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1.1 INTRODUCTION

As demonstrated in other chapters in this book, the deployment of multiple anten-
nas at the transmit and receive side (multiple-input multiple-output (MIMO)) can
result in a significant capacity increase. This is due to two effects: (i) diversity, i.e.,
robustness against fading of the channel between a transmit and a receive antenna,
and (ii) space-time coding, i.e., the parallel transmission of information via multi-
ple transmit antennas. However, this capacity increase was based on an important
assumption: all channels between the transmit antennas and the receive antennas are
accurately known. In practice, these channels will have to be estimated, which is the
focus of this chapter.

The wireless channel is highly complex. In general it is both frequency- and time-
selective, and with multiple antennas, also the space-selectivity plays a role. Physi-
cal models such as Jakes’ model [1] usually simplify this to a multipath propagation
model where each path is parametrized by an angle at the receiver array, perhaps an
angle at the transmitter array, and further a propagation delay and a complex ampli-
tude. This can be refined by making statistical assumptions on the distribution of
these parameters. For channel modeling, one tries to use a general model that allows
to describe a large class of observed channels. For channel estimation, however, there
is a trade-off: a sophisticated model with more parameters may turn out to be less
accurate when the parameters have to be estimated with a finite set of observations.

It is clear that channel estimation is an extensive topic. To limit ourselves, we will
cover only a small subset of channel models and possible estimation techniques:

• Channel model: FIR-MIMO. For broadband communications, the time-dis-
persion or frequency-selectivity due to multipath is important. For the sake
of conciseness, we will restrict ourselves to single-carrier MIMO systems in a
frequency-selective fading channel. The channels are modeled by simple finite
impulse response (FIR) filters with a common order L, assumed to be known.

• Estimation techniques: training-based and semi-blind. In practical systems,
channels are invariably estimated using periodic bursts of known training sym-
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Fig. 1.1 Partitioning of the transmitted symbol vectors into blocks, each consisting

of Nt training and Nd data symbol vectors.

bols, therefore we focus mostly on these techniques. Conventional training-
based methods only exploit the presence of the known training symbols. The
results can be enhanced by also incorporating the convolutional properties
of the surrounding unknown data symbols, which lead to so-called enhanced
training-based methods. Also discussed are semi-blind methods that combine
a training-based criterion with a purely blind criterion. Blind techniques do
not exploit the knowledge of training symbols, and focus on deterministic or
stochastic properties of the system. Note that all channel estimation meth-
ods considered in this chapter are transparent to space-time coding, i.e., any
structure introduced by these codes is not exploited.

Suggestions for further reading are found at the end of the chapter.

Notation

Matrices and column vectors are written in boldface uppercase and lowercase, re-
spectively. For a matrix or column vector, superscript T is the transpose, H the
complex conjugate transpose, and † the pseudo-inverse (Moore-Penrose inverse). IN

is the N×N identity matrix. 0M×N (0N ) is the M×N (N×N ) matrix for which all
entries are equal to zero. vec(A) is a stacking of the columns of a matrix A into a col-
umn vector. ‖ · ‖ represents the Frobenius norm. ⊗ is the Kronecker product. A no-
table property is (for matrices of compatible sizes): vec(ABC) = (CT ⊗A)vec(B).
Finally, E(·) denotes the stochastic expectation operator.

1.2 DATA MODEL

Let us consider a convolutive MIMO system with At transmit antennas and Ar re-
ceive antennas. Suppose x(n) represents the At × 1 symbol vector sequence trans-
mitted at the At transmit antennas. Assuming symbol rate sampling at each receive
antenna, the Ar × 1 sample vector sequence received at the Ar receive antennas is
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then given by

y(n) =

L
∑

l=0

H(l)x(n−l) + e(n), (1.1)

where e(n) is the Ar × 1 additive noise vector sequence on the Ar receive antennas,
which we assume to be zero-mean white (spatially and temporally) Gaussian with
variance σ2

e , and H(l) is the Ar × At MIMO channel of order L (or length L + 1).
We will often make use of the vectorized form of H(l), which is obtained by stacking
its columns: h(l) = vec[H(l)].

In this chapter, we focus on estimating H(l) (or h(l)) without assuming any struc-
ture on it. Hence, no calibration of the different transmit/receive antennas is required.
We assume a burst of N symbol vectors is transmitted, in the form of K symbol
blocks, where each symbol block consists of Nt training symbol vectors, surrounded
at each side by Nd/2 unknown data symbol vectors, i.e., N = K(Nt + Nd) (see
figure 1.1). We will focus on training-based as well as semi-blind channel estimation
algorithms, where the latter rely on the combination of a training-based with a purely
blind criterion.

To describe the different training-based methods that will be discussed in this
chapter, consider the following subvector of the k-th symbol block, as illustrated in
figure 1.1:

xk = [xT
(nk−P ), . . . ,xT

(nk+Nt+P−1)]T , (1.2)

where nk = k(Nt + Nd) + Nd/2 indicates the start of the training symbol vectors
in the k-th symbol block, and 0 ≤ P ≤ Nd/2. This vector contains all the Nt

training symbol vectors transmitted during the k-th symbol block, plus P unkwown
data symbol vectors at each side of it. Due to the convolutive channel, the first L− 1
received sample vectors corresponding to xk are contaminated by preceding data
symbol vectors. Therefore, the received samples that depend only on xk are given
by (see figure 1.1)

yk = [yT
(nk−P+L), . . . ,yT

(nk+Nt+P−1)]T .

