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Abstract Radio astronomy is known for its very large telescope dishes, but
is currently making a transition towards the use of large numbers of small
elements. For example, the Low Frequency Array, commissioned in 2010, uses
about 50 stations, each consisting of at least 96 low band antennas and 768
high band antennas. For the Square Kilometre Array, planned for 2024, the
numbers will be even larger. These instruments pose interesting array sig-
nal processing challenges. To present some aspects, we start by describing
how the measured correlation data is traditionally converted into an image,
and translate this into an array signal processing framework. This paves the
way for a number of alternative image reconstruction techniques, such as
a Weighted Least Squares approach. Self-calibration of the instrument is re-
quired to handle instrumental effects such as the unknown, possibly direction
dependent, response of the receiving elements, as well a unknown propaga-
tion conditions through the Earth’s troposphere and ionosphere. Array signal
processing techniques seem well suited to handle these challenges. The fact
that the noise power at each antenna element may be different motivates the
use of Factor Analysis, as a more appropriate alternative to the eigenvalue
decomposition that is commonly used in array processing. Factor Analysis
also proves to be very useful for interference mitigation. Interestingly, image
reconstruction, calibration and interference mitigation are often intertwined
in radio astronomy, turning this into an area with very challenging signal
processing problems.
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1 Introduction

Astronomical instruments measure cosmic particles or electromagnetic waves
impinging on the Earth. Astronomers use the data generated by these in-
struments to study physical phenomena outside the Earth’s atmosphere. In
recent years, astronomy has transformed into a multi-modal science in which
observations at multiple wavelengths are combined. Figure 1 provides a nice
example showing the lobed structure of the famous radio source Cygnus A
as observed at 240 MHz with the Low Frequency Array (LOFAR) overlaid
by an X-Ray image observed by the Chandra satellite, which shows a much
more compact source.

Such images are only possible if the instruments used to observe different
parts of the electromagnetic spectrum provide similar resolution. Since the
resolution is determined by the ratio of observed wavelength and aperture
diameter, the aperture of a radio telescope has to be 5 to 6 orders of magni-
tude larger than that of an optical telescope to provide the same resolution.
This implies that the aperture of a radio telescope should have a diameter
of several hundreds of kilometers. Most current and future radio telescopes

Fig. 1 Radio image of Cygnus A observed at 240 MHz with the Low Frequency
Array (showing mostly the lobes left and right), overlaid over an X-Ray image of the
same source observed by the Chandra satellite (the fainter central cloud). (Courtesy
of Michael Wise and John McKean.)



therefore exploit interferometry to synthesize a large aperture from a number
of relatively small receiving elements.

An interferometer measures the correlation of the signals received by two
antennas spaced at a certain distance. After a number of successful experi-
ments in the 1950s and 1960s, two arrays of 25-m dishes were built in the
1970s: the 3 km Westerbork Synthesis Radio Telescope (WSRT, 14 dishes)
in Westerbork, The Netherlands and the 36 km Very Large Array (VLA, 27
movable dishes) in Socorro, New Mexico, USA. These telescopes use Earth
rotation to obtain a sequence of correlations for varying antenna baselines,
resulting in high-resolution images via synthesis mapping. A more extensive
historical overview is presented in [37].

The radio astronomy community is currently commissioning a new genera-
tion of radio telescopes for low frequency observations, including the Murchi-
son Widefield Array (MWA) [24] in Western Australia and the Low Frequency
Array (LOFAR) [42] in Europe. These telescopes exploit phased array tech-
nology to form a large collecting area with ∼1000 to ∼50,000 receiving ele-
ments. The community is also making detailed plans for the Square Kilometre
Array (SKA), a future radio telescope that should be one to two orders of
magnitude more sensitive than any radio telescope built to date [12]. This
will require millions of elements to provide the desired collecting area of order
one square kilometer.

The individual antennas in a phased array telescope have an extremely
wide field-of-view, often the entire visible sky. This poses a number of signal
processing challenges, because certain assumptions that work well for small
fields-of-view (celestial sphere approximated by a plane, homogenous prop-
agation conditions over the field-of-view), are no longer valid. Furthermore,
the data volumes generated by these new instruments will be huge and will
have to be reduced to manageable proportions by a real-time automated data
processing pipeline. This combination of challenges led to a flurry of research
activity in the area of array calibration, imaging and RFI mitigation, which
are often intertwined in the astronomical data reduction.

The goal of calibration is to find the unknown instrumental, atmospheric
and ionospheric disturbances. The imaging procedure should be able to apply
appropriate corrections based on the outcome of the calibration process to
produce a proper image of the sky. In this chapter, we review some of the array
processing techniques that have been proposed for use in the data reduction
pipelines, some of which are now being used in the LOFAR data reduction
pipelines.

2 Notation

Matrices and vectors will be denoted by boldface upper-case and lower-case
symbols, respectively. Entries of a matrix A are denoted by aij , and its



columns by ai. Overbar (·) denotes complex conjugation. The transpose op-
erator is denoted by T , the complex conjugate (Hermitian) transpose by H

and the Moore-Penrose pseudo-inverse by †. For matrices A of full column
rank, i.e., AHA invertible, this is equal to the left inverse:

A† = (AHA)−1AH . (1)

The expectation operator is denoted by E{·}.
We will multiply matrices in many different ways. Apart from the usual

multiplication AB, we will use A � B to denote the element-wise matrix
multiplication (Hadamard product), and A ⊗ B to denote the Kronecker
product,

A ⊗B =







a11B a12B · · ·
a21B a22B · · ·

...
...

. . .






.

We will also use the Khatri-Rao or column-wise Kronecker product of two
matrices: let A = [a1, a2, · · · ] and B = [b1,b2, · · · ], then

A ◦B = [a1 ⊗ b1, a2 ⊗ b2, · · · ] .

Depending on the context, diag(·) converts a vector to a diagonal matrix with
the elements of the vector placed on the main diagonal, or converts a general
matrix to a diagonal matrix by selecting its main diagonal. Further, vec(·)
converts a matrix to a vector by stacking the columns of the matrix.

Properties of Kronecker products are listed in, e.g., [29]. We will frequently
use the following properties:

(A⊗ B)(C⊗D) = AC ⊗BD (2)

vec(ABC) = (CT ⊗A)vec(B) (3)

vec(A diag(b)C) = (CT ◦A)b (4)

Property (3) is used to move a matrix B from the middle of an equation to
the right of it, exploiting the linearity of the product. Property (4) is a special
case of it, to be used if B is a diagonal matrix: in that case vec(B) has many
zero entries, and we can omit the corresponding columns of CT ⊗A, leaving
only the columns of the Khatri-Rao product CT ◦A.

A special case of (3) is

vec(aaH ) = ā ⊗ a (5)

which shows how a rank-1 matrix aaH is related to a vector with a specific
“Kronecker structure”.



3 Basic concepts of interferometry and image formation

The concept of interferometry is illustrated in figure 2. An interferometer
measures the spatial coherency of the incoming electromagnetic field. This is
done by correlating the signals from the individual receivers with each other.
The correlation of each pair of receiver outputs provides the amplitude and
phase of the spatial coherence function for the baseline defined by the vector
pointing from the first to the second receiver in a pair. In radio astronomy,
these correlations are called the visibilities.

3.1 Data acquisition

Mathematically, the correlation process is described as follows. Assume that
there are J array elements (telescopes). The RF signal x̃j(t) from the jth
telescope is first moved to baseband where it is denoted by xj(t), then sam-
pled and split into narrow subbands, e.g., of 100 kHz each, such that the
“narrowband condition” holds. This condition states that the maximal geo-
metrical delay across the array should be fairly representable by a phase shift
of the complex baseband signal, and this property is discussed in more detail
in the next subsection.

The resulting signal is called xj(n, k), for the jth telescope, nth time bin,
and for the subband frequency centered at RF frequency fk. The J signals
are stacked into a J × 1 vector x(n, k).

A single correlation matrix is formed by “integrating” (summing) the
crosscorrelation products x(n, k)xH (n, k) over N subsequent samples,

x̃2(t)
g2g1

geometric
delay

x̃J (t)
gJbaseline

FOV

x̃1(t)

Fig. 2 Schematic overview of a radio interferometer.



R̂m,k =
1

N

mN−1
∑

n=(m−1)N

x(n, k)xH (n, k) , (6)

where m is the index of the corresponding “short-term interval” (STI) over
which is correlated. The processing chain is summarized in figure 3.

The duration of a STI depends on the stationarity of the data, which
is limited by factors like Earth rotation and the diameter of the array. For
the Westerbork array, a typical value for the STI is 10 to 30 s; the total
observation can last for up to 12 hours. The resulting number of samples N in
a snapshot observation is equal to the product of bandwidth and integration
time and typically ranges from 103 (1 s, 1 kHz) to 106 (10 s, 100 kHz) in
radio astronomical applications.

3.2 Complex baseband signal representation

Before we can derive a data model, we need to include some more details
on the RF to baseband conversion. In signal processing, signals are usually
represented by their low pass equivalents, which is a suitable representation
for narrowband signals in a digital communication system, and also applicable
in the radio astronomy context. A real valued bandpass signal with center
frequency fc may be written as

s̃(t) = real{s(t)ej2πfct} = x(t) cos 2πfct − y(t) sin 2πfct (7)

where s(t) = x(t) + jy(t) is the complex envelope of the RF signal s̃(t), also
called the complex baseband signal. The real and imaginary parts, x(t) and
y(t), are called the in-phase and quadrature components of the signal s̃(t). In
practice, they are generated by multiplying the received signal with cos 2πfct
and sin 2πfct followed by low-pass filtering.

