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Abstract—A simple and novel algorithm for source recovery
based on array data measurements in radio astronomy is pro-
posed. Considering that a radioastronomical image is composed
of both point sources and extended emissions, prior information
on the images, namely non-negativity and substantial black back-
ground are taken into account to choose source representation
basis functions. Dirac delta functions are chosen to represent
point sources and a Gaussian function approximated from the
main beam of the antenna array is selected to capture the
extended emissions. We apply the non-negative least squares
(NNLS) algorithm to estimate the basis coefficients. It is shown
that the sparsity promoted by the NNLS algorithm based on
the chosen basis functions results in a super-resolution (finer
resolution than prescribed by the main beam of the antenna array
pattern) estimate for the point sources and smooth recovery for
the extended emissions.
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I. INTRODUCTION

In many array processing and image reconstruction appli-
cations, it is required to estimate the location and the intensity
of the sources or image pixels given an incomplete and noisy
set of measurements from an array of antennas. One such
application area is the image formation for radio astronomy
in which the goal is to obtain an estimate of the spatial
distribution of the intensity of the celestial sources over the
field of view (FoV) of the array. In a point source modeling of
the radioastronomical imaging problem, the FoV of the array
is decomposed in a number of pixels over which the intensity
is estimated [1]. Due to the increased sensitivity and larger
FoV and the resolution and dynamic range requirements of the
current and future radio telescopes, such as the Low Frequency
Array (LOFAR) and the Square Kilometer Array (SKA), fine
resolution images with a high number of pixels are required.
This leads to an underdetermined and ill-conditioned system of
equations for the imaging problem for which a regularization
scheme is necessary to ensure a unique estimate. Prior informa-
tion on the radioastronomical images, such as non-negativity
and the substantial black background, can be incorporated in
the solution method to ensure a unique solution.

Many different iterative techniques have been proposed in
the literature for image reconstruction in radio astronomy. The
most widely-used technique is the so-called CLEAN method
of Högbom [2] which is a sequential source removal technique.
At each step of the algorithm, the strongest source position and
power are estimated and the effect is removed from the residual
image until the residual is noise-like. It has been shown that the
CLEAN algorithm is equivalent to a Matching Pursuit (MP) [3]
solution method for the `1-norm constrained minimization of
the image pixels [4], [5], [6], [7].

Non-negative least squares (NNLS) were first investigated
in the context of radioastronomical imaging by Briggs [8].
Sardarabadi et al. [9] proposed a parallelizable version of the

active-set solution method [10] for NNLS and showed the
relation between their method and CLEAN. The active-set
method acquires a similar technique as CLEAN by iteratively
selecting columns from the measurement matrix corresponding
to the image pixel with the maximum intensity over the
residual image and solving for the intensity by fitting the
measurements to the model based on the selected image pixels.
The procedure is continued until the residual image reaches a
noise-based threshold.

To overcome the deficiency of CLEAN in the presence
of extended structures in the image, modifications to the
CLEAN algorithm have been proposed [11], [12], [13] which
unavoidably compromise the superrresolution characteristics
of CLEAN with convergence. Furthermore, Wiaux et al. [14]
proposed a method based on the prior of average sparsity of
the image over multiple wavelet bases and its parallelized
version [15]. These methods suffer from empirical choices
of image representation bases and come at an expense of
increased computations by sophisticated optimization algo-
rithms.

In this paper, we propose an iterative algorithm for image
reconstruction. The prior information about the image that is
incorporated in this algorithm are that the radioastronomical
image is positive and is composed of both point sources and
extended emissions with a substantial black background. We
use two basis functions to model the overall image: (i) the
Dirac delta function to model the point sources and (ii) a
normalized Gaussian function approximated from the main
beam of the array pattern. We employ the parallelized version
of the active-set method as proposed in [9] to find the non-
negative coefficients of the selected bases in each iteration. We
show that in each iteration, the proposed algorithm performs a
similar procedure as matched filtering on the residual image to
select the basis and the corresponding pixel with the maximum
contribution in the residual image. The data is fit to the model
based on the selected image pixels in a least squares sense and
the iteration is terminated when the residual image reaches a
predefined noise threshold. The performance of the proposed
method is evaluated using numerical simulations.

