
STABLE SUBSPACE TRACKING ALGORITHM BASED ON SIGNED URV DECOMPOSITION

Mu Zhou and Alle-Jan van der Veen

Delft University of Technology, Dept. of Elec. Eng., Mekelweg 4, 2628 CD Delft, The Netherlands.

The class of Schur subspace estimators provides a parametriza-
tion of all minimal-rank matrix approximants that lie within a spec-
ified distance of a given matrix, and in particular gives expressions
for the column spans of these approximants. Unlike previous numer-
ically unstable algorithms, this paper presents a signed URV decom-
position (SURV) that efficiently and stably computes the Schur sub-
space estimator. Given a threshold on the singular values of the data
matrix, SURV tracks the orthonormal basis of the principal/minor
subspace and the rank of the subspace at the same time exactly with
respect to the threshold at a computational complexity of O(m2) per
vector update or downdate. SURV is not an iterative method.

Index Terms— Subspace tracking, generalized Schur algorith-
m, signed URV, signed Cholesky factorization.

1 INTRODUCTION

Fast adaptive subspace estimation and tracking plays an importan-
t role in modern signal processing. It forms the key ingredient in
many algorithms, such as adaptive filtering, system identification,
blind channel estimation, and blind signal separation and equaliza-
tion algorithms.

The literature related to the topic of subspace tracking is ex-
tremely rich, such as [1]. A URV decomposition [2] supports effi-
cient tracking of the principal/minor subspace and the rank of the
subspace. URV provides good estimates within few data samples at
a computational complexity of O(m2) per vector update or down-
date. The drawbacks with URV are that its updating steps are either
imprecise or complex since they are based on an iteration to find the
smallest singular value, and its downdating steps are not stable [3]
without the help of exponential windows.

An algorithm comparable with URV is the Schur subspace es-
timation (SSE) technique [4], [5], [6], [7], [8] based on the knowl-
edge of an upper bound γ on the noise power. Given a m × n2

data matrix X, measured column-by-column, that satisfies the mod-
el X = X̃+Ñ, where X̃ is a low rank matrix and Ñ is a disturbance,
this technique gives a parametrization of the class of all X̂ that sat-
isfy

‖X− X̂‖ ≤ γ. (1)

where ‖·‖ denotes the matrix 2-norm and X̂ has a minimal rank. In
fact, this minimal rank is d, where d is the number of singular values
of X that are larger than γ. The truncated SVD (TSVD) is within
the class, but it is not explicitly identified. The computation is based
on an implicit signed Cholesky factorization

XXH − γ2I = BBH −AAH , (2)

where A, B have minimal dimensions m× (m− d) and m× d, re-
spectively, and are not unique (H denotes the Hermitian transpose).
If we are interested only in the column span of X̂, i.e., the rank d

1This work was supported in part by the project BDREAMS at Delft U-
niversity of Technology in Netherlands, and China Scholarship Council from
P.R.China.

principal subspace of X in the sense of (1), then the subspace is giv-
en by ran {B−AM} for any pair (A,B) and any matrix M such
that ‖M‖ ≤ 1. A and B follow from the factorization

[
N X

]
Θ =

[
A 0 B 0

]
, (3)

where N is any matrix such that NNH=γ2I, and Θ is a J-unitary
matrix [4]. Straightforward generalizations of above subspace esti-
mates are possible. Suppose that we know RÑ≤γ2RN instead of

‖Ñ‖≤γ, where RN could be an estimate of the noise covariance
matrix RÑ, an implicit signed Cholesky factorization of XXH −
γ2RN can provide a minimal-rank approximant X̂ such that

‖R−1/2
N (X− X̂)‖ ≤ γ. (4)

In [4], a specific “unbiased” subspace estimator within the class of
(1) is given as

SSE− 2 :USSE−2 = B−AMΘ,

MΘ=
(
Θ−1

11 Θ12

)
11
=
[
Im−d 0

]
Θ−1

11 Θ12

[
Id
0

]
. (5)