BB
filter

bank

x(t) x(n, k)

100 kHz
10 µs

x(n, k)x(n, k)H

10 MHz

P

10 s

10 s

R̂m,k

x̃1(t)

x̃J(t)

RF
to

Fig. 3 The processing chain to obtain covariance data.



Suppose that the bandpass signal s̃(t) is delayed by a time τ . This can be
written as

s̃τ (t) := s̃(t − τ) = real{s(t − τ)ej2πfc(t−τ)} = real{s(t − τ)e−j2πfcτej2πfct} .

The complex envelope of the delayed signal is thus sτ (t) = s(t − τ)e−j2πfcτ .
Let W be the bandwidth of the complex envelope (the baseband signal) and
let S(f) be its Fourier transform. We then have

s(t − τ) =

∫ W/2

−W/2

S(f)e−j2πfτej2πftdf ≈
∫ W/2

−W/2

S(f)ej2πftdf = s(t)

where the approximation e−j2πfτ ≈ 1 is valid if |2πfτ | � 1 for all frequencies
|f | ≤ W

2 . Ignoring a factor π, the resulting condition Wτ � 1 is called
the narrowband condition. Under this condition, we have for the complex
envelope sτ (t) of the delayed bandpass signal s̃τ (t) that

sτ (t) ≈ s(t)e−j2πfcτ for Wτ � 1 .

The conclusion is that, for narrowband signals, time delays smaller than
the inverse bandwidth may be represented as phase shifts of the complex
envelope. Phased array processing heavily depends on this step. For radio
astronomy, the maximal delay τ is equal to the maximal geometric delay,
which can be related to the diameter of the array. The bandwidth W is the
bandwidth of each subband fk in the RF processing chain that we discussed
in the previous subsection.

3.3 Basic data model

We return to the radio astronomy context. For our purposes, it is convenient
to model the sky as consisting of a collection of Q spatially discrete point
sources, with sq(n, k) the signal of the qth source at time sample n and
frequency fk.

In the simplest case, the signal received at the first antenna is a direct sum
of these source signals, and the signal at the jth antenna is a sum of delayed
signals, where the delays are geometric delays that depend on the direction
under which each of the signals are observed. In the previous subsection, we
saw that under the narrowband condition a delay of a narrowband signal
s(t, k) by τ can be represented by a phase shift:

sτ (t, k) = e−j2πfkτs(t, k)

which takes the form of a multiplication of s(t, k) by a complex number.
Let [xj , yj , zj ]

T be the location of the jth antenna, with respect to the first



antenna. Further, let pq be a unit-length direction vector pointing into the
direction of the qth source.

The geometrical delay τ at antenna j for a signal coming from direction pq

can be computed as follows. For a signal traveling directly from antenna 1 to
antenna j, the delay is the distance between both antennas, divided by c, the
speed of light. For any other direction, the delay depends on the cosine of the
angle of incidence (compared to the baseline vector), and is thus described
by the inner product of the location vector with the direction vector,

τ =
[xj , yj , zj ]pq

c
.

Overall, the phase factor representing the geometric delay is

e−j2πfkτ = e−jzT
j pq , zj =

2πfk

c





xj

yj

zj



 .

Here, we have introduced zj as a normalized location vector, assuming z1 = 0

is the location of the first antenna (i.e., the phase reference). As the Earth
rotates, the relative locations of the telescopes are also moving, hence zj is a
function of sample time n (and of fk, due to the normalization), and we write
it as zj(n, k). The coordinates of source direction vectors pq are expressed as1

(`, m, n), where `, m are direction cosines, and n =
√

1 − `2 − m2 due to the
normalization. There are several conventions and details regarding coordinate
systems [37], but they are not of concern for us here.

Taking the phase factors into account, we can model the received signal
vector x(n, k) as

x(n, k) =

Q
∑

q=1

aq(n, k)sq(n, k) + n(n, k) (8)

where aq(n, k) is called the “array response vector” for the qth source, consist-
ing of the phase multiplication factors, and n(n, k) is an additive noise vector,
due to thermal noise at the receiver. We will model sq(n, k) and n(n, k) as
baseband complex envelope representations of zero mean wide sense station-
ary white Gaussian random processes sampled at the Nyquist rate.

With the above discussion, the array response vector is modeled (for an
ideal receiver) as

aq(n, k) = e−jZ(n,k)T pq , Z(n, k) = [z1(n, k), · · · , zJ(n, k)] . (9)

For convenience of notation, we will in future usually drop the dependence
on the frequency fk (index k) from the notation.

1 with abuse of notation, as m, n are not related to the time variables used earlier.



Previously, in (6), we defined correlation estimates R̂m as the output of
the data acquisition process, where the time index m corresponds to the mth
short term integration interval (STI), such that (m − 1)N ≤ n ≤ mN . Due
to Earth rotation, the vector aq(n) changes slowly with time, but we assume
that within an STI it can be considered constant and can be represented, with
some abuse of notation, by aq(m). In that case, x(n) is wide sense stationary
over the STI, and a single STI autocovariance is defined as

Rm = E{x(n)xH(n)} , m =
⌈ n

N

⌉

(10)

where Rm has size J ×J . Each element of Rm represents the interferometric
correlation along the baseline vector between the two corresponding receiving
elements. It is estimated by STI sample covariance matrices R̂m defined in
(6), and our stationarity assumptions imply E{R̂m} = Rm.

If we consider only a single signal from direction pq and look at entry (i, j)
of Rm, then its value is

(Rm)i,j = E{xi(n)x̄j(n)} = σ2
qe−j(zi(m)−zj (m))T pq . (11)

The vector zi(m) − zj(m) is the baseline: the (normalized) vector pointing
from telescope i to telescope j. In radio astronomy, it is usually expressed in
coordinates denoted by (u, v, w). The objective in telescope design is often to
have as many different baselines as possible. In that case the entries of Rm

are different and non-redundant. As the Earth turns, the baselines also turn,
thus giving rise to new baseline directions. We will see later that the set of
baselines during an observation determines the spatial sampling function by
which the incoming wave field is sampled, with important implications on
the quality of the resulting image.

If we generalize now (11) to Q sources and add zero mean noise, uncorre-
lated from antenna to antenna, as in the signal model (8), we obtain what is
known as the measurement equation, or covariance data model,

Rm = AmΣsA
H
m + Σn, (12)

where Am = [a1(m), · · · , aQ(m)]

Σs = diag{[σ2
1 , · · · , σ2

Q]}
Σn = E{n(n)nH(n)} = diag{[σ2

n,1, · · · , σ2
n,J ]} .

Here, σ2
q = E{|sq(n, k)|2} is the variance of the qth source, Σs is the cor-

responding signal covariance matrix, and Σn is the noise covariance matrix.
(With abuse of notation, subscript n is now used to signify “noise”.) Noise is
assumed to be independent but not evenly distributed across the array. The
noise variances σ2

n,j are considered unknown.



Under ideal circumstances, the array response matrix Am is just a phase
matrix: its columns are given by the vectors aq(m) in (9), and its entries
express the phase shifts due to the geometrical delays associated with the
array and source geometry. We will later generalize this and introduce di-
rectional disturbances due to non-isotropic antennas, unequal antenna gains,
and disturbances due to atmospheric effects.

3.4 Image formation for the ideal data model

Ignoring the additive noise and using the ideal array response matrix Am,
the measurement equation (12), in its simplest form, can be written as

(Rm)i,j =

Q
∑

q=1

I(pq) e−j (zi(m)−zj(m))T pq (13)

where (Rm)i,j is the correlation between antennas i and j at STI interval m,
I(pq) = σ2

q is the brightness (power) of the source in direction pq , zi(m) is
the normalized location vector of the ith antenna at STI m, and pq is the
unit direction vector (position) of the qth source.

The function I(p) is the brightness image (or map) of interest: it is this
function that is shown when we refer to a radio-astronomical image like figure
1. It is a function of the direction vector p: this is a 3D vector, but due to its
normalization it depends on only two parameters. We could e.g., show I(·)
as function of the direction cosines (`, m), or of the corresponding angles.

For our discrete point-source model, the brightness image is

I(p) =

Q
∑

q=1

σ2
q δ(p − pq) (14)

where δ(·) is a Kronecker delta, and the direction vector p is mapped to the
location of “pixels” in the image (various transformations are possible). Only
the pixels pq are nonzero, and have value equal to the source variance σ2

q .
Equation (13) describes the relation between the visibility model and the

desired image, and it has the form of a Fourier transform; it is known in radio
astronomy as the Van Cittert-Zernike theorem [33, 37]. Image formation (map

making) is essentially the inversion of this relation. Unfortunately, we have
only a finite set of observations, therefore we can only obtain a dirty image:
if we apply the inverse Fourier transformation to the measured correlation
data, we obtain

ÎD(p) :=
∑

i,j,m

(R̂m)ij ej (zi(m)−zj (m))T p . (15)
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Fig. 4 (a) Coordinates of the antennas in a LOFAR station, which defines the spatial
sampling function, and (b) the resulting dirty beam.

In terms of the measurement data model (13), the “expected value” of the
image is obtained by replacing R̂m by Rm, or

ID(p) :=
∑

i,j,m

(Rm)i,j ej (zi(m)−zj(m))T p

=
∑

i,j,m

∑

q

σ2
q ej (zi(m)−zj(m))T (p−pq)

=
∑

q

I(pq) B(p − pq)

= I(p) ∗ B(p) (16)

where the dirty beam is given by

B(p) :=
∑

i,j,m

ej (zi(m)−zj(m))T p . (17)

The dirty image ID(p) is the desired image I(p) convolved with the dirty
beam B(p): every point source excites a beam B(p − pq) centered at its
location pq . Note that B(p) is a known function: it only depends on the
locations of the telescopes, or rather the set of telescope baselines zi(m) −
zj(m).