II. DATA MODEL

We explain the array processing framework and the data
model employed for radioastronomical image reconstruction.
Similar to the notations suggested in [1] and [9], p.qT ,p.qH ,
p.q˚, ˝, b and p.qd respectively denote transpose, the Her-
mitian transpose, complex conjugate, Khatri-Rao product, the
Kronecker product and element-wise power. The antenna ar-
ray under consideration is composed of P distinct receiving
elements and assuming a discrete point source model [1], the
FoV of the array is discretized into Q pixels or grid points
denoting potential point source positions.

The celestial sources are assumed to be stationary. Due
to the earth-bound positions of the antenna array elements



and the rotation of the earth, the observation time of the
celestial sources is divided into a number of time snapshots
over which the observed position of the celestial sources are
considered stationary. The received signals on each antenna
element and over each time snapshot k are first time-sampled
into N samples and divided into narrow frequency bands. The
sampled received signals on all the array elements for one
frequency band is represented as

ykrns “ Aksrns ` nkrns, n “ 1, ¨ ¨ ¨ , N. (1)

In this representation, ykrns, srns and nkrns respectively
denote the P ˆ 1 vector of the received signal sample over
all the antennas, the Q ˆ 1 vector of the sampled source
signals and the P ˆ 1 vector indicating the sampled noise
signal on all the receivers. Ak is the P ˆ Q array response
matrix. In the rest of the paper we consider a single time
snapshot and frequency band and therefore drop the index k.
The formulation can readily be extended to multiple snapshots
and frequencies. Denoting the array response matrix in terms
of its columns as A “ ra1,a2,a3, ¨ ¨ ¨ ,aQs, each column
represents the response of the array towards the corresponding
pixel in the image plane. Furthermore, each element of the
array response matrix is computed as

ap,q “
1
?
P
e´j

2π
λ vTp zq (2)

where λ is the wavelength of the received radio frequency
signal , vp is a 3 ˆ 1 vector of the Cartesian location of the
pth array element with respect to a chosen origin in the field
of array and zq contains the direction cosines of the qth pixel
in the image plane. The receiver noise and the astronomical
signals can be assumed to have a Gaussian distribution due
to the central limit theorem. Therefore, covariance matrices
provide sufficient statistics for the received signals [16]. As-
suming the signals and the receiver noise are uncorrelated, the
autocovariance of the received signals is indicated as [1]

R “ EtyrnsyH rnsu “ AΣsA
H `Σn, (3)

where Σs “ diagtσu and Σn “ diagtσnu represent the
covariance matrices associated with the source signals and the
received noise respectively. An estimate of the data covariance
matrix is obtained using the available received data samples.
The sample covariance matrix is calculated as

R̂ “
1

N

N
ÿ

n“1

yrnsyH rns. (4)

The measurement equation is obtained by vectorizing the
covariance data model and the covariance measurement data

r̂ “ r`w, (5)

where r̂ “ vecpR̂q, r “ Mσ ` rn, in which M “ A˚ ˝ A
and rn “ vecpΣnq “ pI ˝ Iqσn, and w is zero-mean additive
noise with covariance [17]

Covpwq “ Etpr̂´ rqpr̂´ rqHu “
1

N
pR˚ bRq. (6)

III. PROBLEM STATEMENT

Based on the data model presented in the previous sec-
tion, the imaging problem reduces to estimating the celes-
tial source powers, indicated in a discretized form as σ “

rσ1, σ2, σ3, ¨ ¨ ¨ , σQs
T , from the received noisy and incomplete

covariance data r̂. Assuming the knowledge of the noise
covariance vector rn, we can subtract the effect form r̂.

If the noise variance vector σn is not known, it can be
estimated together with the image pixels as explained in [1].
In the following formulation we ignore rn. The measurement
matrix M relates the covariance measurements to the desired
source powers. The columns of matrix M are constructed
from the columns of the array response matrix A as M “
ra˚1 b a1,a

˚
2 b a2,a

˚
3 b a3, ¨ ¨ ¨ ,a

˚
Q b aQs. In high-resolution

imaging, the number of image pixels is very large [18]. We
formulate the imaging problem as a high-dimensional least
squares regression problem with non-negativity constraints on
the source powers as

minimize
σ

‖ r̂´Mσ ‖2
2, subject to σ ě 0. (7)

In this problem formulation, the available covariance data is
fit to the model in a LS sense such that the residual r̂´Mσ
is minimized. In high-resolution imaging, matrix M is a
wide matrix and the aforementioned least squares problem is
underdetermined. Therefore, an infinite number of solutions
are possible. To obtain a unique solution, regularization is
necessary. Non-negativity constraint restricts the space of the
possible solutions to only non-negative solutions. Furthermore,
due to the presence of substantial black background in ra-
dioastronomical images, most of the pixels in σ have near
zero value and need not be estimated. The NNLS algorithm
naturally incorporates this assumption in the solution method
as will be explained.