This vector can be expressed as

yk = Hxk + ek, (1.3)

where ek is similarly defined as yk and H is the Ar(Nt + 2P −L)×At(Nt + 2P )
block Toeplitz matrix representing the convolution by the channel:

H =

PAt NtAt PAt

· · ·

· · ·

H(L) H(0)

H(0)H(L)

(1.4)
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Define the training part of xk as

x
(t)
k = [xT

(nk), . . . ,xT
(nk+Nt−1)]T , (1.5)

and the unknown data part as

x
(d)
k = [xT

(nk−P ), . . . ,xT
(nk−1),xT

(nk+Nt), . . . ,x
T

(nk+Nt+P−1)]T .

Then we can split (1.3) into

yk = H
(t)x

(t)
k + H

(d)x
(d)
k + ek, (1.6)

where H
(t) is the Ar(Nt + 2P − L) × AtNt matrix obtained by collecting the

Nt middle block columns of H (the dark shaded area in (1.4)), and H
(d) is the

Ar(Nt +2P −L)×2AtP matrix obtained by collecting the P left and P right block
columns (the light shaded area in (1.4)).

The preceding equations have expressed yk as a linear combination of the trans-
mitted symbols xk. Alternatively, we can write the convolution operation (1.3) as a
linear operation on the channel coefficient vector h = [hT

(0), . . . ,hT
(L)]T , which

gives
yk = (X k ⊗ IAr

)h + ek, (1.7)

where X k is the (Nt +2P −L)×At(L+1) block Toeplitz symbol matrix given by

P
P

N
t
−

L

At(L + 1)

· · ·x
T

(nk−P+L)

x
T

(nk−1)

x
T

(nk−1)x
T

(nk)

x
T

(nk−P )

x
T

(nk)

x
T

(nk+Nt−1)

x
T

(nk+Nt−1)

x
T

(nk+Nt+P−1) · · ·

x
T

(nk+Nt)

x
T

(nk+Nt)

x
T

(nk+Nt+P−L−1)

X k =

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

(1.8)
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Similar as in (1.6), we can split (1.7) into a training and an unknown data part as

yk = (X
(t)
k ⊗ IAr

)h + (X
(d)
k ⊗ IAr

)h + ek, (1.9)

where X
(t)
k is obtained by setting the unknown data symbol vectors of x

(d)
k (the light

shaded area in (1.8)) to zero in X k, whereas X
(d)
k is obtained by setting the training

symbol vectors of x
(t)
k (the dark shaded area in (1.8)) to zero.

Although we will generally express the obtained results as a function of k, it will
sometimes be convenient to stack all vectors yk and all matrices X

(t)
k and X

(d)
k for

k = 0, . . . ,K − 1, leading to

y = [yT
0 , . . . ,yT

K−1]
T , (1.10)

X
(t) = [X

(t)T
0 , . . . ,X

(t)T
K−1]

T , X
(d) = [X

(d)T
0 , . . . ,X

(d)T
K−1]

T . (1.11)

We will now discuss training-based channel estimation using (1.6) and (1.9). We will
make a distinction between conventional training-based channel estimation, which
only takes received samples into account that solely depend on training symbols
(P = 0), and enhanced training-based channel estimation, which next to these re-
ceived samples also takes some surrounding received samples into account, which
might depend on both training symbols and unknown data symbols or solely on
unknown data symbols (0 < P ≤ Nd/2). Although the latter techniques can be
classified as semi-blind methods, we will in a subsequent section focus on semi-
blind channel estimation methods that combine one of the previous training-based
methods (conventional or enhanced) with a purely blind method.

1.3 CONVENTIONAL TRAINING-BASED METHODS

1.3.1 Channel Estimation

Conventional training solutions use only those received samples that solely depend
on the training symbols. In other words, we consider P = 0, which allows us to
simplify (1.9) as

yk = (X
(t)
k ⊗ I)h + ek. (1.12)

where I = IAr
. Although many different channel estimation procedures can be

applied to (1.12), we restrict ourselves to maximum likelihood (ML) channel esti-
mation, which neither requires knowledge of the noise variance nor any statistical
information about the channel [2].
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The ML channel estimate related to (1.12) is obtained by solving the following
optimization problem:

hML = arg min
h

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h ‖2

= arg min
h

‖y − (X (t) ⊗ I)h ‖ .