An example of a set of antenna coordinates and the corresponding dirty
beam is shown in figure 4. This is for a single low-band LOFAR station and
a single STI and frequency bin. The dirty beam has heavy sidelobes as high
as −10 dB. A resulting dirty image is shown in figure 5. In this image, we
see the complete sky, in (`, m) coordinates, where the reference direction
is pointing towards zenith. The strong visible sources are Cassiopeia A and
Cygnus A, also visible is the milky way, ending in the north polar spur (NPS)
and, weaker, Virgo A. In the South, the Sun is visible as well. The image was
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Fig. 5 Dirty image following (16), using LOFAR station data.

obtained by averaging 25 STIs, each consisting of 10 s data in 25 frequency
channels of 156 kHz wide taken from the band 45–67 MHz, avoiding the
locally present radio interference. As this shows data from a single LOFAR
station, with a relatively small maximal baseline (65 m), the resolution is
limited and certainly not representative of the capabilities of the full LOFAR
array.

The dirty beam is essentially a non-ideal point spread function due to finite
and non-uniform spatial sampling: we only have a limited set of baselines.
The dirty beam usually has a main lobe centered at p = 0, and many side
lobes. If we would have a large number of telescopes positioned in a uniform
rectangular grid, the dirty beam would be a 2-D sinc-function (similar to a
boxcar taper in time-domain sampling theory). The resulting beam size is in-
versely proportional to the aperture (diameter) of the array. This determines
the resolution in the dirty image. The sidelobes of the beam give rise to con-
fusion between sources: it is unclear whether a small peak in the image is
caused by the main lobe of a weak source, or the sidelobe of a strong source.
Therefore, attempts are made to design the array such that the sidelobes are
low. It is also possible to introduce weighting coefficients (“tapers”) in (16)
to obtain an acceptable beamshape.

Another aspect is the summation over m (STI intervals) in (17), where
the rotation of the Earth is used to obtain essentially many more antenna
baselines. The effect of this is that the sidelobes tend to get averaged out, to
some extent. Many images are also formed by averaging over a small number
of frequency bins (assuming the σ2

q are constant over these frequency bins),



which enters into the equations in exactly the same way: Replace zi(m) by
zi(m, k) and also sum over the frequency index k.

4 Deconvolution algorithms for image formation

Deconvolution is the process of recovering I(·) from ID(·) using knowledge
of the dirty beam, and thus to obtain the original high-resolution, “clean”
image. A standard algorithm for doing this is CLEAN [15] and variants; how-
ever, many other algorithms are possible, depending on the underlying model
assumptions and in a trade-off between accuracy and numerical complexity.

After a telescope has been designed and built, deconvolution is the most
important step in image formation. It can increase the dynamic range (ra-
tio between powers of the strongest and the weakest features in the image)
by several orders of magnitude. However, the numerical complexity is often
large, and high-resolution images require dedicated hardware solutions and
sometimes even supercomputers. This section will describe some of the algo-
rithms for deconvolution. Additional overviews are available in [8, 9, 19, 22],
as well as in the books [37, 2].

4.1 The CLEAN algorithm

A popular method for deconvolution is the CLEAN algorithm [15]. From the
dirty image ID(p) and the known dirty beam B(p), the desired image I(p)
is obtained via a sequential Least Squares fitting method. The algorithm is
based on the assumption that the sky is mostly empty, and consists of a set
of discrete point sources. The brightest source is estimated first, its contri-
bution is subtracted from the dirty image, then the next brightest source is
subtracted, etc.

The algorithm further assumes that B(p) has its peak at the origin. Inside
the loop, a candidate location pq is selected as the location of the largest
peak in ID(p), the corresponding power σ̂2

q is estimated, and subsequently a
small multiple of σ̂2

qB(p − pq) is subtracted from ID(p). The objective is to
minimize the residual, until it converges to the noise level:

q = 0
while ID(p) is not noise-like:








q = q + 1
pq = arg maxp ID(p)
σ̂2

q = ID(pq)/B(0)
ID(p) := ID(p) − γσ̂2

qB(p − pq) , ∀p
Iclean(p) = ID(p) +

∑

q γσ̂2
qBsynth(p − pq), ∀p .



The scaling parameter γ ≤ 1 is called the loop gain; for accurate convergence
it should be small because the estimated location of the peak is at a grid
point, whereas the true location of the peak may be in between grid points.
Bsynth(p) is a “synthetic beam”, usually a Gaussian bell-shape with about
the same beam width as the main lobe of the dirty beam; it is introduced to
mask the otherwise high artificial resolution of the image.

In current imaging systems, instead of the subtractions on the dirty image,
it is considered more accurate to do the subtractions on the covariance data
Rm instead,

R̂m := R̂m − γσ̂2
qaq(m)aq(m)H

and then to recompute the dirty image. For efficiency, usually a number of
peaks are estimated from the dirty image together, the covariance is updated
for this ensemble, and then the residual image is recomputed.

4.2 Imaging using a beamforming formulation

We will investigate some alternative deconvolution algorithms. For simplicity
of notation, we assume from now on that only a single STI snapshot is used
in the imaging, hence we also drop the time index m from the equations. The
results can easily be extended.

The imaging process transforms the covariances of the received signals to
an image of the source structure within the field-of-view of the receivers. In
array processing terms, it can be described as follows [19]. Assume a data
model as in (8), and recall the definition of the array response vector a(p) in
(9). There are J antennas. To determine the power of a signal arriving from
a particular direction p, a weight vector

w(p) =
1

J
a(p) =

1

J
e−jZT p (18)

is applied to the array signal vector x(n). The operation y(n) = wHx(n)
is generally called beamforming. The choice w = a precisely compensates
the geometric phase delays so that the antenna signals are added in phase.
This can be regarded as a spatially matched filter, or conjugate field match.
The (often omitted) scaling by 1/J ensures the correct scaling of the output
power. Indeed, the output power of a beamformer is, generally,

E{|y|2} = wHE{xxH}w = wHRw .

For a data model consisting of a single source with power σ2 arriving from
direction a(p), i.e., x(n) = a(p)s(n), we have, with w = 1

J a(p),

E{|y|2} = wH(aσ2aH)w = σ2 aHa

J

aHa

J
= σ2 . (19)



Thus, the matched beamformer corrects precisely the signal delays (phase
shifts) present in a(p), when w matches a(p), i.e. the beamformer is pointed
into the same direction as the source. If the beamformer is pointed into other
directions, the response is usually much smaller.

Using the beamformer to scan over all pixels p in an image, we can create
an image via beamforming as

ÎBF (p) = w(p)HR̂w(p) (20)

and the corresponding model for this image is

IBF (p) = w(p)HRw(p) . (21)

The matched filter corresponds to weights w(p) defined as in (18). Except for
a factor J2, the image IBF (p) is for this choice identical to the dirty image
ID(p) defined in (16)! Indeed, starting from (16), we can write

ID(p) =
∑

i,j

Rij ej (zi−zj)
T p =

∑

i,j

ej zipRij e−j zT
j p = a(p)HRa(p)

which is the beamforming image obtained using w(p) = a(p). The response
to a single source at the origin is

B(p) = a(p)Ha(0)a(0)Ha(p)

= a(p)H11Ha(p)

= 1H [a(p)a(p)H ]1

=
∑

i,j

e−j (zi−zj)
T p

which is the dirty beam defined in (17), now written in beamforming notation.
It typically has a spike at p = 0, and many sidelobes, depending on the
spatial sampling function. We have already seen that these sidelobes limit
the resolution, as they can be confused with (or mask) other sources.

So far, we looked at the response to a source, but ignored the effect of the
noise on an image. In the beamforming formulation, the response to a data
set which only consists of noise, or R = Rn is

I(p) = w(p)HRnw(p) .

Suppose that the noise is spatially white, Rn = σ2
nI, and that we use the

matched beamformer (18), we obtain

I(p) = σ2
n

a(p)H

J

a(p)

J
= σ2

n

‖a(p)‖2

J2
=

σ2
n

J
(22)



since all entries of a(p) have unit magnitude. As this is a constant, the image
will be “flat”. For a general data set R = Rs+Rn, the responses to the sources
and to the noise will be added. Comparing (19) to (22), we see that the noise
is suppressed by a factor J compared to a point source signal coming from
a specific direction. This is the array gain. If we use multiple STIs and/or
frequencies fk, the array gain can be larger than J .

4.3 Imaging via adaptive beamforming: MVDR and

AAR

Now that we have made the connection of imaging to beamforming, we can
apply a range of other beamforming techniques instead of the matched filter,
such as the class of spatially adaptive beamformers. In fact, these can be
considered as 2D spatial-domain versions of (now classical) spectrum estima-
tion techniques for estimating the power spectral density of a random process
(viz. [14]), and the general idea is that we can obtain a higher resolution if
the sidelobes generated by strong sources are made small.

As an example, the “minimum variance distortionless response” (MVDR)
beamformer is defined such that, for pixel p, the response towards the direc-
tion of interest p is unity, but signals from other directions are suppressed as
much as possible, i.e.,

w(p) = argmin
w

wHRw , such that wHa(p) = 1 .

This problem can be solved in various ways. For example, after making a
transformation w′ := R1/2w, a′ := R−1/2a, the problem becomes

w′(p) = arg min
w′

‖w′‖2 , such that w′Ha′(p) = 1 .

To minimize the norm of w′, it should be aligned to a′, i.e., w′ = αa′, and the
solution is w′ = a′/(a′Ha′). In terms of the original variables, the solution is
then

w(p) =
R−1a(p)

a(p)HR−1a(p)
,

and the resulting image can thus be described as

IMV DR(p) = w(p)HRw(p) =
1

a(p)HR−1a(p)
.

For a point-source model, this image will have a high resolution: two sources
that are closely spaced will be resolved. The corresponding beam responses
to different sources will in general be different: the beamshape is spatially
varying.



