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Stable Subspace Tracking Algorithm Based on a
Signed URV Decomposition
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Abstract—Subspace estimation and tracking are of fundamental
importance in many signal processing algorithms. The class of
“Schur subspace estimators” provides a complete parametrization
of all “principal subspace estimates,” defined as the column spans
of corresponding low-rank matrix approximants that lie within a
specified 2-norm distance of a given matrix. The parametrization
is found in terms of a two-sided hyperbolic decomposition (Hyper-
bolic URV, or HURV), which can be computed using hyperbolic
rotations. Unfortunately, such rotations are commonly associated
with numerical instabilities.
In this paper, we present a numerically stable, non-iterative al-

gorithm to compute the HURV, called the Signed URV (SURV) al-
gorithm. We show that this algorithm implicitly imposes certain
constraints on the HURV such that important norm bounds that
guarantee stability are satisfied. The constraints also restrict the
parametrization of the subspace estimate such that it becomes close
to the principal subspace provided by the SVD (which is a special
case within this class).
The complexity of the algorithm is of the same order as that

of a QR update. Updating and downdating are of the same com-
plexity and are both numerically stable. SURV is proven to pro-
vide rank estimates consistent with the SVD with the same rank
threshold. It can replace an SVD where only subspace estimation
is needed. Typical applications would e.g. be the detection of the
number of signals in array signal processing, and subspace esti-
mation for source separation and interference mitigation, such as
the first step in MUSIC and ESPRIT-type algorithms. Simulation
results demonstrate the numerical stability and confirm that this
algorithm provides exact rank estimates and good principal sub-
space estimates as compared to the SVD.

Index Terms—Generalized Schur algorithm, hyperbolic QR, hy-
perbolic URV, signed Cholesky factorization, subspace tracking.

I. INTRODUCTION

F AST adaptive subspace estimation and tracking plays an
important role in modern signal processing. It forms the

key ingredient in many algorithms, such as adaptive filtering,

Manuscript received November 18, 2011; revised February 20, 2012; ac-
cepted February 29, 2012. Date of publication March 13, 2012; date of current
version May 11, 2012. The associate editor coordinating the review of this man-
uscript and approving it for publication was Prof. Alfred Hanssen. This work
was supported in part by the project BDREAMS at TU Delft, The Netherlands,
and the China Scholarship Council from China. This paper was presented in part
at the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Prague, Czech Republic, May 2011.
The authors are with the Circuits and Systems Group, Department of

Electrical Engineering, Mathematics and Computer Sciences, Delft Uni-
versity of Technology, Delft, Netherlands (e-mail: m.zhou@tudelft.nl;
a.j.vanderveen@tudelft.nl).
This paper has supplementary downloadable multimedia material available

at http://ieeexplore.ieee.org provided by the authors. This includes Matlab code
for the algorithm presented in this paper. This material is 27.9 KB in size.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2012.2190732

system identification, blind channel estimation, and blind signal
separation and equalization algorithms [1]–[3].
Typically, in these applications we are interested in a splitting

of the space into the principal subspace and the minor subspace.
These are spanned by the singular vectors corresponding to
the singular values larger respectively smaller than a threshold.
Thus, the singular value decomposition (SVD) is commonly
used for computing the desired subspaces. Because directly
computing and updating the SVD is expensive, computation-
ally cheaper and faster subspace tracking methods have been
proposed, such as the Rank Revealing QR [4], [5] and the URV
[6], [7]. The literature related to the topic of subspace tracking
is extremely rich, a brief overview follows later in this section.
An important observation is that, for splitting the space, we

do not need the SVD. Let be an data matrix and a
threshold, and call the number of singular values of larger
than . Then has eigenvalues larger than 0, and

eigenvalues smaller than 0 ( denotes an identity matrix;
we assume complex matrices , and the superscript denotes
the complex conjugate transpose.) Instead of the SVD, we can
compute the signed Cholesky factorization

(1)

where have minimal dimensions. Although and are
not unique, based on Sylvester’s inertia theorem, we know that
has size and has size . Moreover, for

any matrix such that , we can show [8] that the
columns of

(2)

span a rank- “principal subspace”, in the sense that there is a
corresponding approximant with column span (ob-
tained e.g. by projecting onto this column span), such that

(3)

where denotes the matrix 2-norm (largest singular value).
The matrix gives a complete parametrization of all such sub-
spaces [8]; the principal subspace obtained by the SVD is within
the class but is not explicitly identified. Note that is already
a valid principal subspace estimate; we will consider the use of

later in the paper. The important point is that the re-
quired signed Cholesky factorization can be computed implic-
itly (by directly acting on and not forming ), and non-it-
eratively, at a complexity comparable to that of a QR factoriza-
tion. By acting column-by-column, the implicit decomposition
can also be updated efficiently.
Indeed, the required and follow from the factorization

(4)
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where , or more general any matrix such that
. The sign “ ” in the right hand side matrix is a matrix sepa-

rator which separates columns with a “positive signature” from
those with a “negative signature”. Also, is a -unitary ma-
trix as defined in Section II: it satisfies , where

is a signature matrix: a diagonal matrix with di-
agonal entries 1. In this paper, we will consider algorithms
for computing and updating such a decomposition.
Straightforward generalizations are possible. Let be any

matrix, and define , then the factorization (4) pro-
vides an implicit signed Cholesky factorization of ,
leading to minimal-rank approximants such that

(5)

