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ABSTRACT

Image reconstruction problems in radio astronomy and other
fields like biomedical imaging are often ill-posed and some
form of regularization is required. This imposes user specified
constraints to the reconstruction process that may produce an
undesirable bias to the solution. We propose a data driven
model based least squares reconstruction method based on
the Karhunen-Loève transform. We show that this constraint
stems from intrinsic physical properties of the measurement
process and demonstrate the improvement of the method over
unregularized least squares reconstruction using actual data
from the Low Frequency Array (LOFAR), a phased array ra-
dio telescope in the Netherlands.

Index Terms— image reconstruction, Karhunen-Loève
transform, inversion, regularization, radio astronomy

1. INTRODUCTION

Radio astronomical image reconstruction can be considered
a parameter estimation problem in which the pixel values are
the parameters to be estimated. This leads to a standard in-
version problem for which an l1- or a least squares (LS) opti-
mized solution can be found [1]. Very similar reconstruction
problems are found in other fields like biomedical imaging
[2], geophysics [3] and SAR imaging [4]. If the specified
image resolution is chosen too high, the problem becomes
ill-posed [5, 6] and some form of regularization is required.
Regularization imposes user specified constraints to the re-
construction process that may produce an undesirable bias to
the solution. After introducing the reconstruction problem in
Sec. 2, we therefore propose a data driven model based least
squares image reconstruction method based on the Karhunen-
Loève transform (KLT) in Sec. 3. We show that this only
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imposes a constraint that is related to intrinsic physical prop-
erties of the instrument. We demonstrate the improvement of
our approach over unregularized LS image reconstruction us-
ing actual data from the Low Frequency Array (LOFAR) [7],
a phased array radio telescope in the Netherlands, in Sec. 4.

2. PROBLEM STATEMENT

Radio astronomical arrays (and many other sensor arrays)
measure the correlations between the output signals of the P
receiving elements in the system. This produces a P × P
array covariance matrix that can be modeled as [8]

R = AΣA
H + Σn. (1)

Here, Σ = diag (σ) contains the power received from Q di-
rections of arrival, A describes the array response to the re-
ceived signals including effects such as propagation phenom-
ena and receiver gain differences, andΣn is the noise covari-
ance matrix. We will assume that the latter can be parameter-
ized by a real valued parameter vectorσn that is related to the
noise covariance matrix by vec (Σn) = Mnσn. If the image
is sampled on a grid, the image vector σ represents the power
in each of the Q pixels in the image. The image reconstruc-
tion problem can be formulated as an estimation problem to
find the Q pixel values.
The weighted LS image reconstruction problem can be

formulated as

{σ̂, σ̂n} = argmin
σ,σn

‖W (r̂− Mσ − Mnσn)‖
2

F
, (2)

where ‖ · ‖F denotes the Frobenius norm, W is a weight-
ing matrix, r̂ = vec

(
R̂

)
is the vectorized version of the

array covariance matrix with the columns stacked in a sin-
gle column vector and M = A ◦ A, where ◦ denotes the
Khatri-Rao product or column-wise Kronecker product and
· denotes conjugation. Using covariance matched weighting
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(W = R
−1/2

⊗R
−1/2, where⊗ denotes the Kronecker prod-

uct), the weighted LS estimate is asymptotically equivalent to
the maximum likelihood estimate [9]. It is straightforward to
extend this vectorized formulation to include multiple snap-
shots over time and frequency to improve the imaging result
[8]. Although we will use this extension in Sec. 4, we will
present the image reconstruction based on this single snap-
shot model for clarity of presentation.
A closed form solution can be found by solving for σn as

function of σ and substituting the solution back into the cost
function. The imaging problem can then be formulated as [8]

σ̂ = argmin
σ

���W̃ (r̂ − Mσ)
���2

F

, (3)

where

W̃ = W − WMn

(
M

H
n
W

H
WMn

)−1

M
H
n
W

H
W. (4)

This modified weighting matrix can be interpreted as a filter
to remove the noise source signature from the data. If there
are no noise signals, (2) reduces to

σ̂ = argmin
σ

‖W (r̂ − Mσ)‖
2

F
. (5)

Since the only difference between the general and the noise
free case is in the contents of the weighting matrix, we will
use (5) in the remainder of the paper.
The standard solution to the image reconstruction prob-

lem formulated in (5) is

σ̂ = (WM)
†
Wr̂ = M

−1

d
σd, (6)

where † denotes the pseudo-inverse. We also introduced the
dirty image σd = M

H
W

H
Wr̂ and the deconvolution ma-

trixMd = M
H
W

H
WM. The dirty image can be computed

from the data without an inversion and shows the true image
convolvedwith the spatial response of the array. The multipli-
cation with the inverse of the deconvolution matrix removes
the instrumental response and should thus result in the true
image. The condition number of the deconvolution matrix
strongly depends on the chosen image grid. If the image reso-
lution is chosen too high, the problem becomes ill-posed and
inversion is not possible without introducing some form of
regularization.

