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ABSTRACT
The paper develops a new technique to reduce the peak to aver-
age power ratio (PAPR) in OFDM modulation for a MIMO system.
The proposed method exploits the eigen-beamforming mode (EM) in
MIMO systems which is a common feature in 4th generation stan-
dards: WiMAX and LTE.These systems use the same beamforming
weights for dedicated pilots and data so the weights are interpreted
as a channel effect from the receiver perspective. There is no need
to invert the weights at the receiver side since it is compensated for
in channel equalization. Beamforming performance depends on the
relative phase difference between antennas but is unaffected by a
phase shift common to all antennas. In contrast, PAPR changes with
the common phase shift . An effective optimization technique based
on Sequential Quadratic Programming is proposed to compute the
common phase shifts that minimize the PAPR.

Index Terms— Orthogonal Frequency Division Multiplexing
(OFDM), Multiple Input Multiple Output (MIMO), Beamforming,
Optimization, WiMAX.

1. INTRODUCTION
A well-known drawback of OFDM is that the amplitude of the re-
sulting time domain signal varies with the transmitted symbols in
the frequency domain. If the maximum amplitude of the time do-
main signal is large, it may push the amplifier into the non-linear
region which breaks the orthogonality of the sub-carriers and will
result in a substantial increase in the error rate. PAPR reduction is
a well-known signal processing topic in multi-carrier transmission
and large number of techniques have been proposed in the litera-
ture during the past decades. PAPR reduction techniques are associ-
ated with costs in terms of bandwidth or/and transmit power. Also,
most of them require modifications in both transmitter and receiver
which makes it non-compliant to the existing communication stan-
dards. Multiple signal representation methods, such as partial trans-
mit sequence (PTS) and selected mapping (SLM) are well-known
techniques which reduce the peak amplitude of the OFDM signal by
manipulating the phase of subcarriers. The phase weights are sent as
a side information to the receiver to recover the original symbols[1].

A new Precoding PAPR reduction technique is proposed in [2],
based on grouping the OFDM subcarriers in clusters and changing
the phase of clusters in a manner similar to the PTS method but with-
out the drawback of sending explicit side information. The proposed
technique neither requires additional bandwidth nor power while de-
livering equal or better PAPR reduction gain compared to existing
methods. This algorithm focuses on the practical case for a WiMAX
base station with a single transmit antenna. In this paper we con-
sider PAPR reduction techniques for multiple transmit antennas with
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Space Time Block Codes (STBC) in EM mode, which is the case
for both WiMAX and LTE standards. Simulation result shows the
probability of high PAPR increases for MIMO comparing to the sin-
gle antenna. The beamforming weights also cause extra increase in
PAPR; to avoid this, phase-only beamforming is usually used which
limits the performance. This makes it more important to find a solu-
tion for PAPR, since MIMO-OFDM has become a popular technique
for wireless communication in time-frequency selective channels. In
a MIMO scenario, the peak amplitude needs to be searched and min-
imized jointly over all antennas which affects the PAPR character-
istics compared to the single antenna system. Also, the coupling
between several OFDM symbols on each antenna gives an extra de-
gree of freedom in the minimization algorithm. An iterative phase
optimization method based on SQP technique in [2] has been re-
defined and modified for multiple antenna system which finds the
optimum weights by approximating and minimizing the quadratic
objective function at each solution point. We show that the proposed
technique keeps the PAPR in the same level as single antenna for
EM-MIMO systems.

2. SYSTEM MODEL
Consider an OFDM system, where the data is represented in the fre-
quency domain. The time domain samples sn, n = 1, 2, . . . , N , are
calculated from the frequency domain symbols Dl using IFFT oper-
ation, whereN denotes the IFFT size. Equivalently, the data block in
time domain is denoted by vector s which is a result of multiplying
the IFFT matrix F with the data block in frequency domain D.

sn =
1√
N

N−1∑
l=0

Dle
j2πln

N ⇔ s = FD . (1)

Note that the frequency domain signal Dk typically belongs to the
digital modulation schemes including QAM, QPSK, 16QAM and
64QAM constellations, these are referred to as symbols while the
sns are called OFDM samples or subcarriers.

The metric that is used to measure the peaks in the time-domain
signal is PAPR which is defined as

PAPR =
max
0≤n≤N−1 |sn|2
E{|sn|2}

. (2)

Although not explicitly written in (2), it is well known that oversam-
pling is required to accurately capture the peaks. In this paper, an
oversampling of four times is used.

