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Abstract—Consider a narrowband wireless scenario where a
terminal equipped with an antenna array is receiving short
packets of equal length sent by users from different directions
and transmitted at random time points. These packets can be
fully or partially overlapping in time. The partially overlapping
packets, called asynchronous interferences, make the scenario
nonstationary and thus need to be suppressed. Previously, we
proposed a subspace intersection algorithm based on signed URV
decompositions (SURV) working on block data from one time slot
to solve this problem but it needs many steps. In this paper, we
propose a one-step subspace tracking algorithm providing com-
petitive performance at a much lower computational complexity
like updating a QR decomposition. This algorithm makes use of
the tracking ability of SURV to track the orthonormal basis and
the rank of the asynchronous interference-free subspace as its
principal subspace tracking version through two subspaces with
positive and negative signatures.

I. INTRODUCTION

Co-channel interference mitigation has been discussed for a
long time in the field of array signal processing for applications
such as cellular communication systems [1], [2], phased array-
based radio telescopes [3], [4], radar systems [5], and signal
acquisition in global positioning systems [6]. This topic brings
a lot of algorithms which aim at the similar objective that
they all look for weighting vectors to suppress the undesired
interferences and recover the target signals. It is possible
because in the typical noiseless model

X = HS, (1.1)

X is considered as the addition of source data in the subspaces
spanned by the columns of H, where X is the received
data matrix, H is the channel matrix for sources, and S
is the source data matrix. The weighting vectors can be
obtained by computing vectors orthogonal to the interference
subspace under various assumptions. These assumptions could
be known signal or interference channel matrix, which can be
collected from sample data when only signals or interferences
present [7], or a large gap in power between signals and
interferences so that the signal and interference subspaces
can be separated through the principal or minor subspace [8]
computed from matrix decompositions or their approximation
or tracking algorithms [9]. However, in some scenarios the
above assumptions or conditions are not available so these
algorithms are not applicable.

For example, consider a narrowband wireless scenario
where a (mobile) terminal equipped with an antenna array

is receiving short packets of equal length sent by users from
difference directions and transmitted at random time points.
These packets can fully or partially overlap each other in time
and thus can be treated as target packets or interference packets
according to the detection time. The channel matrices of
signals and interferences are unknown and the scenario is quite
nonstationary such that it is hard for the previous algorithms
to work well. Previously, we proposed a subspace intersection
algorithm (SI+SURV) [10] working on block data collected
from one time slot to find the asynchronous interference-
free subspace (AIFS) and suppress the partially overlapping
packets so that the followed source separation algorithms work
on stationary data. This algorithm has two main steps, one
to compute the principal subspace of the data matrix, and
the other one to do subspace intersection based on signed
URV decompositions (SURV) [9] on the projected matrix to
compute the orthonormal basis and the rank of AIFS.

In this paper, we propose a subspace tracking algorithm
which tracks the orthonormal basis and the rank of AIFS at a
computational complexity of O(M2) per joint vector update
like updating a QR decomposition, and provides a competitive
performance against SI+SURV. This algorithm makes use of
the tracking ability of SURV to track AIFS, not in the sense of
“principal” or “minor” but in two subspaces with positive and
negative signatures. Inside a time slot, this algorithm uses three
sliding windows, one in the center with vectors of positive
signatures and the other two with vectors of negative signature
in the two ends of the time slot. The three sliding windows
slide simultaneously with the time slot.

II. DATA MODEL AND PRELIMINARY

We consider a wireless narrowband scenario where packets
of equal length Np are transmitted at random time and received
by an antenna array. The received signals are expressed in a
classic baseband data model.

x(t) = H(t)s(t) + n(t). (2.1)

t denotes the time. H(t) = [h1,h2, . . . ,hd(t)] ∈ CM×d(t)

contains the channel vectors for each source. M equals to
the number of antennas, and d(t) equals to the number of
sources. x(t) = [xH

1 (t), xH
2 (t), · · ·xH

M (t)]H ∈ CM×1 is the
received data vector with stacked output from the antennas.
s(t) = [sH1 (t), sH2 (t), . . . , sHd(t)(t)]

H ∈ Cd(t)×1 is the source
data vector with stacked input data from the independent
sources. n(t) ∈ CM×1 is the white Gaussian noise vector
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Fig. 2.1. One time slot in the data model.

with covariance Rn = E(n(t)n(t)H) = σ2
nI. E(·) is the

expectation operator. σ2
n is the noise power.