(1.13)

where the received sample vector y and training matrix X
(t) are defined in (1.10)

and (1.11). This is a standard least-squares (LS) problem, whose solution is given in
terms of a pseudo-inverse, (X (t) ⊗ I)†, which is equal to X

(t)† ⊗ I. Assuming X
(t)

has full column rank, which requires K ≥ At(L + 1)/(Nt − L), we obtain

hML = (X (t)† ⊗ I)y

= [(X (t)H
X

(t))−1 ⊗ I](X (t)H ⊗ I)y

=
[(

K−1
∑

k=0

X
(t)H
k X

(t)
k

)−1

⊗ I
]

K−1
∑

k=0

(X
(t)H
k ⊗ I)yk (1.14)

If we insert the data model (1.12), it follows that

hML = h +
[(

K−1
∑

k=0

X
(t)H
k X

(t)
k

)−1

⊗ I
]

K−1
∑

k=0

(X
(t)H
k ⊗ I)ek , (1.15)

which shows that the ML estimate is unbiased. Furthermore, since the noise term
ek has covariance E(eke

H
k ) = σ2

eI, the covariance of the channel estimation error is
given by

E[(hML − h)(hML − h)H ] = σ2
e

[(

K−1
∑

k=0

X
(t)H
k X

(t)
k

)−1

⊗ I
]

,

which is equal to the Cramer-Rao bound (CRB), and the mean square error (MSE)
of the channel estimate can be expressed as

JML = E{‖hML − h‖2} = σ2
eAr tr

[(

K−1
∑

k=0

X
(t)H
k X

(t)
k

)−1]

= σ2
eAr tr[(X (t)H

X
(t))−1] . (1.16)

Note that this channel estimation problem can actually be decoupled into the dif-
ferent receive antennas, and is often presented as such. However, for the enhanced
training-based methods discussed in the next section, the correlation between the
different receive antennas will come into the picture, and the problem cannot be
decoupled anymore. This does not mean that we cannot use the enhanced training-
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Nt = M(L + 1) + L

L 1 L

tkM tkM+1 t(k+1)M−1
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Fig. 1.2 Structure of the solution for optimal training.

based methods on smaller subgroups of receive antennas, it simply means that the
performance of such an approach will be different (see also Section 1.6).

1.3.2 Optimal Training Design

It is possible to design the training symbol vectors such that JML is minimized under
a total training power constraint. In other words, we solve

min
{x

(t)
k

}

tr[(X (t)H
X

(t))−1] s.t.
K−1
∑

k=0

‖x(t)
k ‖2 = E , (1.17)

where E is a specified constant. To solve this problem, observe that

tr[(X (t)H
X

(t))−1] ≥

At(L+1)
∑

i=1

1

‖X (t)(:, i)‖2
, (1.18)

where equality is obtained if X
(t)H

X
(t) is diagonal (the notation A(:, i) represents

the i-th column of the matrix A). From (1.8) (with P = 0), it is clear that each
block column of X

(t)
k only contains Nt − L training symbol vectors of the total

amount of Nt training symbol vectors collected in x
(t)
k . Hence, there is no immediate

connection between
∑K−1

k=0 ‖x(t)
k ‖2 and ‖X (t)‖2, which complicates matters. We

proceed in the following way. We first find the minimum of the right hand side of
(1.18) under the constraint, which is obtained when all terms are equal and as small
as possible under this constraint, and we subsequently try to realize this minimum
by a training design for which X

(t)H
X

(t) is diagonal, in order to obtain equality in
(1.18).

We will consider the following two cases: the number of training symbols Nt ≥
2L + 1, and Nt = L + 1. For the remaining case where L + 1 < Nt < 2L + 1, the
optimization problem is hard to solve in analytical form.
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1.3.2.1 Case Nt ≥ 2L + 1. In this case, the terms on the right hand side of
(1.18) are equal and as small as possible under the constraint

∑K−1
k=0 ‖x(t)

k ‖2 = E, if

{

x(nk+l) = 0At×1

x(nk+Nt−1−l) = 0At×1
, l = 0, 1, . . . , L − 1, k = 0, 1, . . . ,K − 1,

(1.19)
and

‖X (t)(:, i)‖2 = E/At, i = 1, . . . , At(L + 1). (1.20)

If we also choose X
(t)H

X
(t) diagonal, in order to obtain equality in (1.18), then the

latter condition can be written as

X
(t)H

X
(t) = E/AtIAt(L+1), (1.21)

which requires K ≥ At(L + 1)/(Nt − L).
As an example, consider an integer M ≥ 1 and set Nt = M(L + 1) + L. An

optimal solution is then given by using dispersed training symbol vectors separated
by L zero vectors:

x
(t)
k = [0T

AtL×1, t
T
kM ,0T

AtL×1, t
T
kM+1, . . . ,0

T
AtL×1, t

T
(k+1)M−1,0

T
AtL×1]

T (1.22)

where T = [t0, . . . , tKM−1] is an At×KM matrix that satisfies TTH = E/At IAt
,

which requires K ≥ At/M . The structure of the solution is shown in figure 1.2.
Often, only M = At (hence, Nt = At(L + 1) + L) and a single message block

(K = 1) is considered, since this option minimizes the total training overhead for a
fixed total burst length N . For instance, the optimal training approach of [3], which
maximizes a lower bound on the ergodic capacity assuming linear minimum mean
square error (LMMSE) channel estimation, falls within this special class. However,
Nt and K cannot always be chosen freely. As a result, the other options might also
be useful in practice, as well as the case that is considered next.