2.1. Partial Transmit Sequence (PTS)
Based on the PTS technique, the input data block D of length N is
partitioned1 into M disjoint sub-blocks

1D represents a vector but it is in uppercase to denote the signal in fre-
quency domain.
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Dm = [D0,m, D1,m, · · · , DN−1,m]T , m = 1, 2, · · · ,M , such

that
∑M

m=1 Dm = D and at anytime n only one Dn,m, m =
1, 2, · · · ,M is nonzero. The partitioning can be done in sev-
eral ways, e.g. in adjacent sub-block partitioning, the nonzero
elements of each sub-block are constructed from adjacent sym-
bols. In contrast, in random partitioning the elements are se-
lected randomly among symbols [1]. The time domain signal
bm = [b0,m, b1,m, · · · , bN−1,m]T is obtained by taking an IFFT of
length N from Dm; these are called the partial transmit sequences
(PTSs). Complex phase factors, ψm = ejφm , m = 1, 2, · · · ,M
are introduced to combine the PTSs. The time domain signal after
combination is given by sn =

∑M
m=1 ψmbn,m.

2.2. MIMO-OFDM
A basic point to point MIMO communication system consists of
Mt transmit antennas and Mr receive antennas. Space-time block
codes (STBC) are designed to form the transmission blocks which
exploit both diversity and multiplexing gain in MIMO. In MIMO-
OFDM, the transmit sequences of multiple antennas are mapped to
parallel symbols and then modulated by the IFFT operation to form
the OFDM transmit blocks. Accordingly, the concept of time in the
MIMO STBC is analogous to frequency in a MIMO-OFDM system
and it is referred to as space frequency block codes (SFBC) in this
paper.

As the transmit symbols are divided over different time slots in
STBCs, in MIMO-OFDM the whole OFDM band is divided into
several sub-bands and each sub-band is called a cluster. WiMAX
and LTE standards specify two main modes of transmitting pilots:
common pilots and dedicated pilots. Here, dedicated pilots allow
per-cluster beamforming since channel estimation is performed per-
cluster [2]. Note that the whole band is divided into C clusters while
each cluster spans a portion of time and frequency 2. The number of
subcarriers in each cluster denoted byNc and we assumeMt OFDM
blocks are sent over Mt number of antennas in one time slot.

A discrete signal model for each cluster can be represented by
the Yc = Hc SSFBCc + nc, c = 1, · · · , C. Here transmit matrix
SSFBCc of size Mt × Nc, consists of subcarriers in cluster c over
different antennas. The transmit matrix is multiplied with the corre-
sponding channel matrix Hc and discrete noise is added to form the
received matrix Yc of size Mr × Nc. The elements of matrix Hc

of size Mr ×Mt correspond to the complex channel gain between
the transmit and receive antennas. The estimate of channel matrix
is called the channel state information (CSI) which is used to form
the beamforming weights. As explained before, each cluster is as-
sociated with one estimated channel or in other words the channel is
invariant over the frequency band in one cluster. Generally, the EM
MIMO-OFDM forms the eigen channels using CSI on the transmit-
ter and receiver sides. Thus, a precoding matrix is formed by the
right singular vectors of the channel matrix Hc and is referred to as
a beamforming matrix [3]. The beamforming matrix Wc is a square
matrix of size Mt ×Mt,

Wc = [wc
(1),wc

(2), · · · ,wc
(Mt)] . (3)

The columns of Wc are denoted by wc
(q) where

wc
(q) = [wc

(q,1), wc
(q,2), · · · , wc

(q,Mt)]T . This vector contains
the coefficients by which the qth symbol are multiplied with, on an-
tennas 1 toMt. The SSFBC is formed for different clusters separately
and they are multiplied with Wc of the corresponding channel ma-
trix. The result Sc = Wc SSFBCc , c = 1, · · · , C is a Mt × Nc

2Both time and frequency can be considered in clustering but for simplic-
ity reasons here each cluster spans only a portion of frequency band.

matrix representing the transmit subcarriers over Mt antennas in the
cth cluster.

The transmit symbols in a cluster which are divided over dif-
ferent subcarriers and antennas in SFBCs are placed in SSFBCc =
[śc1, śc2, · · · , ścMt ]

T , which is a matrix of size Mt ×Nc. The
śi represents one vector of symbols which are transmitted over the
ith antenna before applying the beamforming. As a result, the
ści in SSFBCc are given by ści = [ści,1, ści,2, · · · , ści,Nc ]

T , i =
1, · · · ,Mt, which is a column vector with length equal to the num-
ber of subcarriers in one cluster.