The gradient vector of the cost function in Equation 7 is
MHpMσ´ r̂q and must vanish at the optimum for an uncon-
strained problem [19]. The active-set algorithm for NNLS [10]
iteratively reduces the residual image, which is the negative of
the gradient vector, until it converges to the noise threshold
vector of the image, ε. The image is initialized by an all-
zero vector σp0q “ 0 (the black background). In each iteration
of the algorithm, the residual image is computed based on
the current estimate of the image, σpiq, and its maximum is
found. The image pixels are split into two sets in each step,
one set of pixels that are kept at 0 is called the active set,
denoted by A, and the second set is composed of the image
pixels that are free to vary and therefore are called the free set,
indicated by F . The location of the maximum of the gradient
vector at iteration i corresponds to a potential source location.
Therefore, the corresponding pixel is moved from the active
set to the free set and the minimization problem

minimize
σF

‖ r̂´MFσ
piq
F ‖2

2

is solved for all the pixels in the free set, σF , to estimate their
intensity. In this equation, MF only contains the columns of
M corresponding to the pixels in the free set. The solution
to the aforementioned problem is checked for positivity and
if the constraint is violated additional steps are performed to
ensure the feasibility of the solution [10].

As can be seen, by iteratively selecting the columns of
M and with the underlying assumption of the sparsity of
the sources in a black background in the image, active-set
performs a sparsity-promoting regularization because most of
the columns of M correspond to zero pixel values and remain
in the active set. Furthermore, the gradient calculation and
maximum selection is similar to performing a matched-filtering
on the residual vector r̂ ´Mσpiq at the ith iteration. It was
shown that the NNLS algorithm obtains good position and
intensity estimates in scenarios where the underlying image is
composed of a sparse set of point sources [8], [9]. However,
the convergence rate and the intensity estimates are adversely
affected in scenarios where extended emissions are present.



IV. THE PROPOSED ALGORITHM

In order to tackle the aforementioned problems in the
presence of extended emissions as well as point sources, we
propose to represent the image in a dual basis form as

σ “ Φα, where Φ “ rI,Bs. (8)

In this formulation, Φ is a Q ˆ 2Q matrix that is composed
of two Q ˆ Q matrices I and B. I is the identity matrix
that represents pixel basis for the recovery of point sources.
We choose this basis to retain the super-resolution point
source recovery feature of the NNLS algorithm. We propose
to capture the extended emissions with the actual resolution
of the antenna array. For this purpose, we choose a Gaussian
function with the same Full Width at Half Maximum (FWHM)
as the Half Power Beam Width (HPBW) of the antenna array.
Each column of B is a shifted version of the aforementioned
Gaussian function with the peak shifted to the location of
the corresponding pixel and normalized such that the total
underlying energy is 1.

With the choice of a positive basis matrix Φ, we restrict
our attention to the positive coefficient set α. Therefore, we
can reformulate the image reconstruction problem as

minimize
α

‖ r̂´MΦα ‖2
2, subject to α ě 0. (9)

This problem is underdetermined and leads to an infinite set of
feasible solutions. We apply the modified active-set algorithm
to the aforementioned problem to recover the basis coefficients
α. The proposed algorithm works on the implicit assumption
of the sparsity of the signal over the predefined basis to
obtain a unique solution. The authors in [20] have investigated
the similarity of the active-set algorithm with the orthogonal
matching pursuit algorithm [21] in terms of sparse recovery.
We call this new method the dual-basis non-negative least
squares as explained in Algorithm 1.