Such “whitened” approximants and corresponding subspace es-
timates are often needed, for example, in case of an array with
uncalibrated antennas (resulting in different noise powers per
antenna) [9], or in case of spatially correlated noise fields. In
some cases, a nonwhite can be due to interference. In signal
processing applications, is a noisy data matrix, measured
column-by-column, and the columns of could be generated
by taking samples from a noise process similar to the distur-
bance on (e.g., from a reference channel, or taken at a slightly
different frequency where the desired signal is absent). More-
over, “downdating” (recomputing the decomposition after re-
moving a column from ) can be implementing by updating
the decomposition using that column as an update for . In this
way, sliding window subspace tracking algorithms are easily
implemented.
In this paper, we propose a new algorithm for computing

and updating the decomposition (4) as more columns of
and/or become available. The algorithm is called the “Signed
URV” (SURV). In fact, by introducing a QR factorization of

, the algorithm computes the two-sided decomposition

(6)

where is lower triangular and is a unitary matrix.
This factorization may be called a Hyperbolic URV (HURV).1

Generally, its computation is done using hyperbolic rotations,
which unfortunately can cause numerical problems as the result
of the rotation does not need to be bounded. An algorithm for (6)
was previously shown in [11], but it used three hyperbolic rota-
tions per update vector, and was not always numerically stable.
In the derivation of the new SURV algorithm, care is taken that
at most one hyperbolic rotation is used per update, and in such
a way that the result is numerically stable.
Since are not unique, we have a choice, and we will

be interested in a specific class of “unbiased” decompositions
(called SSE-2 in [8]), which are alternatively obtained by adding
a certain linear constraint to in the HURV decomposition (6).
With the constraint, the decomposition satisfies

(7)

(8)

We will motivate that these norm bounds are the key to numer-
ical stability, and will show that the SURV algorithm implicitly

1Not to be confused with the “high-rank” URV, or hurv, algorithm presented
in [10].

imposes constraints such that an estimate in the SSE-2 class is
obtained, hence that the above norm bounds that guarantee sta-
bility are satisfied. It is in particular remarkable that, in this way,
a stable downdating algorithm for subspace tracking is obtained.
The constraints also restrict the parametrization of the subspace
estimate such that it becomes close to the principal subspace
provided by the SVD (which is a special case within this class).
The proposed algorithm is non-iterative, does not require con-

dition estimations, and has a complexity of the same order as
that of a QR factorization of the data matrix. In particular, given
a threshold on the singular values of the data matrix, SURV
tracks the exact rank of the subspace (number of singular values
above the threshold), as well as an orthonormal basis of the prin-
cipal subspace estimate, at a complexity of at most order 21
multiplications per update or downdate vector of size .
Context: The literature on subspace tracking is rich and

growing, and the right choice of a tracking algorithm is
strongly dependent on the application. Here, we provide a brief
classification to position the proposed SURV algorithm into
context. A recent more elaborate overview can be found in
[12], an older overview is in [3].
Algorithms can be classified based on various aspects. An

important one is complexity. Algorithms of order per
update are often two-sided decompositions such as the rank re-
vealing QR [4], [5], the URV [6], [7], or other techniques that
track full subspace information in terms of an orthogonal
matrix containing the basis vectors, and an coefficient
matrix (usually triangular). SURV is in this class. With loss of
information, it is sometimes possible to track only the
principal subspace estimate, along with a coefficient ma-
trix; details on the minor subspace are lost. This is interesting if
the rank is very small, and sufficient if the minor subspace is
filled by white noise, or if there is a large gap in singular values
between both subspaces. A prototype algorithm is by Karasalo
[13], which has a complexity of per update, as well
as many techniques based on power iterations. Further reduc-
tions are possible if the subspace basis is not kept strictly or-
thogonal. For example, the PAST algorithm [14] is derived from
a power iteration but uses an approximately orthogonal basis,
which converges to an orthogonal basis under stationarity as-
sumptions, and has complexity per update. The speed of
convergence in these cases usually depends on the gap in sin-
gular values between the two subspaces. Other algorithms in
this class are PASTd [14], NIC [15], OPAST [16], etc.; see also
[17] for an overview.
Another aspect is that of rank tracking. Many algorithms

simply assume that the rank of the data matrix is known. This
is in particular the case for the and algorithms,
since they only track a basis for the principal subspace. If the
norm of a certain residual is too large, it is possible to detect
that the rank has to increase; similarly, if the coefficient matrix
becomes singular, the rank has to decrease. This requires spe-
cial operations to resolve (as, e.g., missing information in the
coefficient matrix has to be recovered), and iterative algorithms
such as rank estimators to detect this. See, e.g., [12], [18], and
[19]. Other algorithms are based on a threshold (tolerance) that
sits in the gap between the large and small singular values; the
rank is the number of singular values above the threshold. URV
is an example, also the proposed SURV is in this class. This
is more natural for many signal processing applications, where
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there may be a priori information on the noise powers, but not
on the number of signals.
Essential to any tracking algorithm is a form of data win-

dowing. The majority of adaptive algorithms use an exponential
window, where prior to each update, the old data represented
in the coefficient matrix is scaled by a factor . This is
in particular suitable for fixed-rank algorithms. For detecting
sudden rank changes in non-stationary applications (e.g., the
appearance of data frames in ad hoc communications), sliding
window algorithms are more attractive: these perform an up-
date with a new data vector, along with a “downdate” to re-
move the influence of an old data vector. Sliding window down-
dating algorithms have been extensively studied for two-sided

decompositions such as RRQR and URV, and have led
to a series of papers as to how to handle the underlying indefi-
nite Cholesky factorization and the related hyperbolic transfor-
mations [6], [20]–[23]. A numerically stable URV has proven
to be “very complex” [10], and critically depends on accurate
condition estimators; in the end a “relational stability” property
can be proven [23]. For the algorithms, many sliding
window algorithms have only more recently been developed.
Examples are SW-PAST [24], SWASVD [25], and FAPI [26].
The proposed SURV algorithm is based on the two-sided Hy-