The MVDR image is to be used instead of the dirty image ID(p) in the
CLEAN loop. Due to its high resolution, the location of sources is better
estimated than using the original dirty image (and the location estimate
can be further improved by searching for the true peak on a smaller grid in
the vicinity of the location of the maximum). A second modification to the
CLEAN loop is also helpful: Suppose that the location of the brighest source
is pq , then the corresponding power αq should be estimated by minimizing
the residual ‖R − αa(pq)a(pq)

H‖2. This can be done in closed form: using
(5) we find

‖R− αa(pq)a(pq)
H‖ = ‖vec(R) − α[ā(pq) ⊗ a(pq)]‖ .

The optimal least squares solution for α is, using (1), (3) and (2) in turn,

αq = [ā(pq) ⊗ a(pq)]
†vec(R)

=
[ā(pq) ⊗ a(pq)]

Hvec(R)

[ā(pq) ⊗ a(pq)]H [ā(pq) ⊗ a(pq)]

=
a(pq)

HRa(pq)

[a(pq)Ha(pq)]2

=
a(pq)

HRa(pq)

J2

which is the power estimate of the matched filter. In the CLEAN loop, R

should be replaced by its estimate R̂ minus the estimated components until
q, and also a constraint that αq is to be positive should be included. This
method and a number of refinements are proposed in [1].

A problem with the MVDR image and other adaptive beamformers is that
the output noise power is not spatially uniform. Consider the data model
R = AΣsA

H + Σn, where Σn = σ2
nI is the noise covariance matrix, then

at the output of the beamformer the noise power is

σ2
y(p) = w(p)HRnw(p)

=
a(p)HR−1(σ2

nI)R−1a(p)

[a(p)HR−1a(p)]2

= σ2
n

a(p)HR−2a(p)

[a(p)HR−1a(p)]2
.

Thus, the output noise power is direction dependent.
As a remedy to this, a related beamformer which satisfies the constraint

w(p)Hw(p) = 1 (and therefore has spatially uniform output noise) is ob-
tained by using a different scaling of the MVDR beamformer:

w(p) = µR−1a(p) , µ =
1

a(p)HR−2a(p)
.
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Fig. 6 Dirty images corresponding to the (a) MVDR and (b) AAR beamformers.

This beamformer is known as the “Adapted Angular Response” (AAR) [6].
The resulting image is

IAAR(p) = w(p)HRw(p) =
a(p)HR−1a(p)

[a(p)HR−2a(p)]2
.

It has a high resolution and suppresses sidelobe interference under the white
noise constraint. It was proposed for use in the CLEAN loop in [1], the
resulting CLEANed image was called LS-MVI.



Example MVDR and AAR dirty images using the same LOFAR station as
before are shown in figure 6. At first sight, the performance of these images
is quite similar to that of the original dirty image in figure 5. There may
be situations where the differences are more pronounced (see [1] for exam-
ples), e.g., the resolution for closely spaced point sources is expected to be
significantly improved.

5 Least Squares imaging

In the previous section, we discussed various algorithms based on the CLEAN
algorithm. This algorithm uses a successive approximation of the dirty image
using a point source model. In this section, we take a model-based approach.
The imaging problem is formulated as a parametric estimation problem where
certain parameters (source locations, powers, noise variance) are unknown
and need to be estimated. Although we start from a Maximum Likelihood
formulation, we will quickly arrive at a more feasible Least Squares approach.
The discussion follows to some extent [31], which is a general array processing
approach to a very similar problem and can be read for further details.

5.1 Matrix formulation of the data model

Let us start again from the data model (8). For simplicity, we consider only
a single frequency bin and STI interval, but all results can be generalized
straightforwardly. The model for the signals arriving at the antenna array is
thus

x(n) = As(n) + n(n)

and the covariance of x is (viz. (12))

R = AΣsA
H + Σn .

We have available a sample covariance matrix

R̂ =
1

N

∑

n

x(n)x(n)H

which serves as the input data for the imaging step. Let us now vectorize this
data model by defining

r̂ = vec(R̂) , r = vec(R)

where r has the data model (using (4))



r = (Ā ◦A)σs + vec(Σn) .

If Σn is diagonal, we can write vec(Σn) = (I ◦ I)σn, where σn is a vector
containing the diagonal entries of Σn. Define Ms = Ā ◦ A and Mn = I ◦ I.
Then

r = Msσs + Mnσn = [Ms Mn]

[

σs

σn

]

= Mσ .

In this formulation, several modifications can be introduced. E.g., a nondi-
agonal noise covariance matrix Σn will lead to a more general Mn, and if
Σn = σ2

nI, we have Mn = vec(I) and σn = σ2
n. Some other options are

discussed in [31].
We can further write

r̂ = r + w = Mσ + w , (23)

where r̂ is the available “measurement data”, r is its mean (expected value),
and w is zero mean additive noise. It is not hard to derive that (for Gaussian
signals) the covariance of this noise is [31]

Cw = E(r̂ − r)(r̂ − r)H =
1

N
(R̄ ⊗R)

where N is the number of samples on which R̂ is based. We have thus written
our original data model on x as a similar data model on r̂. Many estimation
techniques from the literature that are usually applied to data models for x

can be applied to the data model for r. Furthermore, it is straightforward to
extend this vectorized formulation to include multiple snapshots over time
and frequency to increase the amount of measurement data and thus to im-
prove the imaging result: Simply stack the covariance data in r̂ and include
the model structure in M; note that σ remains unchanged.

The unknown parameters in the data model are, first of all, the powers σ.
These appear linear in the model. Regarding the positions of the sources, we
can consider two cases:

1. We consider a point source model with a “small” number of sources. In
that case, A = A(θ) and M = M(θ), where θ is some parametrization
of the unknown locations of the sources (the position vectors pq for each
source). These enter in a nonlinear way into the model M(θ). The image
I(p) is constructed following (14), usually convolved with a synthetic beam
Bsynth(p) to make the image look nicer.

2. Alternatively, we consider a model where for each pixel in the image, we
assume a corresponding point source: the source positions pq directly cor-
respond to the pixels in the image. This can lead to a large number of
sources. With the locations of the pixels predetermined, M is a priori
known and not a function of θ, but M will have many columns (one for



each pixel-source). The image I(p) has a one-to-one relation to the source
power vector σs, we can thus regard σs as the image in this case.

We need to pose several requirements on M or M(θ) to ensure identifia-
bility. First of all, in the first case we must have M(θ) = M(θ′) → θ = θ

′,
otherwise we cannot uniquely find θ from M. Furthermore, for both cases we
will require that M is a tall matrix (more rows than columns) and has full
column rank, so that it has a left inverse (this will allow to estimate σ). This
puts a limit on the number of sources in the image (number of columns of M)
in relation to the number of observations (rows). If more snapshots (STIs)
and/or multiple frequencies are available, as is the case in practice, then M

will become taller, and more sources can be estimated thus increasing the
resolution. If M is not tall, then there are some ways to generalize this, e.g.
via the context of compressive sampling where we can have M wide as long
as σ is sparse [43], which we will briefly discuss in subsection 5.6.

For the moment, we will continue with the second formulation: one source
per pixel, fewer pixels than available correlation data.

5.2 Matrix formulation of imaging via beamforming

Let us now again interprete the “beamforming image” (20) as a linear trans-
formation on the covariance data r̂. We can stack all image values I(p) over
all pixels p into a single vector i, and similarly, we can collect the weights
w(p) over all pixels into a single matrix W = [w(p1), w(p2), · · · ]. From
(3), we know that wHRw = (w ⊗w)Hvec(R̂), so that we can write

îBF = (W ◦W)H r̂ . (24)

We saw before that the dirty image is obtained if we use the matched filter.
In this case, we have W = 1

J A, where A contains the array response vectors
a(p) for every pixel p of interest. In this case, the image is

îD =
1

J2
(Ā ◦A)H r̂ =

1

J2
MH

s r̂ . (25)

The expected value of the image is obtained by using r = Mσ:

iD =
1

J2
MH

s Mσ =
1

J2
(MH

s Ms)σs +
1

J2
(MH

s Mn)σn .

The quality or “performance” of the image, or how close îD is to iD, is related
to its covariance,

cov(̂iD) = E{(̂iD − iD)(̂iD − iD)H} =
1

J4
MH

s CwMs



where Cw = 1
N (R̄⊗R) is the covariance of the noise on the covariance data.

Since usually the astronomical sources are much weaker than the noise (often
at least by a factor 100), we can approximate R ≈ Σn. If the noise is spatially

white, Σn = σ2
nI, we obtain for the covariance of îD

cov(̂iD) ≈ σ4
n

J4N
MH

s Ms .

The variance in the image is given by the diagonal of this expression. From
this and the structure of Ms = (Ā ◦ A) and the structure of A, we can see
that the variance on each pixel in the dirty image is constant, σ4

n/(J2N), but
that the noise on the image is correlated, possibly leading to visible structures
in the image. This is a general phenomenon.

Similar equations can be derived for the MVDR image and the AAR image.

5.3 Weighted Least Squares imaging

At this point, the deconvolution problem can be formulated as a maximum
likelihood (ML) estimation problem, and solving this problem should pro-
vide a statistically efficient estimate of the parameters. Since all signals are
assumed to be i.i.d. Gaussian signals, the derivation is standard and the ML
estimates are obtained by minimizing the negative log-likelihood function [31]

{σ̂, θ̂} = argmin
σ,θ

(

ln |R(σ, θ)| + tr
(

R−1(σ, θ)R̂
))

. (26)

where | · | denotes the determinant. R(σ, θ) is the model, i.e., vec(R(σ, θ)) =
r = M(θ)σ.