1.3.2.2 Case Nt = L + 1. First of all, note from (1.8) (with P = 0) that in
this case X

(t)
k = x

(t)T
k , and consequently X

(t) = [x
(t)
0 , . . . ,x

(t)
K−1]

T . Therefore, the
terms on the right hand side of (1.18) are equal and as small as possible under the
constraint

∑K−1
k=0 ‖x(t)

k ‖2 = E, if

‖X (t)(:, i)‖2 = E/(At(L + 1)), i = 1, . . . , At(L + 1). (1.23)

Again, if we also choose X
(t)H

X
(t) diagonal, this condition becomes

X
(t)H

X
(t) = E/(At(L + 1)) IAt(L+1), (1.24)

which requires K ≥ At(L + 1). Since X
(t) has no specific block Toeplitz structure,

condition (1.24) is easy to satisfy.
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1.4 ENHANCED TRAINING-BASED METHODS

In the previous section, we only considered those received samples that solely were
depending on training symbols. However, an enhanced channel estimate can be ob-
tained if we also take some surrounding received samples into account. Referring to
Figure 1.1, we will consider 0 < P ≤ Nd/2, which, this time, does not allow us to
simplify (1.9).

We will again apply ML channel estimation. However, since also unknown data
symbols are involved, we can adopt different options now. We will here focus on
deterministic ML (DML) and Gaussian ML (GML). In DML, we assume the data
symbols are unknown deterministic parameters, whereas in GML we assume that
they are unknown random variables with a Gaussian distribution. Both methods do
not take the finite alphabet property of the data symbols into account, because this
often leads to more complex algorithms. For this extension, we refer the interested
reader to [4], where the data symbols are viewed as discrete deterministic parameters,
and to [5], where they are regarded as random variables with a discrete distribution
(only flat-fading MIMO channels are considered in [4] and [5]).

Since we restrict P to 0 < P ≤ Nd/2, two successive vectors x
(d)
k and x

(d)
k+1

never overlap, which allows us to process them independently. See [6] for an overview
of similar enhanced training-based ML methods for the single-input multiple-output
(SIMO) case with K = 1.

1.4.1 Deterministic ML

Viewing the data symbols as unknown deterministic parameters, the ML channel
estimate related to (1.9) is obtained by solving the following optimization problem:

(hML, {x(t)
k,ML}) = arg min

(h,{x
(t)
k

})

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h − (X

(d)
k ⊗ I)h‖2

(1.25)

= arg min
(h,{x

(t)
k

})

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h − H

(d)x
(d)
k ‖2. (1.26)

This can for instance be solved by alternating minimizations between h and {x(d)
k }

(initialized by x
(d)
k = 02AtP×1). In this context, note that the solution for h of (1.25)
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for a given estimate x̂
(d)
k is, similar as in (1.14),

hML({x̂(d)
k }) = arg min

h

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h − (X̂

(d)

k ⊗ I)h ‖2

=
{[

K−1
∑

k=0

(X
(t)
k + X̂

(d)

k )H(X
(t)
k + X̂

(d)

k )
]−1

⊗ I
}

·
K−1
∑

k=0

[(X
(t)
k + X̂

(d)

k )H ⊗ I]yk, (1.27)

whereas the solution for x
(d)
k,ML of (1.26) for a given estimate ĥ is

x
(d)
k,ML(ĥ) = arg min

x
(d)
k

‖yk − (X
(t)
k ⊗ I)ĥ − Ĥ

(d)
x

(d)
k ‖2

= Ĥ
(d)†

[yk − (X
(t)
k ⊗ I)ĥ] . (1.28)

Note that we assume here that X
(t) + X̂

(d)
always has full column rank At(L + 1),

which requires K ≥ At(L + 1)/(Nt + 2P − L).
We can also plug (1.28) in (1.26) to obtain

hML = arg min
h

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h ‖2

P⊥

col(H
(d))

, (1.29)

where P⊥
col(H

(d)) = IAr(Nt+2P−L) − H
(d)

H
(d)† is the projection matrix onto the

orthogonal complement of the column space of H
(d). This problem can be solved

using gradient techniques which, unfortunately, are rather complex and probably
not worth the additional effort. Note that the simplified quadratic DML techniques
proposed for SIMO systems [6] cannot be applied for MIMO systems, because it is
impossible to find a linear parametrization of the null space of H

(d) as a function
of h.

The CRB for the DML channel estimate can be derived as in [7] and is given by

CRBDML = σ2
e

{

K−1
∑

k=0

[(X
(t)
k + X

(d)
k )H ⊗ I]P⊥

col(H
(d))[(X

(t)
k + X

(d)
k ) ⊗ I]

}−1

.

