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ABSTRACT

Localization and synchronization are critical challenges for a wire-
less network, which are conventionally solved independently. Re-
cently, various estimators have been proposed to jointly synchronize
and localize a node in a static network based on two way communi-
cation. In this paper, we present a novel and generic model based on
two way communication between nodes, which are in relative mo-
tion with respect to each other. Furthermore, for the entire network
we propose a closed form Extended Global Least Squares (EGLS)
solution to solve for all the unknown clock skews, clock offsets,
initial pairwise distances and relative radial velocities using a sin-
gle clock reference within the network. A new Cramer Rao Bound
(CRB) is derived and the proposed fusion center based Extended
Global Least Squares (EGLS) solution is shown to be asymptotically
optimal.

Index Terms— joint estimation, clock synchronization, skew,
offset, distance, wireless network, anchorless, global solution, range,
range rate, relative, velocity

1. INTRODUCTION

Localization and synchronization are fundamental challenges for
wireless networks for coherent data sampling, communication and
processing. The locations of nodes in a network are estimated by
measuring pairwise distances via ranging and later applying absolute
localization (e.g., TOA, TDOA) or relative localization algorithms
(e.g., MDS) [1]. On the other hand, network wide synchronization
is achieved by first estimating unknown clock offsets and clock
skews followed by correcting respective clocks aptly. Both these
challenges are conventionally solved independently. However, re-
cently various estimators have been proposed for joint localization
and synchronization based on two way communication between
nodes, during which the nodes exchange data packets alternatively.
For a given node pair, assuming one as the clock reference, Noh
et al. [2] proposed a Gaussian Maximum Likelihood Estimator
(GMLL) for estimating the clock offset and clock skew of the un-
known node. Following this, a simplified least squares solution
(LCLS) [3] was presented for estimating the clock parameters.
More recently, the Pairwise Least Squares (PLS) [4] was presented
to jointly estimate clock skew, offset and pairwise distance between
the nodes. In addition, for the entire network, a Global Least Squares
(GLS) [4] was proposed for network wide estimation of clock skews,
offsets and pairwise distances using a single clock reference. Note
that, all these estimators were presented for a static network where
the positions of the nodes are fixed.

In this paper, we present a generic model for a network of mo-
bile nodes, where the nodes are in relative motion with each other.
Secondly, we propose a generic arbitrary two way communication
between any node pair, in contrast to traditional alternating commu-
nication employed in [2, 3, 4]. Based on this new model, a novel
Extended Global Least Squares (EGLS) algorithm is proposed for
network wide estimation of clock skew, clock offset, range and range
rate, using a single clock reference. The corresponding Cramer-
Rao Bound is derived and the proposed estimators are shown to be
asymptotically optimal.

This research was funded in part by the Dutch STW OLFAR project
(Contract Number: 10556) within the ASSYS perspectief program.

Our motivation is OLFAR (Orbiting Low Frequency Array for
Radio astronomy) [5], an anchorless network of≥ 10 satellite nodes
in space which is currently being designed. Each satellite in OLFAR
has a light weight atomic clock and samples the sky at ultra low
frequencies of 0.3-30 MHz, thus giving clock coherence up to 30
minutes. In comparison to the raw data exchange and the on board
correlation in the satellites, the time stamp exchanges and proposed
centralized algorithm are negligible, both in terms of communication
and computational power. Hence, we assume a wireless network of
nodes capable of two way communication with each other. Addi-
tionally, each node is equipped with a light atomic clock offering
sufficient stability during the period of low frequency data collec-
tion. Furthermore we assume, every node is equipped with adequate
processing and communication capabilities.

Notation: The element wise matrix Hadamard product is de-
noted by �, element wise Hadamard division by �, (·)�N denotes
element-wise matrix exponent. The Kronecker product is indicated
by⊗ and the transpose operator by (·)T . 1N = [1, 1 . . . , 1]T ,0N =
[0, 0 . . . , 0]T ∈ R

N×1, are vectors of ones and zeros respectively.
IN is an N × N identity matrix and diag(· ) represents a diagonal
matrix.

2. PROBLEM FORMULATION

2.1. Time

Consider a network of N nodes equipped with independent clock
oscillators which, under ideal conditions, are synchronized to the
global time. However, in reality, due to various oscillator imperfec-
tions and environment conditions the clocks vary independently. Let
ti be the local time at node i, then its divergence from the ideal true
time t is to first order given by the affine clock model,

ti = ωit+ φi ⇔ t = αiti + βi (1)

where ωi ∈ R+ and φi ∈ R are the clock skew and clock offset
of node i. The clock skew and clock offset parameters for all N
nodes are represented by ω = [ω1, ω2, . . . , ωN ]T ∈ R+

N×1 and
φ = [φ1, φ2, . . . , φN ]T ∈ R

N×1 respectively. Alternatively, the
translation from local time ti to the global time t is written as a
function of local time, where [αi, βi] � [ω−1

i , −φiω
−1
i ] are the

calibration parameters needed to correct the local clock at node i.
Following immediately, for all N nodes in the network, we have
α � 1N � ω ∈ R

N×1 and β � −φ� ω ∈ R
N×1.