In this subsection, we will consider the overparametrized case, where each
pixel in the image corresponds to a source. In this case, M is a priori known,
the model is linear, and the ML problem reduces to a Weighted Least Squares
(WLS) problem to match r̂ to the model r:

σ̂ = arg min
σ

‖C−1/2
w (r̂ − r)‖2

2 = argmin
σ

(r̂ −Mσ)HC−1
w (r̂ −Mσ) (27)

where we fit the “data” r̂ to the model r = Mσ. The correct weighting is the
inverse of the covariance of the residual, w = r̂− r, i.e., the noise covariance
matrix Cw = 1

N (R̄⊗R). For this, we may also use the estimate Ĉw obtained

by using R̂ instead of R. Using the assumption that the astronomical sources
are much weaker than the noise we could contemplate to use R ≈ Σn for the
weighting. If the noise is spatially white, Σn = σ2

nI, the weighting can then
even be omitted.

The solution of (27) is obtained by applying the pseudo-inverse,
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Fig. 7 Image corresponding to the WLS formulation (28).

σ̂ = [C−1/2
w M]†C−1/2

w r̂ = (MHC−1
w M)−1MHC−1

w r̂ =: M−1
d σ̂d (28)

where
Md := MHC−1

w M , σ̂d := MHC−1
w r̂ .

Here, we can consider the term σ̂d = MHC−1
w r̂ as a “dirty image”: it is

comparable to (25), although we have introduced a weighting by C−1
w and

estimate the noise covariance parameters σn as well as the source powers
in σs (the actual image). The factor 1/J2 in (25) can be seen as a crude
approximation of M−1

d .
Figure 7 shows an example WLS image for the same LOFAR data set as

before. The resolution (number of pixels) in this image is kept limited (about
1000) for reasons discussed below.

The term M−1
d = (MHC−1

w M)−1 is a deconvolution operation. This inver-
sion can only be carried out if the deconvolution matrix Md = MHC−1

w M is
not rank deficient. This requires at least that M is a tall matrix (“less pixels
than observations” in case we take one source per pixel). Thus, high resolu-
tion WLS imaging is only possible if a limited number of sources is present.
The condition number of Md, i.e., the ratio of the largest to the smallest
eigenvalue of Md, gives important information on our ability to compute its
inverse: LS theory tells us that the noise on σ̂d could, in the worst case, be
magnified by this factor. The optimal (smallest) condition number of any
matrix is 1, which is achieved if Md is a scaling of the identity matrix, or

if the columns of C
−1/2
w M are all orthogonal to each other. If the size of M

becomes less tall, then the condition number of Md becomes larger (worse),
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and once it is a wide matrix, M is singular and the condition number will be
infinite. Thus, we have a trade-off between the resolution (number of pixels
in the image) and the noise enhancement.

The definition of Md shows that it is not data dependent, and it can
be precomputed for a given telescope configuration and observation interval.
It is thus possible to explore this trade-off beforehand. To avoid numerical
instabilities (noise enhancement), we would usually compute a regularized
inverse or pseudo-inverse of this matrix, e.g., by first computing the eigenvalue
decomposition

Md = UΛUH

where U contains the (orthonormal) eigenvectors and Λ is a diagonal matrix
containing the eigenvalues, sorted from large to small. Given a threshold ε
on the eigenvalues, we can define Λ̃ to be a diagonal matrix containing only
the eigenvalues larger than ε, and Ũ a matrix containing the corresponding
eigenvectors. The ε-threshold pseudo-inverse is then given by

M
†
d := ŨΛ̃

−1
ŨH

and the resulting image is

σ = ŨΛ̃
−1

ŨH
σd . (29)

This can be called the “Karhunen-Loève” image, as the rank reduction is
related to the Karhunen-Loève transform (KLT). It corresponds to selecting



an optimal (Least Squares) set of basis vectors on which to project a certain
data set, here σd.

An example KLT image is shown in figure 8. In this image, the number of
pixels is much larger than before in figure 7 (about 9000), but the rank of the
matrix Md is truncated at 1/200 times the largest eigenvalue, leaving about
1300 out of 9000 image components. The result is not quite satisfactory: the
truncation to a reduced basis results in annoying ripple artifacts in the image.

Computing the eigenvalue decomposition for large matrices is complex. A
computationally simpler alternative is to compute a regularized inverse of
Md, i.e., to take the inverse of Md + εI. This should yield similar (although
not identical) results.

If we use the alternative sky model where we assume a point source model
with a “small” number of sources (M = M(θ)), then the conditioning of
Md, and thus the performance of the deconvolution, is directly related to
this number of sources.

The perfomance of the method is assessed by looking at the covariance of
the resulting image (plus noise parameters) σ̂ in (28). It is given by

Cσ = (MHC−1
w M)−1MHC−1

w (Cw)C−1
w M(MHC−1

w M)−1

= (MHC−1
w M)−1 = M−1

d .

This again shows that the performance of the imaging method follows directly
from the conditioning of the deconvolution matrix Md. If Md is sufficiently
well conditioned, the noise on the image is limited, otherwise it may be large.
The formulation also shows that the pixels in the image are correlated (Md

is in general not diagonal), as we obtained before for the dirty image.

Similarly, if we use the pseudo-inverse M
†
d = ŨΛ̃

−1
ŨH for the deconvolu-

tion, then we obtain Cσ = M
†
d. In this case, the noise enhancement depends

on the chosen threshold ε. Also, the rank of Cσ depends on this threshold,
and since it is not full rank, the number of independent components (sources)
in the image is smaller than the number of shown pixels: the rank reduction
defines a form of interpolation.

Using a rank truncation for radio astronomy imaging was already sug-
gested in [7]. Unfortunately, if the number of pixels is large, this technique
by itself is not sufficient to obtain good images, e.g., the resulting pixels
may not all be positive, which is unplausible for an intensity image. Thus,
the overparametrized case requires additional constraints; some options are
discussed in subsection 5.6.

5.4 Estimating the position of the sources

Let us now consider the use of the alternative formulation, where we write
A = A(θ) and M = M(θ), where θ captures the positions of the limited



number of sources in the image. In this case, we have to estimate both σ and
θ. If we start again from the ML formulation (26), it does not seem feasible
to solve this minimization problem in closed form. However, we can again
resort to the WLS covariance matching problem and solve instead

{σ̂, θ̂} = argmin
σ,θ

‖C−1/2
w (r̂ − r(σ, θ))‖2

= argmin
σ,θ

(r̂ −M(θ)σ)HC−1
w (r̂ −M(θ)σ) . (30)

It is known that the resulting estimates are, for a large number of samples,
equivalent to ML estimates and therefore asymptotically efficient [31].

The WLS problem is separable: suppose that the optimal θ is known, so
that M = M(θ) is known, then the corresponding σ will satisfy the solution
which we found earlier:

σ̂ = (MHC−1
w M)−1MHC−1

w r̂ .

Substituting this solution back into the problem, we obtain

θ̂ = argmin
θ

r̂H [I−M(θ)(M(θ)HC−1
w M(θ))−1M(θ)HC−1

w ]H ·

· C−1
w · (I −M(θ)(M(θ)HC−1

w M(θ))−1M(θ)HC−1
w ]̂r

= argmin
θ

r̂HC−1/2
w (I − Π(θ))C−1/2

w r̂

= argmax
θ

r̂HC−1/2
w Π(θ)C−1/2

w r̂

where Π(θ) = C
−1/2
w M(θ)

(

M(θ)HC−1
w M(θ)

)−1
M(θ)HC

−1/2
w .

Π(θ) is an orthogonal projection: Π
2 = Π, Π

H = Π . The projection is

onto the column span of M′(θ) := C
−1/2
w M(θ). The estimation of the source

positions θ is nonlinear. It could be obtained iteratively using a Newton
iteration (cf. [31]). The sources can also be estimated sequentially [31], which
provides an alternative to the CLEAN algorithm.

5.5 Two-step WLS solution

In the previous formulation (28), we estimated σ, which contains both the
source powers and the noise powers. However, the image is related only to
the source powers, σs. We can write more explicitly how these are estimated.

The optimization problem is again separable: given the optimal σs, the
“known” part of the LS problem (27) is r̂ − Msσs, and the corresponding
estimate for σn is



σ̂n = (MH
n C−1

w Mn)−1MnC
−1
w (r̂ −Msσs) . (31)

Plugging this solution back into the LS problem, we can first rewrite

C−1/2
w (r̂ −Msσs −Mnσ̂n)

= [C−1/2
w −C−1/2

w Mn(MH
n C−1

w Mn)−1MnC
−1
w ]̂r −

−[C−1/2
w −C−1/2

w Mn(MH
n C−1

w Mn)−1MnC−1
w ]Msσs

= P⊥C−1/2
w (r̂ −Msσs)

where

P⊥ = I −P , P = C−1/2
w Mn(MH

n C−1
w Mn)−1MnC−1/2

w .

Similar to Π , we can show that P is an orthogonal projection. Hence, also
P⊥ = I − P is an orthogonal projection, onto the complement of the range

of C
−1/2
w Mn, i.e., the weighted range of the noise matrix. If Σn is diagonal,

this is equivalent to “projecting out the diagonal”, thus omitting these entries
in the WLS fitting. It is interesting to note that, in current telescopes, the
autocorrelations (main diagonal of R) are usually not estimated. That fits in
very well with this scheme, as the projection would project them out anyway!

The resulting “compressed” WLS problem is

σ̂s = arg min
σs

‖C−1/2
s (r̂ −Msσs)‖2

where
C−1

s := C−1/2
w P⊥C−1/2

w .

(This is with some abuse of notation: Cs is singular due to the projection,
hence not invertible. However, we will only need C−1

s , and will use the above
definition for it.) The solution σ̂s will be exactly the same as in the original
WLS problem (27), but now it is obtained in two steps: first σ̂s and then, if
required, σ̂n via (31).