(1.30)
Remark 1: If Nt > L, Ar ≤ At, and H

(d) has a non-empty left null space of
dimension Ar(Nt − L) (true with probability one if Nt > L and Ar ≤ At), then
the matrix P⊥

col(H
(d)) = S, where S is the Ar(Nt + 2P − L) × Ar(Nt + 2P − L)

selection matrix that selects the Ar(Nt − L) middle rows and removes the ArP top
and bottom rows. As a result, the iterative approach is not required, since we can
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solve (1.29) in closed form. Its solution is then given by

hML =
[

K−1
∑

k=0

(X
(t)H
k ⊗ I)S(X

(t)
k ⊗ I)

]−1 K−1
∑

k=0

(X
(t)H
k ⊗ I)Syk. (1.31)

The CRB (1.30) can then be expressed as

CRBDML = σ2
e

{

K−1
∑

k=0

[(X
(t)
k + X

(d)
k )H ⊗ I]S[(X

(t)
k + X

(d)
k ) ⊗ I]

}−1

= σ2
e

[

K−1
∑

k=0

(X
(t)H
k ⊗ I)S(X

(t)
k ⊗ I)

]−1

,

where we have used that the Ar(Nt − L) middle rows of X
(d)
k contain zero entries.

It is clear that these results are exactly the same as the ones for the conventional
training-based method (applying S is the same as taking P = 0).

Remark 2: Another special case arises when Nt ≤ L, Ar ≤ At, and the matrix
H

(d) has an empty left null space (true with probability one if Nt ≤ L and Ar ≤
At). In that case, P⊥

col(H
(d)) = 0Ar(Nt+2P−L), which actually means that the

DML problem is underdetermined ((1.29) is underdetermined and the CRB (1.30)
is infinity). However, the iterative approach can still be applied in order to find
a reasonable channel estimate. Actually, the iterative approach will converge in one
step to the solution that is obtained after the first step of the GML method (see Section
1.4.2). Hence, it can never outperform the GML method under these circumstances.

1.4.2 Gaussian ML

Recall equation (1.9), viz.,

yk = (X
(t)
k ⊗ I)h + [(X

(d)
k ⊗ I)h + ek] . (1.32)

Viewing the data symbols as unknown random variables with a Gaussian distribution,
the term in brackets is a Gaussian noise term with covariance

Q = H
(d)Rx(d)H

(d)H + σ2
eIAr(Nt+2P−L), (1.33)

where Rx(d) = E{x(d)
k x

(d)H
k } is the covariance of x

(d)
k , which we assume to be

known. Following standard techniques, the ML channel estimate related to (1.32) is
then obtained by solving the optimization problem

(hML, σ2
e,ML) = arg min

(h,σ2
e
)
K ln |Q| +

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h‖2

Q−1 . (1.34)
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This problem can be solved using gradient techniques. However, since these are
rather complex, we will simplify (approximate) the problem by assuming that Q

is an arbitrary matrix that is independent from h and σ2
e . This approach has been

proposed in [8] for the single-input single-output (SISO) case, and it has been shown
there that the effect on the CRB is negligible. We then obtain

(hML,QML) = arg min
(h,Q)

K ln |Q| +
K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h‖2

Q−1 , (1.35)

which can be solved using alternating minimizations between h and Q (initialized
by Q = IAr(Nt+2P−L)). Indeed, using similar derivations as in [8], we can show

that for a given estimate Q̂, the optimal estimate for h is

hML(Q̂) = arg min
h

K ln |Q̂| +
K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h‖2

Q̂−1

=
[

K−1
∑

k=0

(X
(t)H
k ⊗ I)Q̂−1(X

(t)
k ⊗ I)

]−1 K−1
∑

k=0

(X
(t)H
k ⊗ I)Q̂−1yk,

(1.36)

whereas for a given estimate ĥ, the optimal estimate for Q is

QML(ĥ) = arg min
Q

K ln |Q| +
K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)ĥ‖2

Q−1

= K−1
K−1
∑

k=0

[yk − (X
(t)
k ⊗ I)ĥ][yk − (X

(t)
k ⊗ I)ĥ]H . (1.37)

Note that we assume here that X
(t) has full column rank At(L + 1), which requires

K ≥ At(L + 1)/(Nt + 2P − L), and that Q̂ is always invertible, which requires
K ≥ Ar(Nt + 2P − L).

As already mentioned, the CRB does not change much by simplifying (approxi-
mating) the GML problem formulation. Hence, we will only show the CRB of the
simplified (approximated) GML channel estimate. This can be derived as in [8] and
is given by

CRBGML =
[

K−1
∑

k=0

(X
(t)H
k ⊗ I)Q−1(X

(t)
k ⊗ I)

]−1

. (1.38)

Remark 3: If we set the first and last L training symbol vectors to zero in each
symbol block, as we did for the optimal training strategy of Section 1.3.2.1 (see
(1.19)), then it is easy to show that

Q−1(X
(t)
k ⊗ I) = σ−2

e (X
(t)
k ⊗ I).
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As a result, the CRB (1.38) can be expressed as

CRBGML = σ2
e

[(

K−1
∑

k=0

X
(t)H
k X

(t)
k

)−1

⊗ I
]

. (1.39)

Because of (1.19), this CRB does not change with P , and is hence equivalent to the
CRB for the conventional training-based method (which takes P = 0). Therefore,
the GML method has no advantage over the conventional training-based method in
this case.

Remark 4: A closed-form GML channel estimate can be obtained when Nt = 1
and P = L. First, observe that when Nt = 1 and P = L, X

(t)
k can be written as

X
(t)
k = IL+1 ⊗ x

(t)T
k = IL+1 ⊗ xT

(nk).