In this paper, (2.1) is extended and modified as

x(t) = H̃(t)G(t)(̃s(t)⊙φ(t)) + n(t), (2.2)

where ⊙ is the Schur-Hadamard (pointwise multipli-
cation) operator, G(t) = diag{g1, g2, · · · , gd(t)} ∈
Rd(t)×d(t) contains the source power, and φ(t) =
[e−j2π∆f1t, e−j2π∆f2t, . . . , e−j2π∆fd(t)t]H ∈ Cd(t)×1 contains
the Doppler phase shifts (∆fk is Doppler frequency shift
(DFS) for the k-th packet). For simplicity, we assume the
added submatrices are always absorbed into H(t) and s(t),
i.e., H(t) = H̃(t)G(t) and s(t) = s̃(t)⊙φ(t).

Sample the channel output from (2.1) at sample period Ts =
T/P , where T is the symbol period and P is the oversampling
ratio. A block data

X = HS+N ∈ CM×PNs (2.3)

is collected inside a given time interval, called a time slot
of length Ns symbols long. The time slot can be set related
to moving windows along the time line. Assume that d
packets appear in the time slot (See Fig. 2.1). We have X =
[x1,x2, . . . ,xPNs ], H ∈ CM×d, S = [sH1 , sH2 , . . . , sHd ]H ∈
Cd×PNs where sk = [sk(Ts), sk(2Ts), . . . , sk(PNsTs)], and
N = [n(Ts),n(2Ts), . . . ,n(PNsTs)].

The interference packets for the k-th packet are defined
as the other packets overlapping it. Hk is defined as the
corresponding interference channel matrix for the k-th packet.
H and S are all unknown. Our objective is to recover the k-th
packet when it presents around the middle of the time slot by
using the beamformer wk ∈ CM×1 such that

ŝk = wH
k X, (2.4)

where ŝk is the estimate of sk. wk is required to suppress the
interference packets as deep as possible.

Signed URV decomposition [9]: Given two matrices
Y1,Y2 ∈ CM×N , SURV implicitly computes

CCH = Y1Y
H
1 −Y2Y

H
2 = AAH −BBH (2.5)

and the column subspace bases of the indefinite matrix CCH

from the compact factorization

+ −
[Y1 Y2]Θ

′ =
d1 d2

[QA QB]

+
d1

−
d2

[LA LB], (2.6)

where the sign + and − above matrices denote the positive and
negative signatures of the corresponding columns, [A B] =
[QA QB] [LA LB], Θ′ is part of the J-unitary matrix Θ [11]
for corresponding nonzero columns, [LA LB] ∈ CM×M is a
lower triangular matrix, and [QA QB] ∈ CM×M is a unitary
matrix. We call the subspace ran(QB) or ran(B) “the negative
subspace” and the subspace ran(A) “the positive subspace”.
QA is the orthogonal complement of the negative subspace.
ran(QA) = ran(QB)

⊥. d1 and d2 are the dimensionalities of
the positive subspace and the negative subspace, respectively.
M = d1 + d2. SURV provides subspace estimates with good
properties as

ran(QB) ⊂ ran(Y2). (2.7)

SURV can be easily updated by adding or removing vectors
from Y1 and Y2.

III. ASYNCHRONOUS INTERFERENCE-FREE SUBSPACE
TRACKING

In [10], we proposed SI+SURV to find AIFS. SI+SURV
is designed for block data and consists of many steps. It
needs the help of rank tracking algorithms [9] to determine
the start of the time slot. In this section, we propose a
more computationally efficient tracking algorithm to track the
orthonormal basis and the rank of AIFS (IFST, asynchronous
interference-free subspace tracking). This algorithm can auto-
matically determine the optimal output time of subspace and
rank estimates.