perbolic URV decomposition proposed in [8] and [11], where an
orthogonal basis of both principal and minor subspaces is stored
and tracked, has complexity , uses a threshold on the sin-
gular values to detect rank, and is based on a sliding window.
No condition estimation is needed, but nonetheless, the exact
rank is obtained with respect to the set tolerance. Using com-
putationally less favorable algorithms, the performance of the
resulting subspace estimator for typical subspace tracking ap-
plications (DOA estimation) has been assessed and compared
to the SVD, RRQR and URV in [27] and [28].
Outline: The paper is organized as follows. Section II intro-

duces the elementary rotations used in this paper. Section III
provides the theoretical basis for the proposed Hyperbolic URV
decomposition. Section IV proposes the updating algorithm
SURV and discusses the computational complexity. Section V
proves that the proposed updating algorithm has favorable nu-
merical properties. Section VI presents the simulation results.
Section VII concludes this paper.

II. J-UNITARY MATRICES

In this section, we review some background materials on
-unitary matrices from [8]. A square matrix is -unitary if
it satisfies

(9)

where is a signature matrix which follows some prescribed
block-partitioning of :

(10)

Here, denotes the identity matrix, and or may be
zero. If is applied to a block-partitioned matrix , then
(9) implies

(11)
Hence, assigns a positive signature to the columns of ,
and a negative signature to those of . We sometimes write

the sign and above matrices to denote the positive and
negative signatures of the columns in those matrices.
The -unitarity of implies and

. From these expressions, we can derive
in turn the properties [8]

is invertible

(12)

Similar properties hold for :

is invertible

(13)

For updating purposes, it will be necessary to work with
column permutations of and , which induces
row and column permutations of . Thus we introduce more
general matrices that are -unitary with respect to
unsorted signature matrices satisfying ,

, where and are diagonal matrices
with diagonal entries equal to 1. If , then

, so that associates its signature to the
columns of , and associates its signature to the columns
of . By inertia, the total number of positive entries in has
to be equal to that in , and likewise for the negative entries.
It is always possible to return to sorted signature matrices by
applying suitable column and row permutations to .
Any can be constructed from a sequence of elementary

2 2 “rotations”. It is similar to constructing an big unitary ma-
trix from 2 2 Givens rotations. Let be an
(unsorted) 2 2 signature matrix, and similar for . A 2 2
matrix is an elementary -unitary rotation if it satisfies

, . Similar to Givens rotations, it can be
used to zero specific entries of vectors: for a given row vector

and signature , we can find and such that
. The “input signature” associates

with , and the “output signature” is
such that . This determines

. The second entry follows by inertia considerations:
the number of 1 and 1 entries in and are equal.
The precise form that assumes depends on the input signa-

ture , and also on whether or , as listed in
Table I. Cases 1 and 2 in the table correspond to an indefinite sig-
nature (i.e. or ), and the required
is an hyperbolic rotation, whereas Case 3 occurs when is

definite which leads to an ordinary circular (unitary or Givens)
rotation.
Situations where with an indefinite signature are

degenerate: the result [0 0] is well defined but is unbounded,
and the output signature is arbitrary.

III. HYPERBOLIC URV DECOMPOSITION

Let and be given matrices. We
consider implicit factorizations of as

(14)

where and are nonsingular and together have columns.
and follow from the factorization

(15)
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where the sign and above the matrices denote the positive
and negative signatures of the corresponding columns,

(16)

and is a -unitary matrix partitioned conformably as

(17)

The factorization (15) always exists although is unbounded
when is singular [8]; this corresponds to the
case where a singular value of is exactly equal to 1.
However, the factorization is not unique, and even the subspaces

and are not unique.
A straightforward way to find a factorization (15) is by the

hyperbolic QR factorization (HQR) [8], [29], [30]

(18)

where the sign “ ” indicates an unsorted signature, is a lower
or upper triangular matrix, and is -unitary.
Here, is the sorted signature given from
the outset, and is an unsorted signature matrix which asso-
ciates with the right hand side of (18). Although this factoriza-
tion is straightforward to compute and update, it has the draw-
back that it does not always exist: the triangular form of is
too restrictive [8]. Although the set of exceptions is finite, in
the neighborhood of an exception the resulting may become
numerically unbounded and nearly rank deficient, equivalently
and may become unbounded with parts of their column

spans nearly collinear; these cancel each other when forming
.

To get around this, introduce a QR factorization of :

(19)

where is triangular and is unitary. This leads to the more
general two-sided decomposition [11]

(20)

Note that still . This two-sided decompo-
sition always exists [8], although some columns of may be
zero if and together are rank-deficient. The decomposition
will be called a Hyperbolic URV (HURV).
In the next section, we will propose a stable algorithm to

compute and update the HURV, called the Signed URV (SURV)
algorithm. The decomposition is not unique, and we will sub-
sequently place an additional constraint that leads to favorable
properties (Section V). The derived SURV algorithm will then
be shown to satisfy this constraint.