3. PROPOSEDMETHOD

If the dimensionality of σ is chosen too large by the user such
that the deconvolutionmatrix cannot be properly inverted, this
implies that the amount of information contained in theQ pix-
els, which are assumed to be mutually independent, is larger
than the amount of information available in the data and that
some form of regularization is required to constrain the prob-
lem. This will reparameterize the problem to a parameter vec-
tor θ with length smaller than Q.

The KLT offers a way to find a data dependent set of base
vectors. It uses an eigenvalue decomposition of the parame-
ter vector covariance matrix, Cσ . Since the celestial source
signals are spatially uncorrelated, we would therefore like to
assume that the pixel values are uncorrelated, i.e., thatCσ is
diagonal. In that case, however, the eigenvalue decomposi-
tion will provide the user specified pixels as base functions.
This works if the sky is mostly empty, a key assumption of
the commonly used CLEAN method [10] for image recon-
struction in radio astronomy. Unfortunately, some datasets
contain more structure than only point sources as illustrated
in the next section. These images are hard to handle with
the CLEAN technique. The sources found using the CLEAN
technique are commonly convolved with a smooth, typically
Gaussian, function to restore the image resolution provided
by the instrument thereby avoiding overinterpretation of the
data. This recognizes the fact that neighboring pixel values
have a higher covariance than well-separated pixel values due
to the limited resolution provided by the instrument.
This suggests that Cσ could be described by the true im-

age convolved with a Gaussian function. This approach has
several disadvantages. First, the true image is unknown, so
this would lead to an iterative and computationally expensive
approach. Second, the user would still need to tune the image
resolution, not by specifying the image grid but by specifying
the width of the Gaussian deconvolution function. Finally, the
resolution provided by a phased array measurement may vary
with direction.
We therefore propose a different approach based on the

observation that the dirty image σd and the true image σ de-
scribe the same physical space. This implies that if the true
image can be linearly mapped on a lower dimensional space,
the dirty image should be linearly projectable on the same
space. This is an important observation, since the dirty image
can be derived from the data without inversion and therefore
the covariance of the dirty image can be calculated from the
covariance of the data. We thus propose to use the base func-
tions Uθ obtained as the set of significant eigenvectors, i.e.
eigenvectors associated with the signal subspace, of the dirty
image covariance matrixCσd

, i.e., from

Cσd
= UΛU

H ≈ UθΛθU
H
θ

. (7)

For Gaussian signals, the data covariance is known to be(
R ⊗ R

)
/N , where N is the number of samples over which

the data are integrated. The covariance of the dirty image
vector can then be described as

Cσd
=

1

N
M

H
W

H
W

(
R ⊗ R

)
W

H
WM. (8)

If we substitute the data model given by (1) and simplify the
result, we find that

Cσd
= Md, (9)

i.e., that the covariance of the dirty image vector is simply the
deconvolution matrix. This is an intuitive result since the de-
convolutionmatrix describes how the image values are related
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to each other via the directional response of the receiving ar-
ray. This demonstrates that base functions obtained from the
KLT only depend on the observed signal and the directional
response of the instrument, i.e., they only depend on intrin-
sic physical properties of the measurement setup and not on
assumptions made by the user.
With these base functions, the solution follows from

σ̃ = UθΛ
−1

θ
U

H
θ

σd, (10)

which is the pseudo-inverse commonly used for noisy cases.
The inversion is thus reduced to inverting a diagonal matrix.
The condition number of Λθ depends on the number of base
functions selected.
Note that we do not compute θ explicitly. Using θ =

U
H
θ

σ, it is still possible to formulate the maximum a-
posteriori (MAP) estimator as [11]

σ̂ = argmin
σ

‖W (r̂ − Mσ)‖
2

F
+

���Λ
−1/2

θ
U

H
θ

σ

���2

F

, (11)

which can be optimized by trying different dimensionalities
forUθ . The MAP formulation thus provides a clear criterion
to limit the number of base vectors used for image reconstruc-
tion, but this is a computationally intensive process. In the
demonstration in the next section, we will impose a restric-
tion on the condition number of Λθ instead to ensure proper
inversion given the SNR of the data.