IFST is designed from the special case that the target
packets fully fill up the middle interval centered in the time slot
and the remaining two intervals on both sides contain only the
asynchronous interference packets. When the time slot slides
along the time line, this special structure always exists for
each packet and facilitates the suppression of asynchronous
interference packets as the interference channel matrix can
be obtained from the two side intervals. It is clear that
we can define three separate sliding windows based on the
three intervals. Our proposed tracking algorithm uses the data
matrices of these windows defined as

• Time slot: Xi = [xi−PNs/2+1, . . . ,xi+PNs/2] ∈
CM×PNs , i ≥ PNs/2, Ns = Ny1 + Np + Ny3 ,
Ny1 = Ny3 ;

• Left window:
Y1 = [xi−PNs/2+1, . . . ,xi−PNs/2+PNy1

] ∈ CM×PNy1 ;
• Center window:
Y2 = [xi−PNy2/2+1, . . . ,xi+PNy2/2

] ∈ CM×PNy2 ;
• Right window:
Y3 = [xi+PNs/2−PNy3+1, . . . ,xi+PNs/2] ∈ CM×PNy3 .

i is the sample index which also denotes the center of the time
slot, and Yk and PNyk

are the data matrix and the length of
the k-th window. From these matrices, we form a compact
SURV

+ − − −
[αY2 Y1 Y3 γI]Θ′ =

dy2 M−dy2

[QA QB]

+
dy2

−
M−dy2

[LA LB] , (3.1)
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where α = 1 and γ = αβσn(
√
PNy2 +

√
M). The value of

β is chosen to give no “false alarm” [9]. This single SURV
implies two steps:

1) Placing Y1 and Y3 in the negative subspace makes the
positive subspace asynchronous interference-free (orthog-
onal to the subspace spanned by the interference channel
matrix) [10].

2) Placing γI in the negative subspace reduces A to full
column rank dy2

(roughly the rank of Y2). dy2
is the

estimated number of target packets. The columns of
QA approximately spans AIFS. It is guaranteed by the
property that in stationary cases without any interference,
using a long sliding window, ran(A) and ran(B) asymp-
totically become orthogonal to each other as a function of
the noise power σ2

n. Similar algorithms can be found in
literature such as spherical averaging algorithms designed
for cases with white Gaussian noise [12].

The columns of QA are the orthonormal basis of AIFS and
dy2

is the rank of AIFS. The output time of the AIFS estimates
can be set to PNp/4 samples from the last rank change. The
updating of (3.1) is direct and simple as in [9]. There are three
incoming and outgoing vectors for the three windows Yk per
joint vector update when sliding the time slot position by 1
(i.e., i = i+ 1).

The computational complexity of the proposed algorithm
is of O(M2) per joint vector update. Two M × M matrices
[QA QB] and [LA LB] need to be stored, which is the same
to the principal subspace tracking version [9].

Remark 1: Larger α is also possible, e.g. α = 8, with which
our proposed algorithm shows similar behavior to SI+SURV.
It is also interesting to see that different α can be applied
according to different purposes in selecting packets, which
will be discussed in incoming papers.

Remark 2: Slight tolerance on the packet length is also
allowed, which could be between (0.5Np, Np].

IV. SIMULATION RESULTS

In this section, we compare the performance of our proposed
tracking algorithm (IFST) with SI+SURV and SVD.

The defined data model can be found in a real scenario [13],
[14] where a low earth orbit satellite is collecting messages
(or packets) sent out by ships at sea in thousands of self-
organized ground cells. Taking this scenario as background,
we choose the carrier frequency 162.025MHz and modulation
scheme 9.6kbps QPSK. Consider 5 packets (see Fig. 4.1) in
the scenario. Parameters of these packets are listed in Table 1.
A linear antenna array with M = 10 elements spaced at half
wavelengths is used. We set Np = 256 symbols, Ns = 512
symbols, Ny1 = Ny3 = 128 symbols, Ny2 = 64 symbols,
fs = 4.8kHz, P = 1, β = 1.24. We use the algebraic constant
modulus algorithm (ACMA) to separate user data from the
data matrix preprocessed by the compared algorithms. The
data for ACMA is 80 samples (Assume d ≤ 8 in one time
slot) in the middle of the time slot.