IV. SURV: AN UPDATING ALGORITHM FOR THE

HYPERBOLIC URV

A. Overview

In this section, we propose an algorithm to update the HURV
(20) as new columns for and become available. With

TABLE I
ELEMENTARY -UNITARY ZEROING ROTATIONS

denotes the complex conjugate operator.

proper initialization, this also serves as an algorithm to compute
the HURV.We will use the 2 2 -unitary rotations specified in
Table I as building blocks (cf. Givens rotations). Requirements
on the updating algorithm are i) it should avoid the storage of
, as this matrix grows in dimensions and can potentially be

unbounded in magnitude (even if the resulting are well
defined), and ii) the update should be done in a numerically
stable way.
Several updating algorithms are possible, depending on one’s

objectives. Because of potential numerical instability associated
with hyperbolic rotations, we design the updating steps to use
at most only one hyperbolic rotation per vector update, which
corresponds to a single decision whether the dimension of the
principal subspace grows, remains constant, or shrinks. More-
over, that hyperbolic rotation should occur only when all the
other entries in the two vectors on which the rotation is acting
are already zero, as discussed later, so that an unbounded rota-
tion has no detrimental numerical effects. (In [11], an updating
algorithm was proposed that had at most three hyperbolic rota-
tions per update, which is not minimal, and that algorithm was
not always numerically stable.)
Because we would like to track the principal subspace

, we keep in (20) lower triangular,
so that the columns of are an orthonormal basis of the
principal subspace, and likewise the columns of are an
orthonormal basis of the minor subspace.
To start, suppose we have already computed the decomposi-

tion , where is
square, lower triangular and sorted according to signature. In
principle, updating the factorization with new columns of or
is straightforward. Indeed, let us say that we want to find a

new factorization , where ei-
ther , if we want to add a new column to
(also known as a “downdate” where we want to remove the

effect of a previous ), or , if we augment
by (the usual “update”). We will refer to all these cases as

“updating”. The only difference is in the signature of the update
vector. Making use of the previously computed decomposition,
it suffices to find and such that

(21)
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TABLE II
ZEROING SCHEMES FOR

where if we add a column to or if we
add a column to . (Note that we need to store and update
to apply this transformation.) In the first case, has a positive
signature ; in the second case, . Denote the
signature of by . Let
denote the th entry of and denote the th entry

of . The rank of the principal subspace before the update is ,
and after the update it is .
The updating algorithm consists of a sequence of elementary

rotations for reducing to , i.e., to zero . In the
algorithm, the matrices and are stored and tracked,
but is not stored.

B. Algorithm

To compute the factorization (21), the entries
of are zeroed in turn. As listed in Table II, there are three
possibilities to do this: by elementary column rotations
[Givens column rotations (GCR) and hyperbolic column rota-
tions (HCR)], or by elementary row rotations in combination
with Givens rotations (GRCR). The “GCR” and “HCR”
schemes to zero entry are the most natural and efficient,
as they directly zero against , using a rotation such
that . However, in the case that the signa-
tures of and differ, the required rotation is hyperbolic,
leading to potential numerical instability if . To
avoid this, the “GRCR” scheme first computes an elementary
circular (unitary) rotation to zero against , and then a
-rotation to zero the resulting fill-in in against . If
the signatures of and are the same, then this rotation
is a Givens rotation.
For reasons of numerical stability, it is desirable to minimize

the number of hyperbolic rotations, i.e. rotations that act on
columns with unequal signatures. The “Signed URV” algorithm

proposed next is designed such that at most one hyperbolic ro-
tation (HCR) is needed, which corresponds to a single decision
whether the rank of the subspace estimate should be increased
or decreased. As we will show later, this makes the algorithm
numerically stable.
The algorithm is described as follows. At the start of the

algorithm, the data is represented as in Fig. 1(a) for the case
, and in Fig. 3(a) for the case . These cases are

treated separately.
• If then

(a) For , we have .
Thus, we cancel against using GCR
elementary rotations. The result is shown in
Fig. 1(b). (Note that for , the signature
are unequal and GCR rotations are not applicable.)

If , then we are done, else we continue:

(b) For , we have ,
. Thus, we cancel using GRCR. The

result is in Fig. 1(c).

(c) At this point, only is nonzero, and has to
be cancelled against . Since and

, the signatures differ and a HCR is
applied to cancel .
If during the HCR the signatures stay constant
( , see Fig. 1(d1), then we are done
without rank changes . See later for the
exceptional case where . On the
other hand, if , see Fig. 1(d2),
the signatures are reversed and we continue: (see
Fig. 2(d2)).

(d2) Now and : a rank decrease.
As seen in Fig. 2(d2), the signatures are not sorted,
as the last column of has a 1 signature and
belongs to . Thus move the last column of
to fit at the end of and update the signatures

in a corresponding way: . See
Fig. 2(e).

(e) Restore the lower triangular structure of using
GRR (see Table II), for down to
(or ). See Fig. 2(f). This concludes the update.

• If and (see Fig.3(a)), then

(a) For , we have ,
whereas . Thus, to avoid hyperbolic
rotations, we cancel against using GRCR.
(Entry cannot yet be cancelled as it would
lead to a hyperbolic rotation.) See Fig. 3(b).

(b) Swap column of with , also swap the
corresponding signatures, and set . This
potential rank increase can later become undone.
See Fig. 1(c).
Now continue as in the case , step (b). In
step (c) we apply an HCR, the rank may decrease
again in which case (and we continue with
step (d2)), else we remain with and we
are done.
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Fig. 1. Updating sequence for .

Fig. 2. Updating sequence for (continued): signature sorting steps.

Fig. 3. Updating sequence for . Except for dimensions, (c) corre-
sponds with Fig. 1(b), and the algorithm continues at that place.

• If and then

(a) For , we have and also
. Cancel against using GCR. There

are no rank changes.

The only hyperbolic rotation in the algorithm is in step (c).
Depending on the sign change in this rotation (which occurs if

) and on the value of , the rank of the subspace
increases, decreases or remains constant. This directly corre-
sponds to the number of singular values that are larger or smaller
than the selected threshold. If at this stage , i.e. a
singular value is equal to the threshold, then the rank decision
is arbitrary. In the algorithm, will be unbounded but the re-
sult is well defined, and as is not stored
or used anyway, the result is numerically stable. This works be-
cause we took care that the hyperbolic rotation acts on the last
column of and , which are zero except for their last entries

and ; after the rotation both columns are . This is un-
like the previously proposed related algorithm [11], which used
up to three hyperbolic rotations per update, acting on nonzero
columns, where each of these rotations could lead to unbounded
results. (The numerical stability is further studied in Section V.)

