude that

σ̂ “ Wσ̃. (15)

6. SIMULATION RESULTS

The proposed method has been tested on noisy simulated
data using the configuration of antennas from a single station
of the LOFAR telescope array. The test image was cho-
sen as a the HII region in the Large Magellanic Cloud of
Tarantula Nebula radio image shown in 1(a) (Available at
https://casaguides.nrao.edu/index.php). The station contains
P “ 48 antennas with maximum baseline length of about
63 m as shown in Figure 1(b). The operating frequency is
chosen to be 60 MHz and a single time snapshot is consid-
ered. Figure 1(c) illustrates the PSF of the array showing
the limited resolution of the array and the existence of side-
lobes. To construct the sampled covariance matrix, Gaussian
receiver noise with variance σn “ 0.5 is added to the covari-
ance R and N “ 105 data samples are used to construct R̂.
The image is discretized into Q “ 64009 pixels. The dirty
image obtained from matched filtered beamformer is shown
in Figure 1(d). The simulations were performed on a laptop
with Intel i5-2430 CPU 2.4 GHz under 64-bit Windows 7.

The results of applying the CLEAN algorithm, NNLS
algorithm, iteration regularized LSQR (shortly represented
as LSQR) and beamforming-based prior conditioned LSQR
(shortly represented as P-LSQR) are shown in Figure 2(a),
(b), (c) and (d), respectively.

CLEAN and NNLS algorithms start from an empty image
and build up the support of the image iteratively by nonlinear
greedy methods, assuming the image can be represented as a
set of point sources. 500 iterations were chosen for the ter-
mination of these methods. The computation time of CLEAN
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Fig. 1: (a) True sky image, (b) antenna placement, (c) PSF and (d)
dirty image

and NNLS were 2.8 and 4.6 minutes, respectively. Further-
more, the results were post-processed by a clean Gaussian
beam to restore the resolution of the main beam of the array.
As can be seen, these algorithms obtain a sufficiently good
estimate of the sky image at the resolution of the telescope ar-
ray. However, the convergence speed for the greedy methods
is prohibitively slow for radio images with a sufficient amount
of extended emission.

On the other hand, the LSQR-based methods consider the
complete image rather than individual point sources in each
iteration and proceed by projections onto Krylov subspaces.
In these simulations, the LSQR and P-LSQR methods were
terminated after only 10 iterations. The required time for the
generation of the results were 2.9 and 3.5 seconds for LSQR
and P-LSQR methods, respectively. Therefore, the LSQR-
based methods exhibit about a 60 times computational saving
compared to the widely-used greedy methods. The disadvan-
tage of the first LSQR method is that it fills up the empty
parts of the sky. Prior conditioning the system matrix with
matched-filtered dirty image weights results in a better esti-
mate of the sky brightness distribution while maintaining the
empty parts of the sky.

Furthermore, the performance of the LSQR-based algo-
rithms have been investigated by comparing the L2 and L1

norm errors per iteration as shown in logarithmic scale for
100 iterations in Figures 3(a) and (b), respectively. The blue
and the black curves correspond to the LSQR and P-LSQR
method, respectively. As can be seen, the L2 and L1 estima-
tion errors are less for the P-LSQR method. The L1 norm
error is an indicator of the support of the estimated image
and illustrates a big gap between the two methods indicating
that the P-LSQR method is indeed better capable of estimat-
ing the support of the image. Furthermore, as the iteration
number increases, the noisy smaller eigenvalues start to cor-
rupt the image and the estimation error increases. Therefore,
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Fig. 2: Image estimates based on (a) CLEAN, (b) NNLS, (c) LSQR
and (d) P-LSQR
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Fig. 3: (a) L2 norm error , (b) L1 norm error

exploiting the preconvergence behavior of the Krylov-based
methods helps in regularizing the solution.

7. CONCLUSIONS

A fast iterative approach to the LS radio astronomical imaging
problem has been investigated. The proposed method is based
the Krylov subspace-based method of LSQR. The regualriza-
tion of the ill-posed inverse imaging problem is performed by
the Krylov iterations and a prior conditioning on the system
matrix is obtained based on the crude estimate of the image
from the matched filter beamformer. The performance of the
algorithm has been tested on a radio astronomical image with
simulated data from a single LOFAR station configuration.
It has been shown that LSQR-based methods exhibit favor-
able computational characteristics for large scale RA imaging
problems. Furthermore, prior conditioning the system matrix
provides an effective way to enforce the support of the image
into the Krylov subspaces. For the future work it will be in-
teresting to compare this method with the existing L1-norm
regularized compressed sensing imaging algorithms in terms
of reconstruction quality and computations.
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