This estimator shows good performance in tracking principal/minor
subspace [4]. Previously, the hyperbolic URV (HURV) algorithm [5]
was derived to compute and update the decomposition (3), (5), and
the resulting A, B have good properties as

ran{B}⊂ran{X}, ‖B‖≤‖X‖ , (6)

ran{A}⊂ran{N}, ‖A‖≤‖N‖ . (7)

In this paper, we propose a new SSE-2 updating algorithm,
called the signed URV decomposition (SURV). SURV keeps the
good properties as (6), (7). In contrast to HURV, SURV is numer-
ically stable as it uses at most one hyperbolic rotation per vector
update or downdate.

2 J-UNITARY MATRICES

At this section, we review some materials on J-unitary matrices from
[4]. A square matrix Θ is J-unitary if it satisfies

ΘHJΘ = J, ΘJΘH = J, (8)

where J is a signature matrix which follows some prescribed (p +
q)× (p+ q) block-partitioning of Θ:

Θ=
p

q

p q[
Θ11 Θ12

Θ21 Θ22

]
, J=

[
+Ip

−Iq

]
. (9)

If Θ is applied to a block-partitioned matrix
[
A B

]
, then

[
A B

]
Θ=

[
C D

]⇒ AAH−BBH=CCH−DDH . (10)

2720978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

Table 1. Elementary j-unitary zeroing rotations.1

1. Input:
[
r x

]
, |r|>|x| , j=diag{+1,−1} or j=diag{−1,+1};

Output: θ such that
[
r x

]
θ =

[
r′ 0

]
;

Solution: θ =

[
1 −s

−s∗ 1

]
1
c

, s = x
r

, c =
√

1−|s|2.

2. Input:
[
r x

]
, |r|<|x|, j=diag{+1,−1} or j=diag{−1,+1};

Output: θ such that
[
r x

]
θ =

[
0 r′

]
;

Solution: θ =

[
1 −s∗

−s 1

]
1
c

, s = r
x

, c =
√

1−|s|2.

3. Input:
[
r x

]
, |r|+|x|�=0, j=diag{+1,+1} or j=diag{−1,−1};

Output: θ such that
[
r x

]
θ =

[
r′ 0

]
;

Solution: θ =

[
c∗ −s
s∗ c

]
, s = x/

√
r∗r+x∗x , c =

√
1−|s|2.

This is essentially a Givens rotation.

1 ∗ denotes the conjugate operator.

Hence, J assigns a positive signature to the columns of A, C, and a
negative signature to those of B, D.

A 2×2 matrix θ is an elementary j-unitary rotation if it satisfies
θHjθ = j, θjθH = j. In Table 1 we list the elementary j-unitary
zeroing rotations used in this paper .

3 SIGNED URV DECOMPOSITION

Let N : m×n1 and X : m×n2 be given matrices. Θ is a J-unitary
matrix partitioned conformably as

Θ=
n1

n2

n1 n2[
Θ11 Θ12

Θ21 Θ22

]
,J =

[
+In1

−In2

]
. (11)

Introduce a QR factorization of
[
A B

]
:

R=
[
RA RB

]
=QH [

A B
]
=

m−d d[
QA QB

]H [
A B

]
, (12)

where R is triangular and Q is unitary. Hyperbolic URV decom-
position computes and updates the factorization satisfying following
two equations,

QH

n1
+

n2
−[

N X
]
Θ=

m−d
+

n1−
m+d
+

d
−

n2−d
−[

RA 0 RB 0
]

, (13)

where in addition Θ satisfies (because (3) is not unique)

T

n1 n2[
Θ11 Θ12

]
=

m−d

n1−m+d

m−d
+

n1−
m+d
+

d
−

n2−d
−[

I 0 0 ∗
∗ I ∗ ∗

]
, (14)

where T is an invertible matrix, and the sign + and − above ma-
trices denote the positive and negative signatures of the columns in
those matrices, respectively. This condition guarantees MΘ = 0
in [5] so that USSE−2 = B. The proposed algorithm, SURV, only
tracks (13) and is such that the structure of (14) is automatically sat-
isfied. SURV uses at most one hyperbolic rotation per vector update
or downdate which occurs between only two entries (not vectors)
and hence can be numerically stable (unlike HURV which uses up to
three hyperbolic rotations).