C. Initialization

Prior to any updates, the algorithm is initialized as follows:

TABLE III
COMPUTATIONAL COMPLEXITY (COMPLEX MULTIPLICATIONS;

ONLY DOMINANT TERMS SHOWN)

If we choose , i.e., compute the principal subspace of
in the sense of (3), then the first updates after this initialization
are using the columns of , and the result is

Hence, this is also a valid initialization for the case .

More in general, we can also initialize using , where

is a lower triangular Cholesky factor of ,
which is in most applications a suitably scaled noise covariance
matrix.

D. Computational Complexity

The computational complexity per update vector is assessed
as a fixed number of multiplications (for the initial transfor-
mation of or to by ), followed by elementary
rotations. More precise numbers are given in Table III, where
applying a 2 2 rotation to a 2 1 vector has been counted
as four complex multiplications. The complexity depends on
the sign (update or downdate), the rank , and potential rank
changes. The worst case is attained for rank , at a com-
plexity of multiplications per update vector.
In the proposed algorithm, only the square matrix

and the lower triangular matrix need to be stored.

V. UPDATING THE SSE-2

A. SSE-2 Definition and Properties
As mentioned at the end of Section III, the proposed HURV

decomposition (20) is not unique, and we can place additional
constraints to reach desired properties. This is already the case
for the original one-sided decomposition (15). At the same time,
all valid subspace estimates have the form

where is a contractive matrix that parametrizes
all solutions. These freedoms are connected: Given a specific
, it is always possible to transform using additional
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rotations to a new such that
, i.e., the same subspace is obtained using and a new pa-

rameter . The existence of this transformation is shown
in the proof of Theorem 1, below.
For a given decomposition, define a block partitioning of the

corresponding as

(22)

In [8], a specific choice for was taken, namely a function of
:

(23)

The corresponding subspace estimate
was called the “SSE-2” subspace estimate, and was shown in
[8] to enjoy important properties that make it numerically stable
and “unbiased” in the sense that .
Specifically:
Lemma 1: Given an HURV decomposition (20), consider

, with given by (23). Then,
, .

Proof: The proof is a straightforward generalization of [8],
Lemma 3.4, which derived this for .
It was also shown in simulations [8] that the resulting sub-

space estimates are quite close to the principal sub-
space estimate that follows from the SVD, which is in fact a
special case of an SSE-2 subspace (see Appendix A). Unfor-
tunately, the direct computation of with
given by (23) is quite cumbersome, as it requires the inversion
of a submatrix of , which itself grows as we add more updates.
Also, it is possible that is unbounded (or very large) even if
the related are well defined.

B. The SURV Algorithm Provides an SSE-2 Decomposition

In this section, we show that the proposed SURV updating
algorithm of Section IV automatically leads to a that is al-
ready the intended SSE-2 subspace estimate. This is achieved
by restricting the available freedom in such that in (23)
satisfies , i.e., the inversion present in (23) is avoided,
storage of is not needed, and . The results are
summarized as follows2:
Theorem 1 [11]: For given matrices and
, there exist matrices , ,

such that

(24)

(25)

where is unitary, is -unitary, is
lower triangular, and is an invertible matrix.
Let . Then, is an

SSE-2 subspace estimate.
Proof: See Appendix B.

2The theorem was proposed in [11] without a complete proof.

Corrolary 1: For the decomposition in Theorem 1, is
bounded if is nonsingular. In any case we have
1) , ;
2) , .
Proof: The result for follows from [8], Theorem 3.1,

which proved it for the more general HURV. Theorem 1 shows
that for the present decomposition (constrained by (25)),
. Thus, by Lemma 1, the range and norm properties for
follow. Since , it follows

, hence also (see [31, p. 471]).
Finally, and

, so the same norm inequalties hold for and .
Thus, we see that the results of the decomposition are

bounded by the inputs, even if may be unbounded. Also the
corresponding subspaces are well-defined.
It remains to show:
Theorem 2: The SURV algorithm presented in Section IV

provides the decomposition in Theorem 1 (without explicitly
computing or storing and the right-hand side of (25)).

Proof: See Appendix C.

C. Numerical Stability

Generally, algorithms using hyperbolic rotations have an
issue of numerical stability: such rotations may have a large
norm. Some related literature is found in [20]–[23] and [32].
Regarding the numerical stability of the proposed SURV al-

gorithm, we note first of all that Corrolary 1 states that the
corresponding “SSE-2” decomposition in Theorem 1 is well
behaved: the resulting outputs are bounded by the in-
puts, and in the algorithm the potentially unbounded is not
explicitly computed or used. Furthermore, in the implementa-
tion, the algorithm has only one hyperbolic rotation per update
vector . This hyperbolic rotation is computed from two en-
tries and , and is applied only to these two
entries as the corresponding columns of and to which
should be applied are already zero except for these two entries.
Given the numerically stable forms for hyperbolic rotations in
Case 1 and Case 2 of Table I:
Case 1) : ; ,
Case 2) : ; ,
it is possible to compute the resulting output vector (or entry
in ) directly, avoiding the potential singularity
problem arising from the intermediate computation of in case

. Indeed, , resp. , which is also
seen as a particular case of Corrolary 1. All other operations in
the SURV algorithm are ordinary Givens rotations (Case 3 in
Table I), which are known to be numerically stable [33]. Thus,
we claim that the proposed SURV algorithm is also stable.
If it happens that (this can occur only if

is singular, e.g. for if a singular value of is
precisely equal to the threshold ), then the numerically stable
forms given above result in . A decision will have to be
made on the corresponding output signature or