Due to this special structure, it can be shown that (1.36) becomes independent of Q̂

as long as it is invertible. As a result, the iterative approach converges in one step
and the closed-form GML channel estimate is given by

hML =
[

IL+1 ⊗
(

K−1
∑

k=0

x∗
(nk)xT

(nk)

)−1

⊗ I
]

K−1
∑

k=0

(IL+1 ⊗ x∗
(nk)⊗ I)yk. (1.40)

The CRB (1.38) becomes

CRBGML =
[

K−1
∑

k=0

(IL+1 ⊗ x∗
(nk) ⊗ I)Q−1(IL+1 ⊗ xT

(nk) ⊗ I)
]−1

.

Note that in this case, we can again decouple the problem into the different receive
antennas.

1.5 SEMI-BLIND CHANNEL ESTIMATION

1.5.1 A Combined Cost Function

The enhanced training-based methods discussed in the previous section can be viewed
as semi-blind channel estimation methods, albeit in a limited form. We discuss in
this section the combination of training-based methods (conventional or enhanced)
with purely blind methods. We can arrive at such a method by combining the cost
functions in Sections 1.3 or 1.4 with a blind criterion. We will limit ourselves to
quadratic blind criteria which usually result from deterministic blind methods or
stochastic blind methods based on second-order statistics (SOS). It would also be
possible to exploit higher-order statistics (HOS) [9, 10] or constant modulus and fi-
nite alphabet properties.

For the sake of simplicity, we restrict our attention to the conventional training-
based criterion (1.13). Combining this criterion with a quadratic blind criterion, we
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obtain a semi-blind problem that often can be formulated as

ho = arg min
h

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h‖2 + α‖VH‖2, (1.41)

where H = [HT
(0), . . . ,HT

(L)]T , and V = [V(0), . . . ,V(L)] is a matrix which de-
pends on the received data and can be constructed in many different ways depending
on the blind criterion that will be adopted (see later on).

To rewrite this as a single condition on h, let W = [W(0), . . . ,W(L)] be a matrix
such that vec(VH) = Wh. In particular, since

vec(V(l)H(l)) = (IAt
⊗ V(l))vec(H(l)) = W(l)h(l) , (1.42)

W(l) is given by W(l) = IAt
⊗ V(l). In terms of W, the problem (1.41) can be

rewritten as

ho = arg min
h

K−1
∑

k=0

‖yk − (X
(t)
k ⊗ I)h‖2 + α‖Wh‖2 , (1.43)

the solution of which is given by

ho =
[(

K−1
∑

k=0

X
(t)H
k X

(t)
k

)

⊗ I + αWHW
]−1 K−1

∑

k=0

(X
(t)H
k ⊗ I)yk. (1.44)

Note that the choice of a good weighting factor α will be crucial. We will come back
to this in Section 1.5.4.

The matrix V in (1.41) can be obtained from many recently proposed blind MIMO
channel estimation algorithms that determine the channel H up to an invertible
(sometimes unitary) matrix. Usually, HOS are used to resolve this ambiguity. Here,
the training-based part will take care of that (we assume that the channel is identifi-
able using only the training part). Generally, only the received sample vectors that
depend completely on unknown data symbol vectors are taken into account in the
blind criterion. However, in the considered setup, this would mean that a lot of blind
structural information is lost, because the training symbol vectors break up the total
burst in many different pieces. In this work, we therefore construct the blind criterion
based on all received sample vectors in order not to lose any blind information.

As examples on the construction of V, we will present in Sections 1.5.2 and
1.5.3 two deterministic blind algorithms, capable of perfectly estimating H (up to an
invertible matrix) using a finite number of samples in the absence of noise. The first
is the subspace (SS) approach [11], [12], [13] whereas the second is the least-squares
smoothing (LSS) approach [14], [15].
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1.5.2 Subspace Approach

The first example of a blind MIMO channel estimation algorithm is the so-called
subspace approach, defined in [12], [13] (introduced in [11] for the SIMO case). Let
Y be an extended data matrix constructed from the received sample vectors as

Y =







y(L) y(L+1) · · · y(N−Q−1)

...
...

y(L+Q) y(L+Q+1) · · · y(N−1)






. (1.45)

Y is an Ar(Q+1)×(N−L−Q) block Hankel matrix, where Q is a design parameter
that can be interpreted as the filter order of an equalizer acting on the sequence y(n),
and is usually called the smoothing factor. This matrix can be written as

Y = HQX + E, (1.46)

where the additive noise matrix E is similarly defined as Y , HQ is the Ar(Q + 1)×
At(L + Q + 1) block Toeplitz channel matrix that is similarly defined as H in (1.4)
but with different dimensions, and X is the At(L + Q + 1) × (N − L − Q) block
Hankel data symbol matrix given by

X =







x(0) · · · x(N−L−Q−1)

...
...

x(L+Q) · · · x(N−1)






. (1.47)

Let us assume that there is no noise. If HQ is tall and of full column rank, and X is
wide and of full row rank, then Y = HQX is a low-rank factorization, and therefore
Y has a non-empty left null space of dimension dSS = Ar(Q + 1) − At(L + Q +
1). Denoting the Ar(Q + 1) × dSS matrix USS as the left singular vectors of Y

corresponding to this null space, we have

H
H
QUSS = 0At(L+Q+1)×dSS

. (1.48)
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x(0) x(Q+1)

y(2L+Q+1)

Fig. 1.3 Least-squares smoothing data model.