The complete final transmission block including beam formed
OFDM samples over different antennas are collected as

S = [S1, · · · ,SC ] = [s1, s2, · · · , sMt ]
T , (4)

where si is the final transmit sequence from ith antenna.

3. PROPOSED MIMO-PTS TECHNIQUE WITH
CONTINUOUS PHASE WEIGHTS

The proposed PAPR technique in this paper uses the PTS setting to
partition the OFDM block into several sub-blocks for phase shift.
However, we do not follow the exhaustive search algorithm in the
PTS technique to find the sub-optimum discrete phase weights. The
essential point is that the sub-blocks are the clusters in our technique
because the cluster is the smallest block that can be phase rotated
without informing the receiver explicitly. Our algorithm relies on
the channel equalization to compensate for the phase change at the
receiver side. This allows for searching the optimum phase weights
in a continuous interval between [0, 2π). Furthermore, EM-MIMO
combines several OFDM samples on multiple antennas to form the
transmission signal on each antenna. This extra degree of freedom
can be exploited to achieve better PAPR reduction gain combining
the sub-blocks.

3.1. MIMO-PTS in Eigen-Beamforming Mode
in PTS, as explained in Sec.2.1, each OFDM block is divided intoM
disjoint sub-blocks, each of size N × 1. Note that in our proposed
technique sub-blocks are chosen as cluster units, so M = C. After
taking IFFT of these sub-blocks, a big matrix of size N × M is
formed for each OFDM block, with IFFT samples of sub-blocks in
columns. This is referred to as B(q) for qth OFDM block which is
the left matrix in the following equation. Note, the summation of
columns in B(q) is equal to the IFFT on the qth OFDM block. The

elements of B(q) are denoted by b
(q)
n,m which is the generalization of

PTS in Sec.2.1 for Mt antennas.
Since the IFFT is a linear operation, the beamforming weights

can be applied before or after IFFT summation. However, it is eas-
ier to explain when Wc are multiplied after sub-block partitioning
and IFFT operation, as depicted in Fig.1. The PAPR weights are
subsequently applied afterwards, and they are common between dif-
ferent antennas but different for contributing OFDM blocks on each
antenna. Finally, sub-blocks of different weighted OFDM symbols
are summed together to construct the final sub-blocks. The sum-
mation of final sub-blocks gives the transmit OFDM sequence. It
is clear from Fig.1 that now the PAPR depends on the transmit
sequences over all antennas rather than just one, as in single an-
tenna case. To formulate the optimization problem, we can write
zi,q = B(q) diag(w(q,i))ψ(q) which is the contribution of the
OFDM block q on the ith antenna output:

zi,q =

⎡
⎢⎢⎢⎢⎣

b
(q)
1,1 b

(q)
1,2 · · · b(q)1,M

b
(q)
2,1 b

(q)
2,2 · · · b(q)2,M

...
...

. . .
...

b
(q)
N,1 b

(q)
N,2 · · · b(q)N,M

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

w
(q,i)
1 · · · 0

0 w
(q,i)
2

...
...

. . . 0

0 · · · w
(q,i)
M

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ejφq,1

ejφq,2

...

ejφq,M

⎤
⎥⎥⎥⎦
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Fig. 1: Block diagram of MIMO-PTS technique for two antennas. The in-
put data block D is partitioned into two M disjoint sub-blocks such that
∑M

m=1 D
(q)
m = D(q). Known beamforming weights w1 and w2 are mul-

tiplied with first and second OFDM sub-blocks, respectively to produce the
contributing signal for the first (upper) and second (lower) antennas. Then,

phase weights ψ
(q)
m = ejφq,m are multiplied with all sub blocks. The rel-

evant sub blocks are summed to form the final OFDM sequences on both
antennas.

The output OFDM sequence after applying the beamforming weights
and PAPR weights on ith antenna is si =

∑Mt
q=1 zi,q . The output

sample si,n is given by

si,n =

Mt∑
q=1

M∑
m=1

b(q)n,m ψ(q)
m w(q,i)

m (5)

which shows the nth subcarrier of OFDM sequence on ith antenna.