Signal and interference powers are defined for every symbol.
The signal-to-interference ratio SIR := 10log10(σ

2
s/σ

2
f ), and

TABLE 4.1
PARAMETERS OF PACKETS.

DOA DFS(kHz) Start i Output i
Packet 1 −10◦ 3.7 522 660
Packet 2 30◦ -3.7 542 660
Packet 3 10◦ 0.1 702 830
Packet 4 −30◦ 0.5 882 1025
Packet 5 40◦ 1.2 902 1025

SNR := 10log10(σ
2
s/σ

2
n), where σ2

s and σ2
f are the symbol

power of the signals and interferences, respectively. All packet-
s have equal power. We number all packets in the simulation by
index k, 1 ≤ k ≤ 5. The performance measure is the residual
signal-to-interference-plus-noise ratio (SINR) of the output
beamformers. For every time slot Xi, the output performance
for the k-th packet is found as

sinr(h,w) :=
wH(hhH)w

wH(H̄H̄H − hhH + σ2
nI)w

, (4.1)

SINR(H̄k,Wi) := max(sinr(hk,wi1), . . . , sinr(hk,widy2
)),

(4.2)
where H̄k = [hk Hk] and Wi = [wi1,wi2, . . .widy2

] is the
output beamformer matrix for Xi.

In the simulation, the same time slot is used for all al-
gorithms. IFST uses all three windows and keeps tracking
on them. SI+SURV uses the center window Y2 to do rank
tracking and then subspace intersection (with α = 4) on the
entire time slot. SVD uses only the center window Y2. For
initialization of IFST, a buffer of 2PNp + 10 samples long is
put before the start of the first packet.

Fig. 4.2 shows the rank estimates and SINR of the beam-
formers for packets in one run. The results in time interval
i ∈ [450, 1200] are shown and for the beamformers, SINR is
only shown for the time interval where the corresponding tar-
get packet is present. Fig. 4.2(a-1), Fig. 4.2(b-1) and Fig. 4.2(c-
1) show the rank estimates (blue line) and the real number
of packets (or real rank) d (red line) along the time line.
IFST gives correct rank estimates around the middle of target
packets, which means IFST can automatically synchronize to
the target packets. SI+SURV gives rank estimates more close
to the real rank such that it works on any time point but it
may provide subspaces with a higher rank. In practice, IFST
detects stationary intervals from the rank estimates and outputs
the corresponding subspace estimates, while SI+SURV outputs
subspace estimates at time determined by the rank estimates
from another methods, such as SURV or SVD.

Fig. 4.2(a-2), Fig. 4.2(b-2) and Fig. 4.2(c-2) show the
corresponding SINR of the beamformers for packets. IFST
and SI+SURV give much better results than SVD because
they are designed for finding AIFS. It is seen that IFST
gives performance as good as SI+SURV at a much lower
computational complexity as it is a tracking algorithm. The
dash line is the optimal antenna gain for 10 antennas.

In order to compare the averaged SINR, we do Monte
Carlo runs and collect the SINR output at sample indices
i = [660, 660, 830, 1025, 1025] (see Table 4.1) which are
around the center of the corresponding packets and for IFST,
about 50 samples (≈ PNp/4) from the last rank change.
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Fig. 4.2. The rank estimates and SINR of the beamformers for packets in
one run.

Fig. 4.3 shows the averaged SINR of the beamformers for
packets as a function of SNR after 10,000 Monte Carlo runs.
The SINR results from standard minimum mean square error
algorithm on known S, Φ and start sample indices are plotted
as an upper bound for the highest performance we can achieve.
The dotted line is the optimal antenna gain for 10 antennas. It
is seen that IFST gives quite good and even better performance
than SI+SURV. The gap between the upper bound and IFST as
well as SI+SURV is mainly caused by the short packet length
Np, although their performance are good enough for decoding
packets. Subspace estimates from SVD show poor suppression
of interferences.

V. CONCLUSION

We proposed an efficient subspace tracking algorithm for
separating partially overlapping data packets. This algorithm
tracks the orhonormal basis and the rank of the asynchronous
interference-free subspace for the target packets at a complex-
ity of O(M2) per joint vector update, much lower compared
with the previous algorithm working on block data and con-
sisting of many steps. This algorithm can automatically deter-
mine the correct output time of the subspace estimates. The
algorithm was shown to give quite good subspace estimates
compared with the previous algorithm.