4. EXPERIMENTAL RESULTS

We demonstrate our proposed method using actual data from
the low frequency array (LOFAR). LOFAR is a phased array
radio telescope, built in the Netherlands, covering the 10 –
250 MHz frequency range [7]. It consists of 48 stations with
two types of antennas. For our demonstration we used the
low band antennas, operating between 10 and 90 MHz, of a
single station. The antennas were arranged in a randomized
configuration with 82 m diameter.
The data were captured on November 6, 2008 between

10:22:21 and 10:26:45 UTC. The data consisted of 25 10-s
observations in 25 distinct 156 kHz frequency channels be-
tween 45.156 and 67.188 MHz. The channels were selected
to provide even coverage of the given frequency range taking
into account the locally present radio frequency interference.
For comparison, the first image was made using LS im-

age reconstruction without regularization. The resolution of
a radio telescope with a completely filled untapered aperture
is roughly λ/D radians [12], where λ is the observed wave-
length and D is the diameter of the aperture. To show the
limits of LS image reconstruction, we set the spacing in the
image grid to 0.8λ/D taking λ = 4.47 m, the wavelength
at the highest frequency. The result is shown in Fig. 1. The
image is sampled on a regular grid by projecting the hemi-
sphere on the horizon plane of the aperture array, which ex-
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Fig. 1. Hemispheric image obtained from unregularized LS
image reconstruction. The resolution is 0.8λ/D where λ is
the wavelength at the highest frequency.
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Fig. 2. Eigenvalues of the dirty image covariance matrix.

actly compensates for beam elongation with increasing bore
sight angle.
The image looks coarse, because the size of the pixels is

close to the resolution of the telescope. Even with this res-
olution, the image reconstruction process already produces a
checkerboard pattern over the image, indicating that we are
pushing the limits of the inversion, i.e., we can hardly extract
more independent information from the data.
To get a more natural looking image and to demonstrate

that the proposed method allows to define the grid spacing
without worrying about the tractability of the inversion prob-
lem, we made the image grid spacing three times as small in-
creasing the number of pixels in the image from 989 to 8937.
Figure 2 shows the eigenvalues of the dirty image covariance
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Fig. 3. The same hemispheric image as shown in Fig. 1 ob-
tained using the KLT. The specified image resolution is three
times higher than in the LS optimized image.

matrix. The eigenvalues are gradually decreasing up to a cer-
tain cut-off where they decrease sharply to the limits of nu-
merical accuracy, signifying the transition from the signal to
the noise subspace. Picking a threshold close to this cut-off,
we defined a threshold at λmax/200 leaving 1361 out of 8937
image components.
Figure 3 shows the image produced using the KLT. The

Sun, visible near the southern horizon and Virgo A, the point
source at the end of the diffuse emission on the southern
hemisphere, are clearly visible in both images, but the image
made using the KLTwould provoke far less debate on whether
these sources were real or imaging artefacts. The dark rings
around the two bright sources near the northeastern horizon,
Cassiopeia A and Cygnus A, result from the tendency of LS
techniques to smooth sharp features. In radio astronomy,
strong sources often get special treatment and some people
have proposed to use the l1-norm instead in image reconstruc-
tion problems [1]. Since the horizon forms a sharp edge, the
tendency of the LS optimization to smooth sharp edges may
also explain the circular ripples that appear to come from the
horizon. This may improve by adding a realistic beam model,
since the lower sensitivity of the receiving elements towards
the horizon forms a natural taper.

5. CONCLUSIONS

Many image reconstruction problems are ill-posed and there-
fore require some form of regularization. We proposed a data
driven model based LS image reconstruction technique us-
ing base functions obtained from the KLT to describe the im-
age. These base functions are derived from the covariance
matrix of the pixels in the dirty image. This is the true im-
age convolved with the instrumental response. The chosen

base functions are based on intrinsic physical properties of
the measurement process and do not introduce any subjective
regularization criterion that may bias the solution. We suc-
cessfully demonstrated the proposed method on actual radio
interferometric data from the LOFAR instrument.
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