3.2. Formulation of the Phase Optimization Problem
In order to minimize the PAPR, the phase weights are selected by
minimizing the largest sample of OFDM sequence, according to (2),
because the average power remains unaltered. The PAPR minimiza-
tion now is performed over all antennas. The optimization problem
can be formulated as

Ψ = arg min
φq,m

max
i,n

|si,n|2 , (6)

where Ψ = [ψ(1),ψ(2), · · · ,ψ(Mt)] and ψ = vec(Ψ). This
is a minimax optimization problem when the objective function is
fmax(ψ) = maxi,n |si,n|2,. The vector of OFDM samples over all
antennas is defined as s = vec(S) and the set of constraints are the
square of the absolute values in vector f(ψ) = |s|2.

minimize fmax(ψ)
ψ

subject to
f(ψ) ≤ fmax(ψ)

(7)

The above expression implies that the phase weights are solved for
all transmit antennas in an iterative optimization procedure which
minimizes the largest sample among all antennas. The constraints
guarantee that there is no larger sample than fmax(ψ), when the
minimization is being done. Indeed, the fmax(ψ) is a fixed sample,
for example nth sample. During the iterations which is indexed by k
other samples which are functions of the same ψ vector, are pushed
to stay below this maximum value.

4. SOLVING THE MINIMIZATION PROBLEM
In PTS the optimum weights are selected by performing an exhaus-
tive search among the quantized set of phase options, which limits
the number of sub-blocks and eventually the PAPR reduction gain.
However, in the proposed technique, there is no restriction on phase
coefficients so choosing the best phase coefficients is still challeng-
ing. An effective optimization algorithm must be used to extract

the optimum phase weights. A practical gradient-based algorithm
is proposed in [2] which is modified and adapted for the phase opti-
mization problem of the PAPR reduction in multiple antenna system.

SQP is one of the most popular and robust algorithms for non-
linear constraint optimization. This is modified and simplified for the
phase optimization problem of PAPR reduction. The algorithm pro-
ceeds based on solving a set of sub problems created as a quadratic
model of the objective, subject to a linearization of the constraints.
Accordingly, at each major iteration, a quadratic function is defined
at the current solution. The Jacobian matrix of the constraints are
used for linearization of the current constraints in original problem
around ψk . The minimization direction d is the optimal direction
to move in order to minimize the largest sample.

minimize q = 1
2
dT Hk d+∇fmax(ψk)

T d
d ∈ �n

subject to

∇f(ψk)
Td+ f(ψk) ≤ 0

(8)

A new convex optimization problem is formed in (8) and solving it
gives the appropriate direction to move at each major iteration in the
original problem. The quadratic objective function q(d) reflects the
local properties of the original objective function. The main reason
to use a quadratic function is that such problems are easy to solve
yet mimics the nonlinear behavior of the initial problem. This can
be solved by quadratic programming. The Hessian of the Lagrange
function Hk is required to form the quadratic objective function.
Fortunately, it is not necessary to calculate this Hessian matrix ex-
plicitly since it can be approximated at each major iteration using
a quasi Newton updating method [4]. The Active Set Strategy has
been applied in the phase optimization algorithm. This method is
particularly suitable for problems with a large number of constraints.
The QP sub problem is also solved by iterations, A pseudo code is

Algorithm 1 SQP

Initialize the variables: ψ, ∇fmax(ψk)
T and H0 = I

for k = 1 to K do
Calculate cost function fmax(ψk) and constraints f
Calculate the Jacobian matrix, q and its constraints
Initialize the d0,Q,R, Z and initial search direction d́0

while optimal dk found do
Compute projected gradient∇q(dl)
Find the distance to the nearest constrain α
Find Ál as ∇f(ψk)

Tdl + f(ψk) = 0

Decompose the active set as QT ÁT
l =

[
R
0

]

Compute the subspace Zl = Q[:, P + 1 : Ḿ ]
Compute the QP search direction according to the Newton

step criteria, d́l = −Zl

(
(ZT

l Hk Zl)
−1

(ZT
l ∇ q(dl))

)
Update the search direction dl+1 = dl + αd́l,

if α = 1 || length(Ál) =M then
Calculate the eigen values of active constraints λ
Check the optimality; λ > 0 and return dk

Otherwise remove the constraints with λi < 0
end if

end while
Update the solution ψk+1 = ψk + dk,
Update the Hessian Hk and make sure it is positive definite

end for

provided at Algorithm 1. An active set constraints at lth QP iteration

is denoted by Ál and is used to set a basis for a QP search direc-
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Fig. 2: CCDF curves of PAPR for 64QAM OFDM block with N = 1024
and M = 60. The curves are plotted for different number of antennas and
T = 2. Corresponding PAPR reduced CCDFs are derived with 5 iterations.