Each block row of (1.48) gives a linear relation on the block entries H(l) inside the
structured matrix HQ. Subsequently, we use this structure to rewrite the equation:

H
H
QUSS =

















HH
(L)

...
. . .

HH
(0) HH

(L)

. . .
...

HH
(0)























USS(0)

...
USS(Q)






= 0At(L+Q+1)×dSS

m

[

HH
(0) · · · HH

(L)
]







USS(Q) · · · USS(0)

. . .
. . .

USS(Q) · · · USS(0)






= HHUSS= 0At×dSS

.

As a result, we can choose V = VSS = U
H
SS in equation (1.41). In the noiseless

case, the solution is unique (up to an invertible matrix) if HQ has full column rank
and X has full row rank.

1.5.3 Least-Squares Smoothing Approach

A second blind MIMO channel estimation technique is the so-called least-squares
smoothing approach [15] (introduced in [14] for the SIMO case). Define the follow-
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ing block Hankel received sample matrices (viz. Figure 1.3),

Yp =







y(L) · · · y(N−2Q−L−3)

...
...

y(Q+L) · · · y(N−Q−L−3)






: Ar(Q+1)×[N−2(Q+L+1)] ,

Yc =







y(Q+L+1) · · · y(N−Q−L−2)

...
...

y(Q+2L+1) · · · y(N−Q−2)






: Ar(L+1)×[N−2(Q+L+1)] ,

Yf =







y(Q+2L+2) · · · y(N−Q−1)

...
...

y(2Q+2L+2) · · · y(N−1)






: Ar(Q+1)×[N−2(Q+L+1)] ,

corresponding to the “past”, “current” and “future”. L is the smoothing factor for Y c,
and Q is the smoothing factor for Yp and Yf . These matrices have the following
models:

Yp = HQX p + Ep,

Yc = HLX c + Ec,

Yf = HQX f + Ef , (1.49)

where HQ and HL are Ar(Q + 1)×At(Q + L + 1) and Ar(L + 1)×At(2L + 1)
block Toeplitz channel matrices, and X p, X c, and X f are the past, current and
future block Hankel data symbol matrices, given by

X p =







x(0) · · · x(N−2Q−2L−3)

...
...

x(Q+L) · · · x(N−Q−L−3)






: At(Q+L+1)×[N−2(Q+L+1)] ,

X c =







x(Q+1) · · · x(N−Q−2L−2)

...
...

x(Q+2L+1) · · · x(N−Q−2)






: At(2L+1)×[N−2(Q+L+1)] ,

X f =







x(Q+L+2) · · · x(N−Q−L−1)

...
...

x(2Q+2L+2) · · · x(N−1)






: At(Q+L+1)×[N−2(Q+L+1)] .

Note that all the block rows of X c, except for the block row

X = [x(Q+L+1), . . . ,x(N−Q−L−2)] , (1.50)

are contained in X p and X f . Hence, all different block rows can be collected in

X tot = [X T
p ,XT ,X T

f ]T . (1.51)
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Let us assume that there is no noise. If HQ is tall and of full column rank and
X tot is wide and of full row rank, then the orthogonal projection of Y c onto the
orthogonal complement of the row space of X p,f = [X T

p ,X T
f ]T is equal to the

orthogonal projection of Yc onto the orthogonal complement of the row space of
Yp,f = [YT

p ,YT
f ]T , and it is given by

YcP
⊥
row(Yp,f ) = YcP

⊥
row(X p,f ) = HXP⊥

row(X p,f ), (1.52)

where P⊥
row(A) = I−A†A is the projection matrix onto the orthogonal complement

of the row space of A. In addition, H has full column rank and XP⊥
row(X p,f ) has

full row rank, which means that the column span of YcP
⊥
row(Yp,f ) coincides with

the column span of H. Let ULSS be a matrix containing the left null space vectors of
YcP

⊥
row(Yp,f ). ULSS has size Ar(L + 1)× dLSS , where dLSS = Ar(L + 1)−At,

and
HHULSS = 0At×dLSS

. (1.53)

In terms of the semi-blind criterion, we can take V = VLSS = UH
LSS in (1.41).

In the noiseless case, the blind solution is unique (up to an invertible matrix) if HQ

has full column rank and X tot has full row rank.

1.5.4 Weighting Factor

In equation (1.41), a weighting factor α scales the blind equation error relative to the
training error. The choice of α is important: with an incorrect setting, the channel
estimate can be worse than a training-only estimate! Ideally, one would want to
choose α to minimize the channel MSE.

This is a well-known but essentially unsolved problem in semi-blind channel es-
timation; an extensive discussion can be found in [6]. One heuristic way of handling
the problem is trying to avoid it by adapting the blind cost function in such a way
that the MSE becomes less sensitive to α, e.g., by “denoising” [6]: a technique
where the smallest eigenvalue of WHW is forced to zero by replacing WHW by
WHW − λminI, where λmin is the minimal eigenvalue of WHW. One could also
try to find the optimal α in terms of the channel MSE, but this is usually very hard
and represents a large computational cost.