); this decision is arbitrary and corresponds to a rank deci-
sion on when a singular value is precisely at the threshold.
The numerical properties of the algorithm do not depend on this
decision.
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VI. SIMULATION RESULTS

In this section, we demonstrate the numerical stability of the
proposed SURV algorithm, and compare its performance to the
original HURV algorithm [11] and to the URV [10]. For the
simulations, we use a generic subspace tracking data model as

(26)

where , is formed by
i.i.d. Gaussian random variables with zero mean and standard
deviation , and is formed by i.i.d. Gaussian
noise with zero mean and standard deviation . The mixing
matrix has singular values all set to 1. The
complete data matrix is formed by ,
with size .
In the subspace tracking, we use a sliding window of size on
and compute the subspace of the corresponding data matrix

, for . Starting from
the decomposition for , this is implemented by applying
an update by followed by a downdate by
(i.e., an update by with an opposite signature). The
SURV and HURV are initialized by setting , where
is the selected threshold (see below), followed by updates by

.
For reference, each is also processed by an SVD to

generate the “optimal” rank estimate corresponding to the
threshold , and the principal subspace formed by the sin-
gular vectors corresponding to the largest singular values.
These are called the SVD estimates. Rank errors in the SURV
occur when estimates (compared to the SVD) or
(the true rank), depending on the criterion.
The “rank error rate” (RER) is defined by

Number of rank errors
Total number of tests

(27)

The error of a principal subspace estimate (where is
a matrix whose columns form an orthonormal basis of the esti-
mated subspace) is defined by the subspace angle,

If then else (28)

where , and columns of are the or-
thonormal basis of .
For SURV and HURV, the “factorization error” is defined for

each as

(29)

where are as defined in (20). For URV, which computes a
decomposition , it is defined as

(30)

For the SVD, when computes a decomposition ,
it is defined as

(31)

Fig. 4. Factorization error of SURV, HURV, and URV on random matrices.

The SNR is defined as . The same rank
threshold

where

is given to all algorithms, where is an estimate of the largest
singular value of a “noise only” data matrix [34]–[36],
and is a scaled version that usually results in correct rank
estimates (no “false alarm”).
In the simulations, we used and unless

specified otherwise. “HURV” refers to the previously proposed
algorithm in [11] for computing the same decomposition
(Theorem 1) as the SURV. The “URV” algorithm is based on
the Matlab code taken from UTV-tools [10], which we slightly
modified to make it run in nonstationary cases.
Fig. 4 shows the boxplot of the factorization error of SURV,

HURV and URV on random matrices of size 16 20 over
Monte Carlo runs at given SNRs. The factorization error of the
SVD is used as the reference. It is seen from Fig. 4 that HURV
sometimes is not as stable as SURV and URV. The reason is that
HURV uses at most three hyperbolic rotations per vector update
(and also tracks two entries of ), and a situation that two large
hyperbolic rotations cancel each other might happen. However,
SURV uses at most one hyperbolic rotation per vector update
and then gives a stable factorization.
Fig. 5 shows the factorization error of SURV, HURV and

URV for tracking in stationary and nonstationary cases (single
run). . In Fig. 5(a), . In Fig. 5(b), switches
between 2 and 4 every 150 samples. In Fig. 5(c),
and switches between 8 and 16 every 150 samples at very high
SNR SNR 250 dB . It is seen that URV encounters break-
downs frequently and HURV encounters breakdowns at high
SNR while such breakdowns never occur for SURV.
Fig. 6 shows the subspace tracking performance of SURV,

HURV and URV in a stationary case as a function of SNR.
Fig. 6(a), (b), (c) show the rank error rate compared with the real
number of signals , the rank error rate compared with , and
the averaged subspace error of the estimated principal subspace
over updates per run and 10 runs, respec-
tively. It is seen that the rank estimate of URV is unreliable at
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Fig. 5. Factorization error of SURV, HURV and URV for tracking in stationary and nonstationary cases (single run).

low SNR, while SURV and HURV always give rank estimates
consistent with the SVD. This implies that URV cannot track the
rank of the subspace well in nonstationary cases. The subspace
estimates of SURV and HURV stay closer to than the
others.
Fig. 7 shows the subspace tracking performance of SURV,

HURV, and URV in a nonstationary case as a function of SNR,
with the true rank switching between 2 and 4 sources every
150 samples. Fig. 7 is similar to Fig. 6 except that, in Fig. 7(a)
and (c), we collect the performance statistics only for the sta-
tionary parts, omitting the size- transient parts during rank
changes. It is seen from Fig. 7 that SURV and HURV always
give rank estimates consistent with the SVD, as well as good
estimates of the true principal (signal) subspace . How-
ever, URV gives many rank errors and encounters breakdowns
even at high SNR.
In addition, we show a case where the subspace estimates

of the compared algorithms are applied for direction-of-ar-
rival (DOA) estimation where a classic algorithm, ESPRIT, is
used (relevant results can be found in [27]). A linear antenna
array with elements spacing at half wavelengths is used.
The channel matrix now consists of steering vectors,
which are complex vectors nonorthogonal to each other. A
nonstationary scenario is chosen, where switches between 2
(two sources with DOA 20 20 ) and 4 (four sources
with DOA 40 50 0 70 ) every 150 samples. The
source signal is BPSK modulated (real-valued symbols from
the alphabet ). All sources have equal signal power.
Due to the limitation that URV codes from [10] run only on

real-valued data matrices, we split the real and imaginary parts
of the complex matrix and stack them up to form a new
real-valued data matrix

(32)

The subspace estimate from each of the tracking
algorithms is split into two submatrices to form the complex
matrix

(33)

which is passed to ESPRIT. We set due to the problem
that URV [10] refuses to run when is tall. In contrast,
SURV and HURV do not have this limitation and still work
well on any tall matrices. For fairness of comparison, we ap-
plied SURV, HURV, and the SVD to the same . The per-
formance measure of DOA estimation is the root-mean-square
error (RMSE)

(34)
where denotes the Euclidean norm, and are the
DOA estimates and the true DOA for in the th run re-
spectively, the length of is limited to at most 4 (as the length
of is at most 4), and and are row selection matrices
with compatible size to and to generate all possible row
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Fig. 6. Subspace tracking performance of SURV, HURV, and URV in a stationary case as a function of SNR.

selections. , when the length of is shorter than ;
, otherwise.