If we choose R to be lower triangular, then

ran {QB} = ran {B} . (15)

Table 2. Four types of zeroing schemes.1

1. Givens row-column-combined rotations(GRCR) to zero ck.

(a) Determine q such that qH

[
ck

ck+1

]
=

[
0

c′k+1

]
;

(b) Apply qH to row pair (k, k + 1) of
[
R c

]
. Apply q

to column pair (k, k + 1) of Q;
(c) Determine θ such that

[
rkk rk(k+1)

]
θ =

[
r′kk 0

]
;

(d) Apply θ to column pair (k, k + 1) of R.
2. Givens column rotations (GCR) to zero ck (jk = jc).

(a) Determine θ such that
[
rkk ck

]
θ =

[
r′kk 0

]
;

(b) Apply θ to the k-th column of R and c.
3. Hyperbolic column rotations (HCR) to zero ck (similar to

Type 2 but jk = −jc).
4. Givens row rotations (GRR) to zero rk(k+1).

(a) Determine q such that qH

[
rk(k+1)

r(k+1)(k+1)

]
=

[
0

r′(k+1)(k+1)

]
;

(b) Apply qH to row pair (k, k + 1) of
[
R c

]
. Apply q

to column pair (k, k + 1) of Q.

1 Type 1, 2 and 4 are using Case 3 in Table 1. Type 3 is using Case 1 and
2 in Table 1.

Hence, the columns of QB form an orthonormal basis of SSE-
2. If our objective was to estimate a subspace basis of ran {A},
then we would swap A and B or take R upper triangular so that
ran {QA} = ran {A}. Complete theorems to motivate SURV were
proven but here is no place to show them. The theorems proposed in
[5] could be a reference.

In view of (10), it is seen that a downdating scheme for X or N,
i.e., recomputing the decomposition after removing some columns
of X or N can easily be implemented by updating N or X with
these columns of opposite signatures, respectively. In fact, updating
and downdating problems have no essential difference in SURV, and
hence we will refer to “updating” in general.

4 UPDATING SURV

In this section, we investigate how this factorization can be updated
when new columns for X and N become available. Here, R is cho-
sen to be lower triangular. For a new coming vector cnew, we define
c = QHcnew. Denote the signature of cnew by jc, where jc = +1
if we are extending N by cnew else jc = −1 if we are extending X
by cnew. Denote the signature of R by diag{j1, j2, . . . , jm}. Let
ck denote the k-th entry of c and rkl denote the (k, l) entry of R.

Because of potential numerical instability associated with hyper-
bolic rotations, the updating steps are designed to use at most only
one hyperbolic rotation per vector update. Due to the limitation of
pages, the detailed analysis of the updating steps is not shown here.
The conclusion of this analysis is that the updating algorithm only
consists of the steps for reducing

[
R c

]
to

[
R′ 0

]
(although R′

is also used for an intermediate quantity when c′ is not yet 0). Q
and R are stored and tracked, but Θ and T do not need to be stored
and tracked because (14) is automatically satisfied. To list the updat-
ing algorithm, we define four types of zeroing schemes as listed in
Table 2.

The actual steps of the updating algorithm are determined by
d. The summarized updating algorithm is listed in Table 3, which
contains two phases, one to zero c and the other one to recover the
lower triangular structure of R.