2.2. Range

In addition to clock variations, the nodes are also in relative motion
with each other which in reality, is non-linear. However we exploit
the piecewise linearity of motion for smaller durations and hence
pairwise distance can be written as a first order linear model. The
pairwise distance between the node pair (i, j) is measured by the
propagation delay rij ≡ rji and is given by

rij = νijt+ τij (2)

where νij , τij ∈ R are the range rate delay and initial range delay
between the node pair i, j respectively. The radial velocity is cνij ≡
cνji and the pairwise distance at time t = 0 is cτij ≡ cτji, where c

2845978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



Fig. 1. Figure shows two way communication between a pair of mo-
bile nodes where the nodes transmit and receive data packets, during
which K time stamps are recorded at respective nodes. Unlike pre-
vious models [2, 3, 4] where the transmission and reception was al-
ternating, the presented model puts no pre-requisite on the sequence
of number of two way communications.

is the speed of the electromagnetic wave in the medium. All M =(
N
2

)
unique pairwise range delays between N nodes are stacked in

vector τ = {τij} ∈ R
M×1 ∀ 1 ≤ i ≤ N − 1 and i + 1 ≤ j ≤

N and in similar lines the range rate delay ν ∈ R
M×1. Now, the

propagation delay rij can also be written as a function of local time
ti of a random Node i within the network. Thus from (1) we have,

rij = γjiti + δji (3)

where γji = νjiαi and δji = νjiβi + τji, which incorporates the
clock discrepancy of Node i. Note that, although the system related
parameters (γij �= γji, δij �= δji) are dependent on the choice of
clock reference i, the true range parameters (νij ≡ νji, τij ≡ τji)
remain unique to a given node pair. For the entire network we have
γ, δ ∈ R

M×1 which are defined similar to τ and ν.
In this paper, we intend to estimate the system parameters

(α,β,γ, δ), given an arbitrary clock reference and communication
between all nodes. The absolute clock skews (ω), clock offsets (φ)
and range delays (τ ) and the range rate delays (ν) of the network
can be obtained from the system parameters without any ambiguities
via back substitution.

3. NETWORK SYNCHRONIZATION AND RANGING

Prior to investigating the entire network, we consider a single pair of
nodes. Consider a pair of mobile nodes (i, j) such that {i, j} ≤ N
and i < j, which are capable of two way communication with each
other as shown in Figure 1. The two nodes communicate messages
back and forth, and the transmission and reception time stamps are
registered independently at respective nodes in respective local time
coordinates. The k th time stamp recorded at node i when commu-
nicating with node j is denoted by T

(k)
ij and similarly at node j the

time stamp is T
(k)
ji . For the sake of generality, we do not presume

any specific sequence of data packet exchange or number of trans-
missions/receptions between these nodes. In all there are K time
stamps recorded at each node, during which the propagation delay
between the two nodes is governed by the linear range model given
by (3). Under ideal circumstances, when the nodes are completely
synchronized, the noise free k th communication time markers are
related as

T
(k)
ji =

{
T

(k)
ij + rij for i→ j

T
(k)
ij − rij for i← j

which can be combined as

T
(k)
ji = T

(k)
ij + E

(k)
ij rij for i↔ j (4)

Fig. 2. An illustration of a network with N = 4 nodes, each capable
of two way communication. The clock skews and clock offsets of
node 2, 3 and 4 are unknown and are to be estimated, in addition to
all the pairwise distances.

Node 1

Node 2

Node 3

Node 4

where E
(k)
ij = +1 for transmission from node i to node j and

E
(k)
ij = −1 for transmission from node j to node i. Note that

E
(k)
ij �= E

(k)
ji represents the direction information of the data packet.