tion d́l. This constitutes an estimate of the constraint boundaries at
the solution point dl. When a new constraint joins the active set,
the dimension of the search space is reduced as expected. The pos-

sible subspace for d́l is built from a basis Zl, whose columns are

orthogonal to the active set Ál, such that ÁlZl = 0. Therefore,
any linear combination of the Zl columns constitutes a search direc-
tion, which is assured to remain on the boundaries of the active con-
straints. Here, P is the number of active constraints and Ḿ =MtM
shows the number of design parameters in the optimization problem,
which is the number of total sub-blocks in 1.

The complexity evaluation is not straightforward, an explicit ex-
pression for number of operations is given by,

K
(
(0.65Ḿ3 +2.7Ḿ2 +6ŃḾ +2Ń)L+(22ŃḾ +9Ḿ + Ń)

)

which is derived in [2] with details. The parameter K denotes the
maxim number of iterations for original problem in (7) and L is the
number of iterations to solve the QP sub-problem. The parameter

Ń =MtN is the number of all OFDM samples over all antennas.

5. SIMULATION RESULTS
In WiMAX, one cluster spans 14 sub-carriers over two OFDM sym-
bols in time, containing four pilots and 24 data symbols. For a
10MHz system, there are a total of 60 clusters. In agreement with
WiMAX setting, the proposed PAPR reduction technique is simu-
lated for an OFDM block of size 1024 with 840 data subcarriers and
92 guard subcarriers at the both end. The block is divided into 60
clusters and appropriate phase weights are looked for within 5 iter-
ations of SQP algorithm. The complementary CDF (CCDF) is used
here to evaluate different methods, which denotes the probability that
the PAPR of a data block exceeds a given threshold and is expressed
as CCDF = 1 − CDF. The total number of 10000 OFDM block is
randomly generated to produce the PAPR curves. The beamform-
ing weights are chosen to be the right singular vector of generated
complex channel matrices for each block. In EM-MIMO system,
by introducing more phase weights as an extra degree of freedom
to the optimization algorithm, more PAPR reduction gain is pro-
vided. It is clear from Fig 2 that the probability of getting high peaks
increased by putting more antennas at the transmitter. The beam-
forming weights cause extra growth in PAPR probability as well. In
WiMAX setting with two OFDM symbol in a cluster the number of
OFDM symbols are increased by two by adding one extra antenna.
However the PAPR-reduced curves are at the same range for 1, 2, 3
and 4 antennas which indicated more gain for more antenna, expect-
edly. The PAPR reduction gain is about 7.3 dB for 4 antennas which
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Fig. 3: CCDF curves of PAPR for 2 × 2 MIMO OFDM block with N =
1024 and M = 60. The curves are plotted for different constellations and
T = 1, 2.

is 1 dB more than single antenna system in probability of 5× 10−4.
It can be seen from Fig 3 that the PAPR is higher for clusters with
two OFDM block in time but the PAPR reduction gain is 6 dB for
both settings of one and two OFDM blocks. So the algorithm does
not affect by the number of OFDM blocks in time, since they are
rotated by the same phase coefficients. As expected, the PAPR is
higher for more complex constellations as 64QAM but the gain of
PAPR reduction algorithm is the same.

6. CONCLUDING REMARKS
A novel precoding PAPR reduction technique has been developed
for a multiple transmit antenna system, exploiting the cluster beam-
forming weights which is a general feature in 4G communication
systems. The proposed technique comes with interesting unique
properties, making it a very appealing method especially for standard
constrained applications as LTE and WiMAX. The PAPR reduction
gain is significant compared to other techniques while no side infor-
mation is sent to the receiver, so the throughput is not affected. The
transmitted power and bit error rate does not increase. This PAPR
technique allows using the optimal eigenvectors for beamforming
without any performance degradation nor PAPR increase.

An optimization technique for finding the best weights was pro-
posed. The PAPR reduction problem was formulated as a minimax
problem that was solved by deriving the gradient and modifying the
SQP algorithm to solve the optimization. The proposed algorithm
minimizes the PAPR over all antennas and time slots in a STBC-
MIMO system resulting in a PAPR reduction of more than 7dB for
a four antenna MIMO system.
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