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ABSTRACT

Image formation using the data from an array of sensors is
a familiar problem in many fields such as radio astronomy,
biomedical and geodetic imaging. The problem can be formu-
lated as a least squares (LS) estimation problem and becomes
ill-posed at high resolutions, i.e. large number of image pix-
els. In this paper we propose two regularization methods, one
based on weighted truncation of the eigenvalue decomposi-
tion of the image deconvolution matrix and the other based on
the prior knowledge of the “dirty image” using the available
data. The methods are evaluated by simulations as well as
actual data from a phased-array radio telescope in the Nether-
lands, the Low Frequency Array Radio Telescope (LOFAR).

Index Terms— Array signal processing, image forma-
tion, interferometry, regularization, radio astronomy

1. INTRODUCTION

In radio astronomy, the image reconstruction problem is to
estimate the sky spatial intensity distribution over the field of
view of the radio telescope. The radio telescope is synthe-
sized by an array of antenna stations and a technique called
“interferometry” is used to reconstruct the images [1]. The
measurement equation relates the measured covariance data
to the source intensities. Assuming a discrete point source
model [2], estimating the source intensities becomes a linear
least squares (LS) estimation problem. Traditionally, the LS
problem is solved by first constructing the “dirty image” from
the measured noisy covariance data, or “ visibilities”, fol-
lowed by a deconvolution step to remove the effect of the an-
tenna sampling pattern from the image [3]. It was shown [4]
that the deconvolution step becomes ill-conditioned for a
large number of image pixels.

In this paper, we introduce two regularization methods for
the deconvolution process based on the physical properties of
the data. The first method is based on windowing the spec-
tral representation of the deconvolution matrix. We show that
this method is related to baseline weighting [3] in the tradi-
tional radio astronomical interferometry. The second method
is accomplished by introducing a conditioning of the decon-
volution matrix based on the acquired dirty image from the
covariance data.
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The effectiveness of the proposed regularization methods
is demonstrated through simulations and on actual data from
the Low Frequency Array Radio Telescope (LOFAR).

2. DATA MODEL

To formulate the problem, we follow the notations as pro-
posed in [2] and [5]. In these notations, p.qT ,p.qH , p.q˚, ˝ and
b denote transpose, the Hermitian transpose, complex conju-
gate, Khatri-Rao product and the Kronecker product, respec-
tively. For our data model, P distinct receiving elements and
a discrete point source model [2] with Q sources, or image
pixels, is assumed. The signals received on each antenna are
first time-sampled and divided into narrow frequency bands
over each time snapshot. The sampled received signals on all
the receiving elements for the kth frequency band and the nth
time sample are denoted as

xkrns “ Aksrns ` nkrns. (1)

In this notation, srns is theQˆ1 vector of the sampled source
signals, nkrns is a Pˆ1 vector denoting the sampled receiver
noise on all the receivers and Ak is a P ˆQ matrix in which
the columns represent the array response vectors.

The astronomical signals and the receiver noise can be
considered Gaussian. Therefore, the covariance matrices are
sufficient statistics to represent the received signals [6]. The
autocovariance of the received signals is defined as

Rk “ Etxkrnsx
H
k rnsu. (2)

Assuming the signals and the receiver noise are uncorre-
lated and the sky sources are stationary, the covariance data
model [2] is stated as

Rk “ AkΣsA
H
k `Σn,k, (3)

where Σs “ diagtσu and Σn,k “ diagtσn,ku represent the
source and the noise covariance matrices respectively. The
data covariance matrix is estimated using the available re-
ceived data samples. Assuming N time samples, the sample
covariance matrix is computed as

R̂k “
1

N

N
ÿ

n“1

xkrnsx
H
k rns, (4)
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Vectorizing the covariance data model and the covariance
measurement data, the measurement equation can be stated
as

r̂k “ rk `wk, (5)

where r̂k “ vecpR̂kq, rk “ Mkσ ` rn,k, where Mk “

A˚
k ˝Ak and rn,k “ vecpΣn,kq “ pI ˝ Iqσn,k, and w is the

zero-mean additive noise with covariance [7]

Cw “ Etpr̂k ´ rkqpr̂k ´ rkq
Hu “

1

N
pR˚

k bRkq. (6)

For K frequency bands and time snapshots, the measurement
equation is formed by stacking the vectorized covariances
for all the frequency bands, that is, r “

“

r1, ¨ ¨ ¨ , rK
‰T

,

M “
“

M1, ¨ ¨ ¨ ,MK

‰T
, rn “

“

rn,1, ¨ ¨ ¨ , rn,K
‰T

, r̂ “
“

r̂1, ¨ ¨ ¨ , r̂K
‰T

.