As illustrated in Algorithm 1, we begin with an empty
sky (zero basis coefficients). Therefore, all of the indices are
in the active set A and the free set is empty. The initial
residual basis coefficient vector is computed in step 2 as
∆α “ ΦHMHpr̂´MΦαq. In fact ∆α represents the matched
filter output power projected in the basis coefficient space. The
stopping criteria for the algorithm as explained in step 3 are
when there are no more indices in the active set or when all of
the indices in the residual coefficient vector ∆α have reached
the corresponding detection threshold. In order to choose the
pixel-based detection threshold ε, based on Equation 6, when
all the sources are estimated the covariance of the residual
basis coefficient vector is

Covp∆αq “
1

N
ΦHMHpR˚ bRqMΦ. (10)

To set the detection threshold, we compute an estimate of
the standard deviation of the residual basis coefficient vector
based on the available data R̂ and allow for a false alarm rate
of 0.01 %. Therefore, for the 2Q ˆ 1 vector of index-based
detection threshold we have

ε “ 6ˆ
1
?
N
pvecdiagpΦHMHpR̂˚ b R̂qMΦqqd

1
2 . (11)

At step 4 of the algorithm, the coefficient corresponding to the
maximum output power of the matched filter projected in the
coefficient space is computed. This is the step that explains
the key idea of the proposed method. The maximum not only
shows the location (Direction of Arrival, DoA) of the potential
source but it also provides the most likely shape of the source

Algorithm 1: Dual-basis non-negative least squares
input : r̂,M,Φ,ε
output: Basis coefficient vector α

1 Initialize: F “ H, A “ t1, 2, 3, ¨ ¨ ¨ , 2Qu and
α “ 0;

2 Compute the initial residual basis coefficient vector
∆α “ ΦHMHpr̂´MΦαq;

3 while A ‰ H and ∆αt ą εt for any t P A do
4 m “ argmax

t
t∆αt | t P Au;

5 add m to F and remove from A;
6 Solve for the coefficients in the set F

βF “ argmin
αF

‖ r̂´MFΦFαF ‖2
2 ;

7 Define βn :“ 0 for n P A;
8 if βu ď εu for any u P F then
9 while βu ď εu for any u P F do

10 h “ argmin αu
αu´βu

for u P F , βu ď εu ;
11 Set δ “ αh

αh´βh
;

12 Set α “ α` δpβ ´αq;
13 Move from F to A all indexes s for

which |αs| ă εs;
14 Repeat steps 6 and 7;
15 end
16 else
17 Set α “ β;
18 Compute ∆α “ ΦHMHpr̂´MΦαq
19 end
20 end

by choosing the coefficient in the basis that maximizes the
output power. This way, we can distinguish between point
sources and extended sources and estimate the source power
in the next steps based on the chosen basis as done in step
6. The regularized minimization problem in step 6 is solved
by an iterative algorithm such as LSQR [22]. Steps 8 to 14
check if all of the computed coefficients in the free set satisfy
the corresponding bound. If the bound is violated for some
of the coefficients, the maximum step size, δ, towards the
bound is found and the coefficients and the sets are updated
accordingly in step 11 and 12. Afterwards, the minimization in
step 6 is recomputed until all of the coefficients in the free set
satisfy the bound, after which the residual basis coefficients
are recomputed in step 12 and the iteration is continued until
convergence is reached.

V. NUMERICAL RESULTS AND PERFORMANCE ANALYSIS

We consider a one-dimensional test example to evaluate
the performance of the proposed algorithm. A random non-
uniform linear array with P “ 30 antenna elements is
considered. The FoV of the array in terms of the θ angle is in
the range p´90˝, 90˝q. The wavelength of the radio frequency
is chosen to be λ “ 2 m. Assuming the placement of the
antenna elements on the x axis and indicating the position of
the pth antenna element as xp, the beam pattern of the antenna
array is calculated as

fplqq “
1

P

P
ÿ

m“1

P
ÿ

p“1

e´j
2π
λ pxm´xpqlq . (12)

The maximum of the beam pattern is P and the half power
beam width of the array is approximately HPBW « λ

∆xmax
ra-

dians [23] where ∆xmax is the maximum distance between all
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Fig. 1: (a) Array pattern and the Gaussian fit, (b) The underlying
source intensity distribution (c) Matched-filter dirty image, (d) Re-
covered image based on the NNLS algorithm, (e) Gaussian beam
applied on the result of NNLS and (f) Recovered image based on the
dual-basis NNLS algorithm.

of the antenna pairs. This indicates the resolution of the system.
The image resolution is chosen as ∆θ “ 0.1ˆHPBW « 0.4˝;
Therefore, the number of image pixels is Q “ 429. The
direction cosine on the sky for the qth pixel is computed as
lq “ sin θq [24]. We fit a Gaussian function to the main beam
of the array. The Gaussian function with the same maximum
amplitude as the beam pattern function centered at zero is

gplqq “ P exp p
l2q

2ρ2
q, q “ 1, 2, 3, ¨ ¨ ¨ , Q. (13)

The FWHP for the Gaussian function happens at 2ρ
?