After the zeroing steps described in the upper part of Table 3,
the signature of the resulting matrix

[
R′ c′

]
may be unsorted. If

we store c′ into the last column of R′ and let j′m=j′c in the case

2721

Table 3. The updating algorithm.1

jc = +1 case jc = −1 case

The zeroing steps:
for k = 1:1:(m−d)

zero ck using GCR;
end

for k=(m−d+1):1:(m−1)
zero ck using GRCR;

end

if d > 0
zero cm using HCR.

end

for k = 1:1:(m−d−1)
zero ck using GRCR;

end
if d < m

for k=(m−d):1:(m−1)
swap col(k, k+1) of R;
zero rk(k+1) using GRR;

end
for k = (m−d):1:(m−1)

zero ck using GCR;
end
zero cm using HCR.

else
for k = 1:1:m

zero ck using GCR;
end

end

� Store c′ into the last col of R′ and let j′m=j′c in the case
|rmm|<|cm|, jm = −jc. Then calculate d′ = d−(j′m+jc)/2.

The sorting steps (if j′m = +1):
for k = m:−1:(m−d+2)

swap col(k−1, k) of R′;
zero r(k−1)k using GRR;

end

for k = m:−1:(m−d+1)
swap col(k − 1, k) of R′;
zero r(k−1)k using GRR;

end
1 “col” denotes “column”. The matlab syntax is used for expressing the

loop index k. Steps violating this syntax do not exist.

|rmm| < |cm|, jm = −jc (at this time c′ is nonzero and the last
column of R′ is zero), then only the columns of R′ are involved in
the sorting steps. The number of columns of R′

B, d′, i.e., the rank of
this principal subspace after updating, which is related to d, jc and
j′m at this moment, is defined as d′ = d− (j′m + jc)/2. Now if the
last column of R′ has a positive signature, i.e., j′m = +1, sorting is
possibly needed. The lower part of Table 3 shows the sorting steps.

The computational complexity of the proposed updating algo-
rithm is of O(m2) per vector update. SURV runs at least three times
faster than URV. For the proposed updating algorithm, the highlight
is that only one hyperbolic rotation is needed by entries at the bottom
right corner of

[
R c

]
. This hyperbolic rotation only acts on the two

nonzero entries, rmm and cm. Given the numerically stable forms
for hyperbolic rotations in Case 1 and Case 2:

Case 1 :
[
r x

]
θ =

[
r
√

1− |s|2 0
]
, (16)

Case 2 :
[
r x

]
θ =

[
0 x

√
1− |s|2] , (17)

it is possible to compute
[
rmm cm

]
θ directly avoiding the poten-

tial singularity problem arising from the intermediate computation
of θ. Since Case 3 is actually a Givens rotation, which is known to
be stable, our proposed algorithm is clearly stable. This algorithm
efficiently computes SSE-2 without the inversion computation in the
definition of SSE-2, which may introduce another issue of numerical
stability.

We should regard the extreme case |rmm| = |cm|, jm = −jc
as a type of critical state, which corresponds to the case that a sin-
gular value of the data matrix equals to γ. Our strategy is to slightly
perturb cm and then this case is dealt as a |rmm| > |cm| case if
jc = +1 or a |rmm| < |cm| case if jc = −1. After that processing,
the actual result is

[
0 0

]
. The updating of SURV is still continuous,

while HURV encounters a break down in this case.
The initialization is set as

n1 = m, n2 = 0, d = 0,

R = RA = N = γIm,RB = ∅, X = ∅, Q = Im, (18)

where R can also be assigned a suitable other lower triangular ma-
trix.

5 SIMULATION RESULTS

In this section, we demonstrate the numerical stability of SURV, and
compare its performance with HURV and URV. The data model is
defined as

x(t) = A(t)s(t) + n(t), (19)

where m ≥ d, A(t): m× d has d singular values all 1, s(t) : d× 1
is formed by i.i.d. Gaussian random variables with zero mean and
standard deviation σs = 1, n(t): m× 1 is formed by i.i.d. Gaussian
noise with zero mean and standard deviation σn, and x(t): m × 1.
The received data matrix is formed as X = [x(1), · · · ,x(k)]m×k.