3. PROBLEM STATEMENT

The imaging problem is to estimate the signal powers σ
from the received covariance data r̂. A discrete point source
model [2] is considered in which each pixel of the image cor-
responds to a point source. Therefore, knowing the position
of the antenna stations, Ak is known a priori. Assuming for
the moment that there is no noise signal, the imaging problem
can be stated as a least squares estimation problem

σ̂ “ argmin
σ

‖ r̂´Mσ ‖22 . (7)

The solution to this problem can be obtained by solving the
linear system of equations

Hσ̂ “ σ̂d, (8)

where σ̂d “ MH r̂ is the so-called “dirty image” and H “

MHM is called the deconvolution matrix. Finding the source
power estimates σ̂ amounts to inverting the deconvolution
matrix H to remove the effect of the spatial pattern of the
sampling pattern of the array. This process is called deconvo-
lution in the conventional radio astronomy [3]. The condition
number of H is dependent on the number of chosen image
pixels Q. By increasing the resolution of the image, matrix
M becomes “wider” and the deconvolution matrix becomes
ill-conditioned. Thus, to obtain the source power estimates,
regularization is required.

Weighted least squares estimation with covariance-matched
weightings asymptotically leads to Maximum Likelihood
(ML) estimates [7] and provides a statistically efficient source
power estimate. The weighted least square estimation prob-
lem is stated as

σ̂ “ argmin
σ

‖ C ´1{2
w pr̂´Mσq ‖22 (9)

which leads to similar closed form solutions for the dirty im-

age and the deconvolution matrix.

HWLS “ MHC´1
w M, σ̂d “ MHC´1

w r̂ (10)

In practice, we use the modified weighting method described
in [8, 5] to remove the effect of the noise source from the data.

4. PROPOSED METHODS

Traditionally, iterative methods such as CLEAN [9] or se-
quential source removal techniques are used to perform the
deconvolution. The authors in [5] have proposed a direct data-
driven model-based least squares method based on Karhunen-
Loeve transform (KLT) to obtain the signal power estimates
σ̂ from the noisy covariance data. As the results in [5] sug-
gest, the KLT-based deconvolution process introduces a ripple
effect in the reconstructed image due to the truncation of the
eigenvalues with a rectangular window. We propose two reg-
ularization methods to improve the reconstructed image qual-
ity.

4.1. Weighted truncated eigenvalue decomposition

The first method is based on introducing a weighting matrix Φ
in the eigenvalue decomposition of the deconvolution matrix
H to perform smoother spectral windowing [10] and to reduce
the ripple effect caused in the KLT-based method proposed
in [5]. The eigenvalue decomposition of the deconvolution
matrix is stated as

H “ VΛVH , (11)

where Λ is a diagonal matrix containing the eigenvalues of
H sorted in decreasing order and columns of the matrix V
contain the corresponding eigenvectors. According to [5], by
truncating the eigenvalues of H, the deconvolution matrix can
be represented by the set of dominant eigenvalues and eigen-
vectors as

H « V̂Λ̂V̂H , (12)

where Λ̂ is a diagonal matrix composed of the significant
eigenvalues of H and the columns of V̂ contains the corre-
sponding significant eigenvectors. This method is known as
numerical filtering [11]. To reduce the effect of spectral trun-
cation with a sharp rectangular window, we propose to intro-
duce a diagonal weighting matrix Φ to correct for the differ-
ent dominance of the remaining spatial frequencies. Defining
H: as the weighted inverse of the truncated eigenvalue de-
composition of H, the proposed method computes the image
estimate as

σ̂ “ H:σ̂d “ V̂ΦΛ̂´1V̂H σ̂d. (13)

Truncating the eigenvalues acts in a similar way as low-
pass spatial filtering. Smaller eigenvalues correspond to
higher spatial frequencies and therefore longer baselines.
Since the longer baselines are sparser they contain less in-
formation and the corresponding eigenvalues have smaller
magnitude which affects the condition number of the decon-
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volution matrix H adversely. Using different filter shapes
such as a triangular window instead of the rectangular win-
dow, that is normally used in numerical filtering, reduces the
sidelobes at the cost of decreased resolution [12].

Note that in conventional radio astronomy, a weighting
function is used to weight the set of baseline vectors con-
tributing to the image [3]. The weighting is used to control
the resulting beamshape and the sidelobes that are caused due
to the finite extent of the array and the missing baseline spac-
ings. The weighting method proposed in this paper has a sim-
ilar effect as the conventional baseline weighting.

4.2. Dirty image based conditioning

The second proposed regularization method uses the prior
knowledge that the expected value of the dirty image is an
upper bound on the desired source power and that the source
powers are positive [13], that is,

0 ď σ ď σd, (14)

where σd “ MHr represents the expected value of the dirty
image. By defining a conditioning vector d based on the ob-
tained dirty image from the covariance data, the inequality
condition (14) can be translated into conditioning weights di
satisfying 0 ď di ď 1, that is,

σ “ σd d d, (15)

whered represents the element-wise Hadamard product. The
conditioning weights are then computed as

σd “ Hσ “ Hdiagtσdud (16)

d “ pHdiagtσduq
:σd. (17)

In practice, the dirty image obtained from the noisy data, i.e.
σ̂d, is used to obtain an estimate of d denoted as d̂ and the
pseudo-inverse mentioned in (17) by p.q: is computed by a
truncated singular value decomposition of the deconvolution
matrix H conditioned by weights obtained from the dirty im-
age. That is,

pHdiagtσ̂duq
: “ ŶΨ̂´1ÛH ,

where Ψ is a diagonal matrix containing the significant singu-
lar values of pHdiagtσ̂duq and the columns of Ŷ and Û con-
tain the corresponding right and left singular vectors. There-
fore, the source power estimates are then obtained by

σ̂ “ σ̂d d d̂.