As the expression for the compressed problem is very similar to the original
WLS problem, we obtain similar results: the solution is

σ̂s = (MH
s C−1

s Ms)
−1MH

s C−1
s r̂

which can also be written as

σ̂s = M−1
ds σ̂ds , Mds = MH

s C−1
s Ms , σ̂ds = MH

s C−1
s r̂ .

Mds is the deconvolution matrix, and σ̂ds is the WLS dirty image. This
time, the dirty image is really a (vectorized) image, whereas in the previous
discussion, the vector σ̂d had an image component and a noise component.

The covariance of the image estimate σ̂s is, using C−1
s CwC−1

s = C−1
s ,



Cσs
= (MH

s C−1
s Ms)

−1MH
s C−1

s (Cw)C−1
s Ms(M

H
s C−1

s Ms)
−1 = M−1

ds .

Thus, we obtain quite similar results as before when we estimated σ, but now
directly related to the image σs, with the noise part σn “projected out”.

5.6 Imaging using sparse reconstruction techniques

Compressive sampling/sensing (CS) is a “new” topic, currently drawing wide
attention. It is connected to random sampling, and as such, it has been used
in radio astronomy for a long time. In its basic formulation, we connect back
to the measurement equation (23), or r̂ = Mσ + w, and we consider the
“overparametrized” formulation where each pixel in the image corresponds
to a potential source in σ, whereas M is known. If the image is large, then the
deconvolution problem (inversion of M) is ill conditioned. A direct inversion
using (Weighted) Least Squares will give rise to unacceptable noise enhance-
ment. We resorted to regularization by the KLT, which essentially projects
the true image onto the selected basis, giving rise to artefacts. Without noise,
any component orthogonal to the projection space can be added to the im-
age without changing the modeling error: the image that fits the data is not
unique. Additional constraints are needed. Examples are:

1. Sparsity of the solution vector, typically obtained by using an `1 norm
(sum of absolute values), resulting in convex optimization problems like
[21, 43]

min
σ

‖σ‖1 subject to ‖r̂ −Mσ‖2
2 ≤ ε

or the equivalent
min
σ

‖r̂−Mσ‖2
2 + λ‖σ‖1

These are versions of the Basis Pursuit problem. Like the KLT, the results
depend on the chosen noise threshold ε (or regularization parameter λ).
The sparsity assumption poses that the sky is mostly empty. Although it
has already long been suspected that CLEAN is related to `1-optimization
[27] (in fact, it is now recognized as a Matching Pursuit algorithm [25]),
CS theory states the general conditions under which this assumption is
likely to recover the true image [21, 43]. Extensions are needed in case of
extended emissions [23].

2. Requiring the resulting image to be non-negative. This is physically plau-
sible, and to some extent already covered by CLEAN [27]. It is an explicit
condition in a Non-Negative Least Squares (NNLS) formulation [7], which
searches for a Least Squares fit while requiring that the solution σ has all
entries σi ≥ 0. This turns out to be a strong constraint, readily incorpo-
rated into other formulations (e.g., CLEAN, MEM, and `1-optimization).

Some experimental results using these algorithms are shown in [23, 35].



6 Calibration

6.1 Non-ideal measurements

The previous section showed that there are many options to make an image
from radio interferometer data. However, there are in fact several effects that
make matters more complicated.

Instrumental effects

So far we ignored the beam shape of the individual elements (antennas or
dishes) of the array. In fact, any antenna has its own directional response,
b(p). This function is called the primary beam (to distinguish it from the
dirty beam that results from beamforming during the synthesis operation).
It is generally assumed that the primary beam is equal for all elements in
the array. With Q point sources, we will collect the resulting samples of the
primary beam into a vector b = [b(p1), · · · , b(pQ)]T . These coefficients are
seen as gains that (squared) will multiply the source powers σ2

q . The general
shape of the primary beam b(p) is known from electromagnetic modeling
during the design of the telescope. If this is not sufficiently accurate, then it
has to be calibrated.

Initially the direction independent electronic gains and phases of the re-
ceiver chain of each element in the array are unknown and have to be esti-
mated. They are generally different from element to element. We thus have
an unknown vector g (size J × 1) with complex entries that each multiply
the output signal of each telescope.

Also the noise powers of each element are unknown and generally unequal
to each other. We will still assume that the noise is independent from element
to element. We can thus model the noise covariance matrix by an (unknown)
diagonal Σn.

The modified data model that captures the above effects and replaces (12)
is

R = (ΓAB)Σs(B
HAH

Γ
H) + Σn (32)

where Γ = diag(g) is a diagonal with unknown receiver complex gains, and
B = diag(b) contains the samples of the primary beam. Usually, Γ and B

are considered to vary only slowly with time m and frequency k, so that we
can combine multiple covariance matrices Rm,k with the same Γ and B.

Propagation effects

Ionospheric and tropospheric turbulence cause time-varying refraction and
diffraction, which has a profound effect on the propagation of radio waves. In
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Fig. 9 A radio interferometer where stations consisting of phased array elements
replace telescope dishes. The ionosphere adds phase delays to the signal paths. If the
ionospheric electron density has the form of a wedge, it will simply shift the apparent
positions of all sources.

the simplest case, the ionosphere is modeled as a thin layer at some height
(say 100 km) above the Earth, causing delays that can be represented as phase
shifts. At the low frequencies used for LOFAR, this effect is more pronounced.
Generally it is first assumed that the ionosphere is “constant” over about 10
km and about 10 s. A better model is to model the ionospheric delay as
a “wedge”, a linear function of the distance between piercing points (the
intersection of the direction vectors pq with the ionospheric phase screen).
As illustrated in figure 9, this modifies the geometric delays, leading to a
shift in the apparent position of the sources. For larger distances, higher-
order functions are needed to model the spatial behavior of the ionosphere,
and if left uncorrected, the resulting image distortions are comparable to the
distortions one sees when looking at lights at the bottom of a swimming pool.

Previously, we described that the array response matrix A is really a
function of the source direction vectors pq, and we wrote A(θ) where the
vector θ is a suitable parametrization of the pq (typically two direction cosines
per source). If a linear model for the ionospheric disturbance is sufficient, then
it is sufficient to replace A(θ) by A(θ′), where θ

′ differs from θ due to the
shift in apparent direction of each source.

The modified data model that captures the above effects is thus



R = (ΓA(θ′)B)Σs(B
HA(θ′)H

Γ
H) + Σn . (33)

If we wish to be very general, we can write

R = (G �A(θ))Σs(G �A(θ))H + Σn (34)

where � indicates an entrywise multiplication of two matrices (Schur-Hadamard
product). Here, G is a full matrix that captures all non-linear measurement
effects. Equation (32) is recovered if we write G = gbH (i.e., a rank-1 ma-
trix), and equation (33) if we write G = gbH � A′, where A′ is a matrix
consisting of phase corrections such that A(θ′) = A(θ) �A′.

Calibration is the process of identifying the unknown parameters in G, and
subsequently correcting for G during the imaging step. The model (34) in
its generality is not identifiable unless we make assumptions on the structure
of G (in the form of a suitable parametrization) and describe how it varies
with time and frequency, e.g., in the form of (stochastic) models for these
variations.

In practice, calibration is an integral part of the imaging step, and not
a separate phase. In the next subsection, we will first describe how models
of the form (32) or (33) can be identified. This step will serve as a stepping
stone in the identification of a more general G.

6.2 Calibration algorithms

Estimating the element gains and directional responses

Let us assume a model of the form (32), where there are Q dominant calibra-
tion sources within the field of view. For these sources, we assume that their
positions and source powers are known with sufficient accuracy from tables,
i.e., we assume that A and Σs are known. We can then write (32) as

R = ΓAΣAH
Γ

H + Σn (35)

where Σ = BΣsB is a diagonal with apparent source powers. With B un-
known, Σ is unknown, but estimating Σ is precisely the problem we studied
before when we discussed imaging. Thus, once we have estimated Σ and
know Σs, we can easily estimate the directional gains B. The problem thus
reduces to estimate the diagonal matrices Γ , Σ and Σn from a model of the
form (35).

For some cases, e.g., arrays where the elements are traditional telescope
dishes, the field of view is quite narrow (degrees) and we may assume that
there is only a single calibrator source in the observation. Then Σ = σ2 is a
scalar and the problem reduces to



R = gσ2gH + Σn

and since g is unknown, we could even absorb the unknown σ in g (it is
not separately identifiable). The structure of R is a rank-1 matrix gσ2gH

plus a diagonal Σn. This is recognized as a “rank-1 factor analysis” model in
multivariate analysis theory [26, 18]. Given R, we can solve for g and Σn in
several ways [4, 5, 48]. For example, any submatrix away from the diagonal
is only dependent on g and is rank 1. This allows direct estimation of g.
This property is related to the gain and phase closure relations often used in
the radio astronomy literature for calibration (in particular, these relations
express that the determinant of any 2 × 2 submatrix away from the main
diagonal will be zero, which is the same as saying that this submatrix is rank
1).

In general, there are more calibrator sources (Q) in the field of view, and
we have to solve (35). We resort to an Alternating Least Squares approach. If
Γ would be known, then we can correct R for it, so that we have precisely the
same problem as we considered before, (27), and we can solve for Σ and Σn

using the techniques discussed in section 5.3. Alternatively, with Σ known,
we can say we know a reference model R0 = AΣAH , and the problem is to
identify the element gains Γ = diag(g) from a model of the form

R = ΓR0Γ
H + Σn

or, after applying the vec(·)-operation,

vec(R) = diag(vec(R0))(g ⊗ g) + vec(Σn) .

This leads to the Least Squares problem

ĝ = argmin
g

‖vec(R̂− Σn) − diag(vec(R0))(g ⊗ g)‖2 .