However in reality, due to clock uncertainties modeled in (1), we
have (5), where {q(k)i , q

(k)
j } ∼ N (0, 0.5σ2) are Gaussian i.i.d noise

variables plaguing the timing measurements at respective nodes.
Without loss of generality, we assume the same noise variance on
both transmission and reception markers. Now, incorporating the
range model for rij from (3) as a function of local time at node j we
have (6). Expanding (6) and rearranging the terms, we obtain (7).
For all K communications, a generalized model for a pair of nodes
is

[tij −tji 1K −1K eij � tji eij ]

⎡
⎢⎢⎢⎣
αi

αj

βi

βj

γij
δij

⎤
⎥⎥⎥⎦ = qij (8)

where the measurements are

tij = [T
(1)
ij , T

(2)
ij , . . . , T

(K)
ij ]T ∈ R

K×1 (9)

eij = [E
(1)
ij , E

(2)
ij , . . . , E

(K)
ij ]T ∈ R

K×1 (10)

tij and tji contains the time markers recorded at node i and node
j respectively while communicating with each other and eij is a
known vector indicating the transmission direction for each data
packet. qij is the i.i.d noise vector, which is modeled as qij ∼
N (0, 0.5σ2(α2

i + (αj + γij)
2)) ∈ R

K×1. In reality, the clock
skews ωi, ωj are very close to 1 and the errors are of the order of
10−4. Hence α2

i + α2
j ≈ 2, which is satisfactory and is implicitly

employed in various literature such as [2, 3]. In addition, γ2
ij is by

definition, negligibly small and therefore the noise vector is approx-
imated as

qij ∼ N (0, σ2) ∈ R
K×1 (11)

Now, by asserting one of the two nodes as the reference node, say
node i with [αi, βi] = [1, 0], equation (8) is simplified to

Ajiθj = −tij + qij (12)

where

Aji = [−tji − 1K e� tji e] ∈ R
K×4

θj = [αj βj γij δij ]
T ∈ R

4×1

A least Squares solution is obtained by minimizing the least squares
norm, i.e.,

θ̂j = argmin
θj

‖Ajiθj + tij‖
2
2 = (AT

jiAji)
−1

A
T
jitij (13)
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which has a unique solution provided (a) the number of communi-
cations K ≥ 4, (b) eij �= −1K and (c) eij �= +1K . Thus among
the K ≥ 4 data exchanges between the two nodes, there must be at
least one transmission from i to j and j to i respectively. The least
squares solution is a trivial extension of PLS [4] where the range
rate delay was not estimated. We now extend this pairwise model
to the entire network and wish to find a global optimal solution for
joint motion estimation and synchronization. Aggregating (8), for all
unique pairwise links in the network, we have a linear global model
of the form

A︷ ︸︸ ︷
[T1 E1 E2 �T2 E2]

θ︷ ︸︸ ︷⎡
⎣αβ
γ
δ

⎤
⎦ = q (14)

where matrices T1,T2 ∈ R
KM×N contain timing vectors recorded

at all N nodes, E1 ∈ R
KM×N is matrix of 1K and 0K , E2 ∈

R
KM×M . q = [q12,q13, . . . ,q(N−1)(N)] ∈ R

KM×1 is the noise
vector where each qij is given by (11). Equation (14) does not have
a unique solution, unless we impose some linear constraints on the
system. For instance, assigning one node as the clock reference with
known clock offset and skew. More generally, the unknown vector
θ ∈ R

2(N+M)×1 can be estimated by minimizing the cost function

min
θ

‖Aθ ‖2

s.t. Cθ = d (15)

where C ∈ R
P×N , the known constraint matrix and d ∈ R

P×1

form the primal feasibility condition, enforcing P linearly indepen-
dent constraints on θ. Assuming the constraints are selected such

that
[
A
C

]
is non singular and d �= 0P , the solution to (15) is ob-

tained by solving the Karush-Kuhn-Tucker equations [6] and is given
by [

θ
λ

]
=

[
2ATA CT

C 0P0
T
P

]−1 [
02(N+M)

d

]
(16)

where λ ∈ R
P×1 is the Lagrange vector. As an illustration, Figure

2 shows a network consisting of N = 4 nodes with M = 6 unique
two way communication links. For N = 4, T1, E1 are of the form

T1 =

⎡
⎢⎢⎢⎣
t12 −t21
t13 −t31
t14 −t41

t23 −t32
t24 −t42

t34 −t43

⎤
⎥⎥⎥⎦

E1 =

⎡
⎢⎢⎢⎣
+1K −1K

+1K −1K

+1K −1K

+1K −1K

+1K −1K

+1K −1K

⎤
⎥⎥⎥⎦

T2 = diag(t21, t31, t41, t32, t42, t43)

E2 = diag(e12, e13, e14, e23, e24, e34)

A similar structure can be generalized for N ≥ 4. The vectors tij
are the time stamps recorded at the i the node when communicating
with the j node in the network and is defined in (9). Similarly, vector
eij contains the direction information of the corresponding pairwise
communication and is defined in (10). Matrix A is rank deficient
by 2 which expects the number of constraints P ≥ 2. In addition,
since T2 and E2 are diagonal matrices and hence full rank, the P
constraints must be on the clock parameters of the system. A simple
constraint would be to choose a random node, say Node 4 as the
clock reference i.e., [α4, β4] = [1, 0], which yields