ACKNOWLEDGMENT

This work was supported in part by the project BDREAMS
at Delft University of Technology in Netherlands, and China
Scholarship Council from P. R. China.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

(a) SNR/dB

S
IN

R
/
d
B

SMMSE (known S, Φ and start sample indices)

Averaged SINR of beamformers
Number of runs =10000
M = 10, d = 5, Np = 256, Ne = 128
DOA: [−10◦, 30◦, 10◦, −30◦, 40◦].

1

2

3

4

5

Opt.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

S
IN

R
/
d
B

(b) SNR/dB

IFST

0 5 10 15 20 25 30 35
0

10

20

30

40

50

S
IN

R
/
d
B

(c) SNR/dB

SI+SURV

0 5 10 15 20 25 30 35
0

10

20

30

40

50

S
IN

R
/
d
B

(d) SNR/dB

SVD

Fig. 4.3. Averaged SINR of the beamformers for packets as a function of
SNR.

REFERENCES

[1] J. Andrews, W. Choi, and R. Heath, “Overcoming interference in spatial
multiplexing MIMO cellular networks,” IEEE Trans. Wireless Commun.,
vol. 14, no. 6, pp. 95–104, Dec. 2007.

[2] S. Karimifar and J. Cavers, “Achieving high-capacity narrowband cel-
lular systems by means of multicell multiuser detection,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 945–953, Mar. 2008.

[3] J. Raza, A.-J. Boonstra, and A. van der Veen, “Spatial filtering of RF
interference in radio astronomy,” IEEE Signal Process. Lett., vol. 9,
no. 2, pp. 64–67, Feb. 2002.

[4] S. Ellingson and G. Hampson, “A subspace-tracking approach to inter-
ference nulling for phased array-based radio telescopes,” IEEE Trans.
Antennas Propag., vol. 50, no. 1, pp. 25–30, Jan. 2002.

[5] M. Zhou and A. van der Veen, “Improved blind separation algorithm
for overlapping secondary surveillance radar replies,” in Proc. IEEE
CAMSAP, San Juan, Puerto Rico, Dec. 2011, pp. 181–184.

[6] Y. Morton, M. Miller, J. Tsui, D. Lin, and Q. Zhou, “GPS civil signal
self-interference mitigation during weak signal acquisition,” IEEE Trans.
Signal Process., vol. 55, no. 12, pp. 5859–5863, Dec. 2007.

[7] R. Behrens and L. Scharf, “Signal processing applications of oblique
projection operators,” IEEE Trans. Signal Process., vol. 42, no. 6, pp.
1413–1424, Jun. 1994.

[8] H. Subbaram and K. Abend, “Interference suppression via orthogonal
projections: a performance analysis,” IEEE Trans. Antennas Propag.,
vol. 41, no. 9, pp. 1187–1194, Sep. 1993.

[9] M. Zhou and A.-J. van der Veen, “Stable subspace tracking algorithm
based on signed URV decomposition,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Prague, Czech Republic, May 2011, pp. 2720–
2723.

[10] ——, “Improved subspace intersection based on signed URV decompo-
sition,” in Proc. of the Asilomar Conf. on Signals, Syst., and Comput.,
Pacific Grove, California, USA, Nov. 2011.

[11] A.-J. van der Veen, “A Schur method for low-rank matrix approxima-
tion,” SIAM J. Matrix Anal. Appl., vol. 17, no. 1, pp. 139–160, 1996.

[12] D. Rabideau, “Fast, rank adaptive subspace tracking and applications,”
IEEE Trans. Signal Process., vol. 44, no. 9, pp. 2229–2244, Sep. 1996.

[13] M. A. Cervera, A. Ginesi, and K. Eckstein, “Satellite-based vessel
automatic identification system: A feasibility and performance analysis,”
Int. J. Satell. Commun. Network., 2009.

[14] M. Zhou, A.-J. van der Veen, and R. van Leuken, “Multi-user LEO-
satellite receiver for robust space detection of AIS messages,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Kyoto, Japan, Mar.
2012.

64