Fig. 8 shows the performance of DOA estimation using sub-
space estimates from SURV, HURV, and URV tracking in the
above nonstationary case. The performance of the SVD is used
as the reference. The rank threshold is set to due
to the change of . In Fig. 8(a) and (c), we collect the perfor-
mance statistics only for the stationary parts like that in Fig. 7.
SURV and HURV again show very good tracking performance
that the rank estimates are exact and the subspace estimates are
good and useful. The averaged DOA performance of SURV and
HURV stays quite close to and even better than the SVD. URV
shows unstable performance as it frequently encounters break-
downs during tracking, where the rank can be overestimated re-
sulting in bad DOA estimates.

VII. CONCLUSION

This paper proposed a Hyperbolic URV decomposition and
its updating algorithm (SURV) for subspace tracking. It is a non-
iterative algorithm that provides exact rank estimates and very
good principal subspace estimates compared with the SVD with
the same rank threshold. The subspace is provided in terms of
an orthogonal basis . The proposed updating algorithm uses
at most only a single hyperbolic rotation per vector update and
provides a numerically stable computation of the “SSE-2” Schur
subspace estimator (unlike the previously proposed algorithm in
[11]).

The proposed updating algorithm has a computational com-
plexity of per size- update vector (similar to a QR
update), and has constant memory requirements. The
algorithm is based on a sliding-window update scheme, but is
easily tailored to exponential windowing by scaling matrix
after every update. All operations in the proposed updating al-
gorithm are local, consisting of elementary rotations and column
permutations, and the computational flow is not iterative, thus
facilitating parallel implementations.
The proposed algorithm can replace an SVD in cases where

we are only interested in the subspace, and have a threshold on
the noise power for the splitting of the subspace. The computa-
tional complexity is higher than some of the tracking algorithms
with knowledge of the rank, such as PAST, but the advantage is
that the estimate is “exact” with known properties and does not
rely on convergence.
Future work can include the derivation of a spherical update,

where the noise subspace is not tracked but replaced by an av-
erage property.

APPENDIX A
THE PRINCIPAL SUBSPACE IS AN SSE-2

We show that for a given matrix , there is an SSE-2 decom-
position of the required form (24), (25) such that the “SSE-2
subspace” provided by is equal to the left principal sub-
space of as provided by the SVD.
Suppose for simplicity of notation that is square, and has

singular values larger than . Let the SVD of be defined
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Fig. 7. Subspace tracking performance of SURV, HURV, and URV in a nonstationary case as a function of SNR.

Fig. 8. Performance of DOA estimation using subspace estimates from SURV, HURV, and URV tracking in a nonstationary case as a function of SNR.



ZHOU AND VAN DER VEEN: STABLE SUBSPACE TRACKING ALGORITHM BASED ON A SIGNED URV DECOMPOSITION 3047

by , where and have
columns, and have columns, and

are diagonal matrices, and and
. Define as

It is readily verified that is unitary, is -unitary, and that

so that (24), (25) hold. Since , the SSE-2 subspace is
equal to the principal subspace obtained by an SVD.

APPENDIX B
PROOF FOR THEOREM 1 IN SECTION V

The proof is technical and consists of several steps (lemmas).
Lemma 2: For given matrices , ,

and a -unitary matrix , consider a
transformation by any -unitary matrix :

(35)

(36)

where only acts on the columns of (and corre-
sponding columns of ). Define as in (23), and likewise
for .
Then , i.e., the SSE-2

subspace is invariant under .
Proof: Use the block partitioning (22) of , and note that

(37)

(38)

Also note that the right hand side matrix factors are full rank
complements with equal column dimensions . From
, we obtain

(39)

Inserting in (38) gives

(40)

Comparing with (37) and using the full rank complement prop-
erty reveals that there exists a invertible matrix such
that

(41)

We next show that is a block-upper triangular matrix. Be-
cause only acts on the columns of , we can write the
block structure of as

(42)

where the identity submatrices in ensure that the columns
outside remain unchanged, and the submatrices , ,

, 2 transform the columns of . Now, using the ex-
pression for in the lower part of (41), and the partitioning of

, we find

(43)

(44)

As is invertible, this block structure also implies that is
invertible. Furthermore, we have

(45)

(46)

(47)

Now, we partition into blocks as

(48)
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Using this partitioning, we obtain

(49)

Because is invertible, we reach the desired conclusion:

(50)

Lemma 3: In the context of Lemma 2, there exists a transfor-
mation such that , i.e., such that is the
SSE-2 subspace.