The idea behind conditioning the deconvolution matrix with
the dirty image is that the discrete source model assumes a
point source per image pixel. However, if the resolution is
chosen high, source distributions are spread over multiple
pixels which causes a linear dependence in the columns of
the deconvolution matrix. Applying the conditioning weights
to the deconvolution matrix H based on the dirty image

promotes the columns with more available information, i.e.
source power while demoting the columns related to the
empty parts of the sky, that contribute to less power in the
dirty image, before applying the inversion.

5. SIMULATION RESULTS

In this section, the performances of the proposed methods are
evaluated using a set of simulations. A uniform linear ar-
ray (ULA) configuration with P “ 15 antennas, placed at
half-wavelength spacing, with scanning angles in the range
r´90˝, 90˝s is considered. The resolution of the image is cho-
sen to be 0.1 of the main beam which results in Q “ 235
image pixels. 5 point sources with intensities r5, 5, 0.8, 5, 5s
are placed at angles r´23˝,´17˝, 7.5˝, 23˝, 32.5˝s. N “

105 time samples are used to construct the sample covari-
ance matrix and the eigenvalues are truncated to the length
T “ 2P ´ 1 due to the fact that in the special case of a
ULA matrix V represents a spatial Fourier transform with
the unique weights defined by the number of unique base-
lines, i.e. 2P ´ 1. The obtained dirty image is shown in fig-
ure 1(a). Following section 4.1, figure 1(b) shows the source
power estimates obtained by a truncated eigenvalue decompo-
sition. As can be seen, the truncation causes sinc-like ripple
effects, the two nearby sources are not distinguishable and the
smallest source is completely buried in the sidelobes of the
other sources. Figure 1(c) illustrates the effect of applying
the triangular weighting function on the truncated eigenval-
ues. The result shows significantly reduced sidelobes at the
expense of reduced resolution, the close sources are still not
distinguishable but the small source is recovered. The trian-
gular weighting function with weights φi is computed as [10]

φi “

#

1´ i´1
T i ď T

0 i ě T
. (18)

and is scaled by window power per length, i.e. 1
T

řT
i“1 |φi|

2.
Furthermore, the effect of the proposed conditioning

method on the point source estimates, as discussed in section
4.2, is demonstrated in Figure 1(d). As can be seen, by using
the prior knowledge from the dirty image in the deconvolu-
tion process, the dynamic range is significantly increased, the
sidelobes are reduced and a sharper estimate of the source
positions with less bias is obtained. Moreover, the nearby
sources are clearly distinguishable.

6. EXPERIMENTAL RESULTS

Actual data from the low frequency array (LOFAR) tele-
scope [14] was used to investigate the effect of the proposed
methods on the reconstructed image quality. For comparison
reasons, the same data set as introduced in [5] was used. The
data is captured by 48 semi-randomly spaced planar stations
and consists of 25 time snapshots of 10 seconds each in 25
distinct frequency channels of bandwidth 156 kHz between
45.156 and 67.188 MHz. The image is sampled regularly on
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Fig. 1. Simulation results for (a) dirty image, and point source
estimates based on (b) truncated eigenvalue decomposition,
(c) triangular-weighted eigenvalue decomposition, (d) dirty
image based conditioning.

the projected plane and the same number of image pixels,
Q “ 8937 and eigenvalue truncation threshold of λmax{200
as in [5] was chosen, where λmax denotes the maximum
eigenvalue of the deconvolution matrix H.

Using a weighted LS formulation, the resulting KLT-
based image as proposed in [5] is shown in Figure 2(a). Next,
the triangular spectral weighting method was used to reduce
the ripple effect in the resulting image. The resulting re-
constructed image is shown in Figure 2(b). Moreover, the
reconstructed image using the dirty image based condition-
ing method is shown in Figure 2(c). As the figure suggests,
conditioning based on the computed dirty image results in a
sharper image with less sidelobes and higher dynamic range
as compared with the KLT-based method.

7. CONCLUSIONS

Image deconvolution for radio astronomy becomes ill-posed
for a large number of image pixels. In this paper, two regu-
larization methods based on the physical properties of the co-
variance data were proposed. The first method uses a weight-
ing function to control the dominance of the available spatial
frequencies in the data and the second uses the prior infor-
mation on the dirty image to condition the spatial distribution
of the celestial sources. The proposed regularization methods
are validated by actual data from the LOFAR radio telescope
and through simulations.
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Fig. 2. Image estimates based on (a) truncated eigenvalue
decomposition, (b) triangular-weighted eigenvalue decompo-
sition, (c) dirty image based conditioning.
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