2 ln 2.
Setting λ{∆xmax “ 2ρ

?
2 ln 2, the width of the Gaussian to fit

the main beam of the array is ρ “ λ
2∆xmax

?
2 ln 2

. An instance
of the non-uniform linear array and the corresponding array
beam pattern and the Gaussian function fit to its main beam is
shown in Figure 1. We then normalize this Gaussian function
such that the contained energy over all the discrete points is
summed to 1. The array beam pattern and the Gaussian fit are
shown in Figure 1(a).

To investigate the performance of the proposed algorithm,
we apply the algorithm on the aforementioned non-uniform
linear array. The underlying source intensities and the matched-
filtered dirty image are shown in Figure 1(b) and (c). The
sources are composed of two point sources with the intensities
4 and 3 placed at the angles 8.8˝ and 35.6˝ respectively and
two Gaussian sources with the peak intensities 5 and 1 with dif-
ferent widths placed respectively at the angles ´54.1˝ ´30.6˝.

Number of antennas 20 30 40 50
Number of pixels 303 429 611 757

Computation time NNLS 0.53 0.67 1.47 4
Dual-basis NNLS 0.34 0.69 1.46 3.25

Number of iterations NNLS 20.73 21.68 27.5 39.55
Dual-basis NNLS 15.49 20.26 24.05 31

Basis elements NNLS 19.73 20.52 26.5 37.57
Dual-basis NNLS 10.69 18.39 22.05 28.5
Error norm NNLS 54.36 66.5 79.92 72.83

Post-processed NNLS 21.74 14.36 7.4 5.1
Dual-basis NNLS 1.08 0.75 1.49 1.42

TABLE I: Performance analysis

To construct the sampled covariance matrix, Gaussian receiver
noise with variance σn “ 0.5 is added to the covariance R
and N “ 105 data samples are used to construct the sample
covariance matrix R̂. The image obtained by applying the
NNLS algorithm is shown in Figure 1(d). As can be seen, the
extended sources are approximated by a large number of point
sources and the intensity estimates are much larger than the
actual intensities. Figure 1(e) shows the result of convolving
the result of NNLS with the normalized Gaussian beam times
the pixel width. This post processing retains the shape of the
extended sources at the expense of reducing the resolution of
point sources; Furthermore, the intensity estimates are still not
correctly restored. Figure 1(f) shows the result of applying the
proposed dual-basis NNLS algorithm. As can be seen, both
the extended emissions and the point sources are estimated
correctly with super-resolution estimate of the point sources
and the intensity estimates are very close to the true intensities.

The performance of the dual-basis NNLS algorithm was
compared to the performance of the NNLS algorithm and the
post-processed version of NNLS by running the algorithms
for 100 noise instances for random linear arrays with different
number of elements. The pixel resolution was kept at 0.1 of
the main beam of the array. Table I displays the number of
antenna elements, the associated number of pixels, the algo-
rithm computation time in seconds, the number of iterations
until convergence to the threshold, the number of non-zero
elements needed to represent the sources and the average error
norm ‖ σ´σ̂ ‖2 {100. Based on the results of the experiments,
we conclude that by applying the dual-basis NNLS algorithm
we are able to capture the actual intensity of both point sources
and extended emissions with a small number of basis elements
with high accuracy. Furthermore, the number of iterations and
computing time are decreased with respect to NNLS.

VI. CONCLUSIONS

Array processing for radioastronomical source recovery
was investigated in this paper. To capture both extended
emissions and point sources with high resolution, we proposed
a dual-basis NNLS algorithm. In this method the super-
resolution point source recovery was retained by a Dirac
delta function as a basis for point source representation and
the actual resolution of the antenna array was restored by
a normalized Gaussian beam as a basis for extended source
recovery. By simulations on a one dimensional test example we
showed the super-resolution point source recovery as well as
good approximation of the extended emissions. Furthermore,
the increased sparsifying regularization obtained by applying
the dual-basis NNLS and the performance of the algorithm
in terms of estimation error, number of iterations and running
time was investigated by Monte-Carlo simulations on random
linear arrays with different number of antennas.
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