Proof: We will first explicitly construct a suitable
from . Since
[8], is strictly contractive. Thus, we know from Theorem
2.1 in [8] that there exists a -unitary matrix , with

and an invertible matrix such that

(51)

Equation (51) implies

(52)

A suitable related to is now obtained by augmenting
to a full-size -unitary matrix as in (42). After defining

, we now need to show the claim that .
Using the block partitioning of as in (22), we obtain

(53)

and hence

(54)

After completing the matrix multiplication and inserting (52),
we obtain

(55)

(56)

Due to the block triangular structure of thesematrices, we obtain
that

(57)

and hence

Hence, we showed that there exists a matrix (defined
explicitly from via (51)), which transforms any to

, such that after the transformation we have ,
implying that we simply can take the corresponding to get
the desired SSE-2 subspace. Knowing this, there are easier ways
to find this transformation. Suppose is partitioned as

(58)

To have , we just have to find a transformation on
such that the resulting has a zero (11)-block. This will
be the case, for example, if both and .
One complication is that, by definition, is not allowed to
change the columns of , for else the range of
will not stay invariant. Thus, we cannot use to zero this block.
However, we may apply any invertible transformation
to the rows of :

because is invariant under . This moti-
vates the specified decomposition (24) and (25) in Theorem 1.
We continue to show its existence:
Lemma 4: Let be given matrices , ,

and a -unitary matrix . Then there
exists a -unitary matrix (only acting on the columns of

) and an invertible matrix such that

(59)

(60)

(61)

hence such that .
Proof: The proof is by construction. Given , we form

, and we take as in the previous
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lemma, equation (51). After forming , we take .
We can now use (57) to obtain

(62)

which has the desired structure and guarantees .
For the proof of Theorem 1, it remains to insert the QR de-

composition .

APPENDIX C
PROOF OF THE UPDATING ALGORITHM FOR SURV

We prove that the proposed SURV algorithm for updating
(24) automatically satisfies the additional structural require-
ments represented by (25), viz.

(63)

(64)

In these equations, it is important to show that the required
“zero” structure (represented by ) is satisfied, in particular
for (64), as SURVwas derived to satisfy (63). We will first write
down the equations valid for updating an existing decomposi-
tion by a single new vector. We will then show that only one
rotation per update, the HCR hyperbolic rotation, can possibly
destroy the zero structure in (64), but that the SURV algorithm
maintains the structure without additional operations (this is not
valid for general algorithms that compute (63), e.g., in [11] an
additional hyperbolic rotation was needed). Finally, we will also
show that additional storage of matrices in (25) is not needed.
The proof is technical; unfortunately we have to study four

cases separately, depending on whether and .

A. and

Assume that we update an existing decomposition by a new
vector with signature 1. For the present case where the
output signature is also 1, the rank is constant , and
the required decomposition after the update is

(65)

(66)

Assuming the initial decomposition (63), (64), and dropping
the rows and columns that do not play a role because they

will not change, we obtain the following more compact update
equations:

(67)

(68)

Here, , and , , and are the updates of ,
and , respectively (using proper extensions to make dimen-

sions fit).
The SURV algorithm acts on (67) and nulls using the rota-

tions described in Section IV. A difference with the algorithm
description is that, now, the columns of the matrices
have been written sorted according to signature, whereas in
Section IV this was written for convenience in the
algorithm description there. Also the ordering of the resulting
columns is a bit different. Nevertheless, there is an obvious
one-to-one match of the rotation operations in both cases—the
algorithm operations are the same.
We follow the algorithm operations step by step and investi-

gate the additional updates required to satisfy (68) as well. To
facilitate the discussion, (68) is written as , with
defined as

(We will use this subpartitioning of to identify its various
subblocks throughout the algorithm.)

(a) GCR: The SURV operations belonging to for
this step consist of column rotations acting on

, and on . They destroy the identity
matrices in , but these are easily recovered
by matching rotations in . Since the entries
in the blocks are zero, these do not change.
Thus, after this update, we still have .

(b) GRCR: The column rotations in the GRCR operations
only act on . Since , it is not
changed.

(c) HCR: The HCR operation is a hyperbolic rotation
acting on and a column of , and

on corresponding columns of and .
This creates a fill-in in subblock , but
that matches the required structure as seen
from (68). Entry is now unequal to 1 but
it is easily scaled back to 1 by a row scaling
operation in . At this point, we have achieved
the required decomposition (67), (68).

Thus, we have seen that the required structure (68) is obtained
by certain operations ; no additional operations are
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needed beyond those of the SURV algorithm. Since the re-
sulting decomposition is known (the last row with arbitrary
entries is not needed in future and can be dropped), we do not
have to store nor , and the operations do not actually have
to be performed as they do not influence (67). As mentioned,
this is a special feature of SURV and not valid for other more
general updating algorithms to achieve (67).

B. and

In this case, the update of decreases the rank .
Consequently, the size of will grow with one column, and

will drop by one column. For brevity, we skip some details
and directly write down the update equations:

(69)

(70)

(a), (b) As before, these SURV operations consist of rota-
tions only acting on and , respectively, and
are easily matched with corresponding operations
in to restore the structure of .

(c) The HCR operation acting on and the last column
of creates a fill-in in the last column of , but
that matches the required structure as seen from
(70). Entry is now unequal to 1 but it is easily
scaled back to 1 without affecting the structure.
Thus, we have achieved the required decomposi-
tion (69), (70) without additional operations in ,
no additional operations are needed beyond those of
the SURV algorithm.

C. and

In this case, we update by , but the rank remains constant
. The update equations are (with ):

(71)

(72)

As before, the SURV operations that act only on the “ ” part
or on the “ ” part of can be easily inverted by corresponding
rotations in to maintain the same structure of . The HCR
operation acting on and the last column of creates a fill-in
in the last column of , but that matches the required structure.
Subsequently, the last row of is scaled by and the required
is obtained. No additional operations in are needed be-

yond those of the SURV algorithm.

D. and

In this case, we update and the rank increases .
This implies that shrinks and grows by one column.
The update equations are

(73)

(74)

The first steps are as before and the structure of is main-
tained. The HCR operation acting on and the last column
of zeroes that last column, and creates a fill-in in the last
column of (corresponding with ). However, that fill-in oc-
curs in the last row, which will be dropped as is one less
than : it matches the structure in (74). No additional oper-
ations in are needed beyond those of the SURV algorithm.
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