A n-vector (n<k) wide sliding window is used to slide on X to
compute the subspace of the received data matrix. The x(t) inside
the window form the data matrix W. Every W is processed by SVD

to generate the rank estimate d̂svd corresponding to the threshold,
and the principal subspace Usvd corresponding to the known number

of signals d. Rank errors occur when estimates d̂ �= d̂svd or d̂ �= d
depending on the criterion. The rank error rate (RER) is defined by

RER = Number of rank errors/Total number of tests. (20)

The error of the principal subspace estimate Û is defined by

If d̂ = d, eÛ =
∥∥∥ÛZ−Usvd

∥∥∥ ; else eÛ = 1, (21)

where Z = ÛHUsvd. The factorization error is defined as

ef = ‖TJTH −QRJRHQH‖, (22)

where T =
[
γI W

]
for SURV and HURV, and T = W,J = I

for URV. The signal to noise ratio (SNR) is defined as SNR =
10 log(σ2

s/σ
2
n). The same threshold γ = 1.24α is given to all al-

gorithms, where α = σn(1 +
√

m/n)
√
n [9] and γ is a reasonable

threshold on the largest singular value due to noise (resulting in no
false alarm rate for m = 16 and n = 20). The matlab code of URV
is taken from UTV-tools [10] but we slightly modified it to make it
run in nonstationary cases.

Fig. 1 shows the factorization error of SURV, HURV and URV
in different cases. Fig. 1(a) shows the boxplot of the factorization er-
ror over 105 Monte Carlo runs at given SNRs. Fig. 1(b) and Fig. 1(c)
show the factorization error for tracking in a stationary case and in
a nonstationary case with d switching between 1 and 3 every 150
samples, respectively. It is seen from Fig. 1(a) that HURV some-
times is not as stable as SURV and URV. The reason is that HURV
uses at most three hyperbolic rotations per vector update (also tracks
two entries of Θ), and a situation that two large hyperbolic rotations
cancel each other might happen. However, SURV uses at most one
hyperbolic rotation per vector update and then gives a stable factor-
ization. It is seen from Fig. 1(b) and Fig. 1(c) that URV encounters
break downs frequently while never a break down occurs in SURV.

Fig. 2 shows the subspace tracking performance of SURV,
HURV and URV in a stationary case at given SNRs. Fig. 2(a),
Fig. 2(b) and Fig. 2(c) show the rank error rate compared with the

real number of signals d, the rank error rate compared with d̂svd

2722

(a) SNR/dB

F
a
ct

o
ri

za
io

n
er

ro
r

e f
Monte Carlo runs of the factorization of matrices
γ = 1.24α, Number of runs = 1 × 105

d = 2, m = 16, n = 20
SURV-Outliers

SURV-Median

HURV-Outliers

HURV-Median

URV-Outliers

URV-Median

(b) Number of updates

F
a
ct

o
ri

za
io

n
er

ro
r

e f

γ = 1.24α, number of updates = 2 × 105

SNR = 20dB, d = 2, m = 16, n = 20

SURV

HURV

URV

(c) Number of updates

F
a
ct

o
ri

za
io

n
er

ro
r

e f

γ = 1.24α, number of updates = 2 × 105

SNR = 20dB, d = {1, 3}, m = 16, n = 20

SURV

HURV

URV

Tracking in a stationary case

Tracking in a nonstationary case

Fig. 1. Factorization error of SURV, HURV and URV.

(a) SNR/dB

R
a
n
k

er
ro

r
ra

te

Compared with real number of signals
γ = 1.24α

Number of updates = 2 × 104

d = 2, m = 16, n = 20

SVD

SURV

HURV

URV

(b) SNR/dB

R
a
n
k

er
ro

r
ra

te

Compared with SVD
γ = 1.24α

Number of updates = 2 × 104

d = 2, m = 16, n = 20

SURV

HURV

URV

(c) SNR/dB

S
u
b
sp

a
ce

er
ro

r
e Û

Principal subspace tracking
γ = 1.24α

Number of updates = 2 × 104

d = 2, m = 16, n = 20

SURV

HURV

URV

Stationary case

Stationary case

Stationary case

Fig. 2. Subspace tracking performance of SURV, HURV and URV
in a stationary case at given SNRs.

and the averaged subspace error of the estimated principal subspace
over 2 × 104 updates, respectively. The rank estimate of URV is
unreliable at low SNRs, while SURV and HURV always give rank
estimates consistent with SVD. This implies that URV cannot track
the rank of the subspace well in nonstationary cases.