C =
[

0 0 0 1 0 0 0 0 0M 0M

0 0 0 0 0 0 0 1 0M 0M

]
d =

[
1
0

]

4. CRAMER RAO LOWER BOUND

Since the error vector q in (14) is Gaussian by assumption, the
Cramer Rao Bound (CRB) on the error variance for an unbiased
estimator for the constrained case is given by [7]

ε

{
(ˆ̃θ − θ̃)(ˆ̃θ − θ̃)T

}
≥ U(UT

FU)−1
U

T (17)

where θ̃ = [ω, φ, ν, τ ]T , U ∈ R
2(N+M)×(2(N+M)−P ) is an

orthonormal basis for the null space of the constraint matrix C and
F = σ−2JTJ ∈ R

2(N+M)×2(N+M) is the Fisher Information Ma-
trix [8] of (14). For jointly estimating the clock parameters (ω,φ)
and the range parameters (ν, τ ) we have

J =

[
∂Aθ

∂θ̃
T

]
�

[
Jω Jφ Jν Jτ

]
∈ R

2KM×2(N+M)

(18)
where the independent components can be shown as

Jω = −(T1 −E1 �Φ+ Γ̃� (T̃1 −Φ))�Ω
�2

Jφ = −(Γ̃+E1)�Ω

Jν = E2

Jτ = E2 � T̃2

and Ω = 1KMωT and Φ = 1KMφT . For N = 4, T̃2 ∈
R

KM×M = diag(α2t21 + β2, α3t31 − β3, α4t41 + β4, α3t32 −

β3, α4t42+β4, α4t43+β4) and Γ̃, T̃1 ∈ R
KM×N are of the form

Γ̃ =

⎡
⎢⎢⎢⎣

eν21
eν31

0KM eν41
eν32

eν42
eν43

⎤
⎥⎥⎥⎦

T̃1 =

⎡
⎢⎢⎢⎣

t21
t31

0KM t41
t32

t42
t43

⎤
⎥⎥⎥⎦

αi(T
(k)
ij + q

(k)
i ) + βi + E

(k)
ij rij = αj(T

(k)
ji + q

(k)
j ) + βj (5)

αi(T
(k)
ij + q

(k)
i ) + βi + E

(k)
ij (γij(T

(k)
ji + q

(k)
j ) + δij) = αj(T

(k)
ji + q

(k)
j ) + βj (6)

αiT
(k)
ij − αjT

(k)
ji + βi − βj + E

(k)
ij (γijT

(k)
ji + δij) = αjq

(k)
j − αiq

(k)
i + E

(k)
ij γijq

(k)
i (7)
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Fig. 3. Mean Square Error (MSE) plot of estimated (a) Clock skews
(ω̂), (a) Clock offsets (φ̂), (b) Range delay (τ̂ ) and (c) Range rate
delay (ν̂) for a network ofN = 4 nodes, where the noise is Gaussian
with σ = 0.1

Number of two way communications (K)

(a)

(b)

(c)

5. SIMULATIONS

The example in section 3 is simulated to test the performance of
the estimator. We assume the nodes are located within 150 Km
of each other and consequently τ is a random vector in the range
[0,150km]/c. The relative velocities of the nodes are assumed to be
within ± 1 m/s and hence the range rate delay vector ν is a random
vector in the range [-1m, +1m]/c. The clock skews (ω) and clock off-
sets (φ) are uniform randomly distributed in the range [0.998, 1.002]
and [−1, 1] seconds respectively, which is typical for a Rubidium
clock. The transmission time markers tij are linearly distributed be-
tween 1 to 100 seconds, for a number of two way communication
links K from 5 to 20. The noise variance on the timing markers is
σ = 0.1 and all results presented are averaged over 10,000 indepen-
dent Monte Carlo runs.

In Figure 3, the Mean Square Errors (MSEs) of clock skews (ω),
clock offsets (φ), range delays (τ ) and range rate delays (ν) are plot-
ted against the number of two way communications K. The Low
Complexity Least Squares (LCLS) [3], the Maximum Likelihood
GMLL [2] algorithms are independently applied, pairwise from node
1 to every other node, to estimate all the unknown skews ω and off-
setsφ. In Figure 3(a) and 3(b), not surprisingly, the Extended Global
Least Squares (EGLS) solution matches the Global Least Squares
(GLS) solution and achieves the Cramer Rao Bound for clock off-
sets, clock skews and range rates. In addition, the relative velocities
are also estimated in terms of range rates (ν) using (EGLS). Figure
3(c) shows that the proposed Extended Global Least Squares (EGLS)
solution for ν , which achieves the Cramer Rao Lower Bound and is
thus optimal.
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