This problem cannot be solved in closed form. Alternatively, we can first solve
an unstructured problem: define x = g ⊗ g and solve

x̂ = diag(vec(R0))
−1vec(R̂− Σn)

or equivalently, if we define X = ggH ,

X̂ = (R̂ − Σn) �R0.

where � denotes an entrywise matrix division. After estimating the unstruc-
tured X, we enforce the rank-1 structure X = ggH , via a rank-1 approxi-
mation, and find an estimate for g. The pointwise division can lead to noise
enhancement; this is remediated by only using the result as an initial estimate
for a Gauss-Newton iteration [13] or by formulating a weighted least squares
problem instead [45, 48].



With g known, we can again estimate Σ and Σn, and make an iteration.
Overall we then obtain an alternating least squares solution. A more optimal
solution can be found by solving the overall problem (35) as a covariance
matching problem with a suitable parametrization, and the more general
algorithms in [31] lead to an asymptotically unbiased and statistically efficient
solution.

The resulting algorithms are related to the classical self-calibration (Self-
Cal) algorithm [10, 32] widely used in the radio astronomy literature, in
particular for a single calibrator source. In that algorithm, R0 is a reference
model, obtained from the best known map at that point in the iteration. In
the SelfCal iteration, the telescope gains are estimated, the corrections on
R are made, the next best image is constructed leading to a new reference
model R0, etc.

Estimating the ionospheric perturbation

The more general calibration problem (33) follows from (32) by writing A =
A(θ′) where θ

′ are the apparent source locations. This problem can be easily
solved in quite the same way: in the alternating least squares problem we
solve for g, θ

′, σs and σn in turn, keeping the other parameters fixed at their
previous estimates. After that, we can relate the apparent source locations
to the (known) locations of the calibrator sources θ.

The resulting phase corrections A′ to relate A(θ′) to A(θ) via A(θ′) =
A(θ)�A′ gives us an estimate of the ionospheric phase screen in the direction
of each source. These “samples” can then be interpolated to obtain a phase
screen model for the entire field of view. This method is limited to the regime
where the phase screen can be modeled as a linear gradient over the array.
An implementation of this algorithm is called Field-Based Calibration [11].

Other techniques are based on “peeling” [28]. In this method of succes-
sive estimation and subtraction calibration, parameters are obtained for the
brightest source in the field. The source is then removed from the data, and
the process is repeated for the next brightest source. This leads to a collection
of samples of the ionosphere, to which a model phase screen can be fitted.

Estimating the general model

In the more general case (34), viz.

R = (G �A)Σs(G�A)H + Σn ,

we have an unknown full matrix G. We assume A and Σs known. Since A

pointwise multiplies G and G is unknown, we might as well omit A from
the equations without loss of generality. For the same reason also Σs can be



omitted. This leads to a problem of the form

R = GGH + Σn ,

where G : J ×Q and Σn (diagonal) are unknown. This problem is known as
a rank-Q factor analysis problem. For reasonably small Q, as compared to
the size J of R, the factor G can be solved for, again using algorithms for
covariance matching such as in [31]. We discuss this problem in more detail
in section 7.

It is important to note that G can be identified only up to a unitary factor
V at the right: G′ = GV would also be a solution. This factor makes the
gains unidentifiable unless we introduce more structure to the problem.

To make matters worse, note that this problem is used to fine-tune earlier
coarser models (33). At this level of accuracy, the number of dominant sources
Q is often not small anymore, making G not identifiable.

As discussed in [30] and studied in more detail in [39], more structure
needs to be introduced to be able to solve the problem. Typically, what helps
is to consider the problem for a complete observation (rather than for a single
snapshot R) where we have many different frequencies fk and time intervals
m. The directional response matrix Am,k varies with m and k in a known way,
and the instrumental gains g and b are relatively constant. The remaining
part of G = gbH�A′ is due to the ionospheric perturbations, and models can
be introduced to describe its fluctuation over time, frequency, and space using
some low order polynomials. We can also introduce stochastic knowledge that
describe a correlation of parameters over time and space.

New instruments such as LOFAR and SKA will only reach their full poten-
tial if this general calibration problem is solved. For LOFAR, a complete cali-
bration method that incorporates many of the above techniques was recently
proposed in [16]. In general, calibration and imaging need to be considered
in unison, leading to many potential directions, approaches, and solutions.
This promises to be a rich research area in years to come.

7 Factor analysis

7.1 Introduction

Many array signal processing algorithms are at some point based on the eigen-
value decomposition, which is used e.g., to make a distinction between the
“signal subspace” and the “noise subspace”. By using orthogonal projections,
part of the noise is projected out and only the signal subspace remains. This
can then be used for applications such as high-resolution direction-of-arrival
estimation, blind source separation, etc. In these applications, it is commonly



assumed that the noise is spatially white. However, this is valid only after
suitable calibration.

Factor analysis considers covariance data models where the noise is un-
correlated but has unknown powers at each sensor, i.e., the noise covariance
matrix is an arbitrary diagonal with positive real entries. In these cases the
familiar eigenvalue decomposition (EVD) has to be replaced by a more gen-
eral “Factor Analysis” decomposition (FAD), which then reveals all relevant
information. It is a very relevant model for the early stages of data processing
in radio astronomy, because at that point the instrument is not yet calibrated
and the noise powers on the various antennas may be quite different. We saw
two examples in section 6.

As it turns out, this problem has been studied in the psychometrics, bio-
metrics and statistics literature since the 1930s (but usually for real-valued
matrices) [18, 26]. The problem has received much less attention in the signal
processing literature. In this section, we briefly describe the FAD and some
algorithms for computing it.

7.2 Problem formulation

Assume as before that we have a set of Q narrow-band Gaussian signals
impinging on an array of J sensors. The received signal can be described in
complex envelope form by

x(n) =

Q
∑

q=1

aqsq(n) + n(n) = As(n) + n(k) (36)

where A = [a1, · · · , aQ] contains the array response vectors. In this model,
A is unknown, and the array response vectors are unstructured, i.e., we do
not consider a directional model for them. The source vector s(n) and noise
vector n(n) are considered i.i.d. Gaussian, i.e., the corresponding covariance
matrices are diagonal. Without loss of generality, we can scale the source
signals such that the source covariance matrix Σs is identity.

The data covariance matrix thus has the form

R = AAH + D (37)

where we assume Q < J so that AAH is rank deficient. Many signal process-
ing algorithms are based on computing an eigenvalue decomposition of R as
R = UΛUH , where U is unitary and Λ is a diagonal matrix containing the
eigenvalues in descending order.

If D = 0 (no noise), then R has rank Q and the eigenvalue decomposition
specializes to



R = UΛ0U
H = [Us Un]

[

Λs

0

] [

UH
s

UH
n

]

where Λs contains the Q nonzero eigenvalues and Us the corresponding
eigenvectors. The range of Us is called the signal subspace, its orthogonal
complement Un the noise subspace.

For spatially white noise, D = σ2I, we can write D = σ2UUH , and the
eigenvalue decomposition becomes

R = UΛUH = U(Λ0 + σ2I)UH = [Us Un]

[

Λs + σ2I

σ2I

] [

UH
s

UH
n

]

.

Hence, all eigenvalues are raised by σ2, but the eigenvectors are unchanged.
Algorithms based on Us can thus proceed as if there was no noise, thus
leading to the use of the EVD and related subspace estimation algorithms in
many array signal processing applications.

If the noise is not uniform, then D is an unknown diagonal matrix, and the
EVD does not reveal the signal subspace Us. The objective of factor analysis
is, for given R, to identify A and D, as well as the factor dimension Q. This
can be seen as an extension of the eigenvalue decomposition, to be used if
the noise covariance is a diagonal.

It is clear that for an arbitrary Hermitian matrix R, this factorization can
exist in its exact form only for Q ≥ J , in which case we can set D = 0, or
any other value, which makes the factorization useless. Hence, for a noise-
perturbed matrix, we wish to detect the smallest Q which gives a “reasonable
fit”, and we will assume that Q < J is sufficiently small so that unique
decompositions exist.

Furthermore, we cannot estimate A uniquely, since A can be replaced by
AV for an arbitrary unitary matrix V. If we denote AAH = UsΛsU

H
s , it is

clear that we can only estimate the column span of A, i.e., ran(A) = ran(Us),
as well as the “signal eigenvalues” Λs.

Suppose we have estimated D, then we can whiten R:

R̃ := D−1/2RD−1/2 = (D−1/2A)(AHD−1/2) + I .

At this point, we can introduce the usual eigenvalue decomposition of R̃:

R̃ = ŨΛ̃ŨH

and identify D−1/2AV = Ũ, or A = D1/2ŨVH , where V is an arbitrary
unitary factor. If we choose V = I, we obtain AHD−1A = Λ̃ is diago-
nal, which is a constraint that is sometimes used to obtain a more unique
parametrization of A. Note that A is not yet quite unique, because in the
complex case each column of A can be scaled by an arbitrary complex phase,
and the columns may be reordered as well. However, the point is that once
D is known, we are back on familiar grounds.



Regarding identifiability, we generally require to have more “equations”
than “unknowns”. Here, the number of available equations is equal to the
number of (real) parameters in R̂, which is J (real) entries on the main diag-
onal and J(J − 1) parameters for the off-diagonal (complex) entries, taking
into account Hermitian symmetry. The number of unknowns is 2JQ (real)
parameters for A, and J parameters for D, minus the number of constraints
to make A unique. Taking the constraint that AHD−1A is diagonal gives
Q2 −Q constraints on the parameters of A, and further setting the first row
of A to be real gives another Q constraints. In total we have for the number
of equations minus the number of unknowns

s = J + J(J − 1) − (2JQ + J − (Q2 − Q + Q)) = (J − Q)2 − J .