Fig. 3 shows the subspace tracking performance of SURV,
HURV and URV in a nonstationary case at given SNRs with d
switching between 2 and 4 every 150 samples. Fig. 3 is similar to
Fig. 2 except that in Fig. 3(a) and Fig. 3(c) we collect data only in
stationary parts without those in the transient parts at rank changes.
It is seen from Fig. 3 that SURV and HURV always give rank es-
timates consistent with SVD and good estimates of the principal
subspace. However, URV gives a lot of rank errors and encounters
break downs even at high SNRs.

6 CONCLUSION

This paper proposed a signed URV decomposition and its updating
algorithm for subspace tracking. The proposed updating algorithm

(a) SNR/dB

R
a
n
k

er
ro

r
ra

te

Compared with real number of signals
γ = 1.24α

Number of updates = 2 × 104

d = {2, 4}, m = 16, n = 20

SVD

SURV

HURV

URV

(b) SNR/dB

R
a
n
k

er
ro

r
ra

te

Compared with SVD
γ = 1.24α

Number of updates = 2 × 104

d = {2, 4}, m = 16, n = 20

SURV

HURV

URV

(c) SNR/dB

S
u
b
sp

a
ce

er
ro

r
e Û

Principal subspace tracking
γ = 1.24α

Number of updates = 2 × 104

d = {2, 4}, m = 16, n = 20

SURV

HURV

URV

Nonstationary case

Nonstationary case

Nonstationary case

Fig. 3. Subspace tracking performance of SURV, HURV and URV
in a nonstationary case at given SNRs.

uses at most only a single hyperbolic rotation per vector update and
provides a numerically stable computation of the Schur subspace es-
timators (unlike the previously proposed algorithm in [5]).

7 REFERENCES

[1] X. Doukopoulos and G. Moustakides, “Fast and stable sub-
space tracking,” IEEE Trans. Signal Process., vol. 56, no. 4,
pp. 1452–1465, Apr. 2008.

[2] G. W. Stewart, “An updating algorithm for subspace tracking,”
IEEE Trans. Signal Process., vol. 40, pp. 1535–1541, 1992.

[3] H. Park and L. Eldén, “Downdating the rank-revealing URV
decomposition,” SIAM J. Matrix Anal. Appl., vol. 16, no. 1, pp.
138–155, 1995.

[4] A.-J. van der Veen, “A Schur method for low-rank matrix ap-
proximation,” SIAM J. Matrix Anal. Appl., vol. 17, no. 1, pp.
139–160, 1996.

[5] ——, “Subspace tracking using a constrained hyperbolic URV
decomposition,” in Proc. IEEE Int. Conf. Acoust., Speech, Sig-
nal Process., vol. 4, May 1998, pp. 1953–1956.

[6] J. Götze and A.-J. van der Veen, “On-line subspace estima-
tion using a Schur-type method,” IEEE Trans. Signal Process.,
vol. 44, no. 6, pp. 1585–1589, Jun. 1996.

[7] J. Götze, M. Haardt, and J. A. Nossek, “Subspace estimation
using unitary Schur-type methods,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 1995, pp. 1153–1156.

[8] Y. Li, H. Huang, C. Zhang, and S. Li, “New Schur-type-based
PCI algorithms for reverberation suppression in active sonar,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
vol. 4, Mar. 2005, pp. 641–644.

[9] A. Edelman, “The distribution and moments of the smallest
eigenvalue of a random matrix of Wishart type,” Lin. Alg. Ap-
plicat., vol. 159, pp. 55–80, Dec. 1991.

[10] R. D. Fierro, P. C. Hansen, and P. S. K. Hansen, “UTV Tool-
s: Matlab templates for rank-revealing UTV decomposition-
s,” Numerical Algorithms, vol. 20, no. 2-3, pp. 165–194, Aug.
1999.

2723