Requiring s > 0 leads to the condition Q < J −
√

J . This is an upper bound
on the factor rank.

In Factor Analysis, there are two problems:

1. Detection: given R̂, estimate Q. The hypothesis that the factor rank is q
is denoted by Hq .

2. Identification: given R̂ and Q, estimate D and A, or Λs and Us.

We consider the latter problem first.

7.3 Computing the Factor Analysis decomposition

Assume we know Q. Let θ be a minimal parametrization of (A,D), dependent
on Q, such that R(θ) = AAH +D. If we start from a likelihood perspective,
we obtain after standard derivations that the maximum likelihood estimate
of R is obtained by finding the model parameters θ such that

θ̂ = argmin
θ

N
(

ln |R(θ)| + tr(R(θ)−1R̂)
)

.

where R̂ = 1
N

∑N
n=1 x(n)x(n)H is the sample covariance matrix. This is

exactly the same problem as we saw before in (26), and we can follow the
same solution strategy.

In particular, we can use the result from [31] that the ML problem is
asymptotically (large N) equivalent to the Weighted Least Squares problem

θ̂ = argmin
θ

‖C−1/2
w (r̂ − r(θ))‖2 = arg min

θ

(r̂ − r(θ))HC−1
w (r̂ − r(θ)) (38)

where as before r = vec(R), r̂ = vec(R̂), and the weighting matrix Cw is the
covariance of r̂, i.e., Cw = (1/N)(R̄⊗R). This is precisely in context of [31],



and we can use the algorithms proposed there: Gauss-Newton iterations, the
scoring algorithm or sequential estimation algorithms.

It is also possible to propose an alternating least squares approach. Given
an estimate for D, then, as mentioned above, we can whiten R̂ by D, do
an eigenvalue decomposition on R̃ = D−1/2R̂D−1/2, and estimate A of size
J×Q, taking into account some suitable constraints to make A unique. For A

known, the optimal D in turn is given by diag(R−AAH). Given a reasonable
initial point (e.g., D(0) = diag(R̂)), we can easily alternate between these two
solutions. Convergence is to a local optimum and may be very slow.

An alternative approach was recently proposed in [36]. The ML cost func-
tion is shown to be equivalent to the Kullback-Leibler norm as often used in
information theory, and a suitable algorithm is the Expectation Maximiza-
tion (EM) algorithm. This is an iterative estimation algorithm which is shown
in [36] to reduce, for current estimates (Ak ,Dk), to

Rk := AkA
H
k + Dk

Φk := I −AH
k R−1

k Ak + AH
k R−1

k R̂R−1
k Ak

Ak+1 := R̂R−1
k AkΦ

−1
k

Dk+1 := diag(R̂ −Ak+1A
H
k R−1

k R̂) .

As any EM algorithm, it will converge to a local optimum, where convergence
is guaranteed and typically reasonably fast.

7.4 Rank detection

The detection problem is to estimate the factor rank Q. The largest permis-
sible value of Q is that for which the number of unknown (real) parameters
s = (J −Q)2−J ≥ 0, or Q ≤ J −

√
J . For larger Q, there is no identifiability

of A and D: any sample covariance matrix R̂ can be fitted.
To find Q, we can define a collection of hypotheses

Hq : x(k) ∼ CN (0, Rq) q = 1, 2, · · · (39)

which are tested in turn against the null hypothesis

H′ : x(k) ∼ CN (0, R′) ,

where CN (0, R) denotes the zero-mean complex normal distribution with
covariance R, and Rq is the covariance matrix of the model with q interferers,

Rq = AAH + D , where A : J × q , D diagonal .



H′ corresponds to a default hypothesis of an arbitrary (unstructured) positive
definite matrix R′.

The generalized likelihood ratio test (GLRT) [17] is applicable. In this test,
we have to insert maximum likelihood estimates for each of the unknown
parameters, under each of the hypotheses. For Hq , we can use the estimation
techniques from the previous subsection. For H′, the ML estimate R′ is equal
to the sample covariance, R′ = R̂.

Under Hq , respectively H′, the log-likelihood is (dropping constants)

log(Lq) = −N log |R−1
q | − Ntr(R−1

q R̂)

log(L′) = −N log |R̂−1| − Np .

The log-likelihood ratio is then

log(λ) := log(
L′

Lq
) = Ntr(R−1

q R̂) + N log |R−1
q R̂| − Np . (40)

Here, λ = L′/Lq is the test statistic (likelihood ratio), and we will reject Hq

and accept H′ if λ > γ, where γ is a predetermined threshold. Typically, γ
is determined such that we obtain an acceptable “false-alarm” rate (i.e., the
probability that we accept H′ instead of Hq, while Hq is actually true). To
establish γ, we need to know the statistics of λ under Hq .

Generalizing the results from the real-valued case [18, 26], we obtain that
for moderately large N (say N > 50), the test statistic 2 log(λ) has approxi-
mately a χ2

s distribution, where s is equal to “the number of free parameters”
under Hq (the number of equations minus the number of unknowns). For the
complex case, this number is s = (J − q)2 − J degrees of freedom.

In view of results of Box and Bartlett, a better fit of the distribution of
2 log(λ) to a χ2

s distribution is obtained by replacing N in (40) by [18, 26]

N ′ = N − 1

6
(2J + 11) − 2

3
Q .

To detect Q, we start with q = 0, and apply the test for increasing values
of q until it is accepted, or until s = (J − q)2 − J is negative. In that case,
the hypothesis H′ is accepted, i.e., the given R̂ is an unstructured covariance
matrix. A disadvantage of this process is that the model parameters for each
q have to be estimated, which can become quite cumbersome if J is large.
Also, as for any sequential hypothesis test, the actual false alarm rate that
is achieved is unknown, because the tests are not independent.



7.5 Application to interference cancellation

In the context of radio astronomy, factor analysis shows up in a number
of applications. We already mentioned calibration in section 6. Another ap-
plication is interference cancellation. In general, this is a large topic with
many aspects. Here, we consider a simple case where we take short STIs
and an uncalibrated array. Since astronomical sources are weak and much
below the background noise level, if we integrate only over short intervals,
the noise is dominant. Therefore, in the absence of interference, the STI data
covariance matrix R = Rm could be modeled as a diagonal D. Assuming Q
independent interfering signals gives us a contribution AAH . The approach
for interference cancellation using spatial filtering is to estimate ran(A), and
to apply to R a projector P⊥

A onto the orthogonal complement of the span,
i.e., R′ = P⊥

ARP⊥
A. That should remove the interference. The filtered covari-

ance matrices are further averaged, and corrections need to be applied since
also the astronomical data has been filtered. Details on this approach can be
found in [34, 40].

Here, we describe only a limited-scope simulation on synthetic data, where
we estimate a rank-1 subspace (i) using factor analysis, and for comparison
(ii) using eigendecomposition assuming that D = σ2I, or (iii) using the eigen-
decomposition after whitening by D−1/2, assuming the true D is known from
calibration. The correct rank is Q = 1, and we show the residual interference
power after projection, i.e., ‖P⊥

â a‖ as a function of number of samples N ,
mean noise power, and deviation in noise power. The noise powers are ran-
domly generated at the beginning of the simulation, uniformly in an interval.
Legends in the graphs indicate the nominal noise power and the maximal
deviation. All simulations use J = 8 sensors, and a nominal interference to
noise ratio per channel of 0 dB.

The results are shown in figure 10. The first graph shows the residual
interference power for varying maximal deviations, the second graph shows
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the residual for varying number of samples N , and a maximal deviation of 3
dB of the noise powers. The figures indicate that already for small deviations
of the noise powers it is essential to take this into account, by using the FAD
instead of the EVD. Furthermore, the estimates from the factor analysis are
nearly as good as can be obtained via whitening with known noise powers.

8 Concluding remarks and further reading

In this chapter, we presented a signal processing viewpoint on radio astron-
omy. We showed how, with the right translations, the “measurement equa-
tions” are connected to covariance matrix data models used in the phased
array signal processing literature. In this presentation, the resulting data
models are very compact and clean, in the sense that the most straightforward
covariance data models, widely studied in the signal processing literature as
theoretical models, already seem valid. This is because far field assumptions
clearly hold, and the propagation channels are very simple (no multipath), in
contrast to other array processing applications such as seismology, synthetic
aperture radar, or biomedical tomography.

However, this does not mean that radio astronomy is a “simple” applica-
tion: data volumes are massive, and the requirements on resolution and ac-
curacy are mind-boggling. Current telescopes, developed in the 1970s, start
with signals sampled at 1–2 bits accuracy (because anyway the signals are
mostly noise), and after data reduction and map making routinely end up
with images with a dynamic range of 105.

So far, radio astronomy has done very well without explicit connection to
the array signal processing literature. However, we expect that, by making
this connection, a wealth of new insights and access to “new” algorithms can
be obtained. This will be beneficial, and possibly essential, for the develop-
ment of new instruments like LOFAR and SKA.

For further reading we suggest, first of all, the classical radio astronomy
textbooks, e.g., Thompson [37] and Perley [33]. The August 2009 issue of the
Proceedings of the IEEE was devoted to the presentation of new instruments.
The January 2010 issue of IEEE Signal Processing Magazine gave a signal
processing perspective. For general insights into imaging and deconvolution,
we suggest Blahut [2].

Challenges for signal processing lie in (1) imaging, (2) calibration, (3) inter-
ference suppression. These problems are really intertwined. It is interesting
to note that, especially for calibration and interference suppression, factor
analysis is an essential tool. Our contributions in these areas have appeared
in [20, 19, 41, 1, 22, 4, 39, 47, 48, 46] and are summarized in the PhD theses
[3, 44, 38], which should provide ample details for further reading.
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