1.5.5 Other Blind Channel Estimation Algorithms

The SS and LSS approaches basically require that all sources have the same channel
order and that this channel order is known. Related to this latter requirement, it must
be said that in contrast to the SS approach, the LSS approach allows for a simple
joint order-channel estimation technique (illustrated in [14] for the SIMO case).

To avoid the sensitive requirement on knowledge of the channel length as present
in the SS and LSS techniques, some interesting stochastic blind techniques based
on SOS have been developed, such as the outer-product decomposition (OPD) ap-
proach [16], [17], [15], and the multi-step linear prediction (MSLP) approach [18],
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[19], [15], which is a generalization of the earlier (one-step) linear prediction (LP)
approach [20], [21], [22], [23], [15]. Note that for the latter, a corresponding semi-
blind MIMO channel estimation procedure has been developed in [24]. The OPD
and MLSP are closely related to each other and can be viewed as a stochastic version
of the LSS approach. They do not require that all sources have the same channel or-
der and that this channel order is known. However, they require the different sources
to be zero-mean white (spatially and temporally), which is not always the case, e.g.,
when space-time coding is used. Moreover, since the training-based part that we
include in the cost function can remove any ambiguity problems due to the above
identifiability requirements, we have observed that the deterministic techniques are
to be preferred in a semi-blind context if the total burst length N is short.

1.6 SIMULATION RESULTS

To finish the chapter, the proposed techniques are illustrated by means of simulation.
We assume that the At × Ar MIMO channel H(l) of order L is Rayleigh fading,
i.e., has zero-mean Gaussian distributed channel taps. We further assume that these
channel taps are i.i.d. with variance σ2

h. Although the proposed methods are able to
handle sources with correlations that are spatially or temporally colored, e.g., due to
space-time coding, we assume here a simple spatial multiplexing approach where the
unknown data symbols are zero-mean i.i.d. (spatially and temporally) QPSK modu-
lated with symbol energy 1. If possible, the training symbols are designed according
to one of the optimal training strategies discussed in Section 1.3.2 in such a way that
the average symbol energy is 1. If not possible, e.g., when Nt = 1 as illustrated
below, they are designed in a similar way as the unknown data symbols, with unit
energy. The noise variance is σ2

e , and the received signal-to-noise ratio (SNR) per
transmit antenna is defined as

SNR =
(L + 1)σ2

h

σ2
e

. (1.54)

To compare the different channel estimation methods, we will use the normalized
MSE (NMSE) as performance measure, which can be defined as

NMSE =
1

R

R−1
∑

r=0

‖ĥ(r) − h(r)‖2

(L + 1)AtArσ2
h

, (1.55)

where the superscript r indicates the simulation run, and R is the total number of
runs. Note that in each run, we will consider a new channel, data, and noise realiza-
tion. First, we will compare the different training-based methods. Next, we study the
performance of the presented semi-blind channel estimation procedures.
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Fig. 1.4 Training-based algorithms: Comparison of the different methods (a) for

Nt = 2L + 1 = 7, (b) for Nt = L + 1 = 4, (c) for Nt = 1.
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1.6.1 Training-Based Results

We consider a MIMO system with At = 2 transmit antennas and Ar = 1, 2, 4 receive
antennas. The channel order we simulate is L = 3. For the enhanced training-based
methods, we take P = L = 3 and we carry out three iterations (unless of course the
method converges in one step). The total number of symbol blocks that will be taken
into account is given by K = 100. To make a fair comparison between the different
number of receive antennas, we consider R = 400, 200, 100 simulation runs for
Ar = 1, 2, 4 receive antennas, respectively. Note that decreasing Ar can either be
viewed as reducing the number of receive antennas, or as treating the different receive
antennas in smaller subgroups.

First, we take Nt = 2L+1 = 7, such that we can implement the optimal training
strategy of Section 1.3.2.1. From Remark 1, we know that the conventional ML
method with Ar = 1, 2, 4 and the DML method with Ar = 1, 2 will produce the
same result in this case. The DML method with Ar = 4 and the GML method with
Ar = 1, 2, 4, on the other hand, will result in a different performance. However,
since the GML method will not be able to outperform the conventional ML method
in this case (see Remark 3), we will not consider it here. The simulation results and
CRB’s are shown in Figure 1.4(a). We observe that the simulation results match the
CRB’s well. We also notice that the DML method with Ar = 4 does a little bit better
than the other methods.

Next, we take Nt = L + 1 = 4, such that we can implement the optimal training
strategy of Section 1.3.2.2; the results are shown in Figure 1.4(b). From Remark
1, we can again deduce that the conventional ML method with Ar = 1, 2, 4 and the
DML method with Ar = 1, 2 are the same. As before, the DML method with Ar = 4
and the GML method with Ar = 1, 2, 4 will be different, but this time there is no
indication that the GML method can not beat the conventional ML method. Hence,
all methods will be considered. From Figure 1.4(b), we observe that the conventional
ML method with Ar = 1, 2, 4 and the DML method with Ar = 1, 2 closely approach
their CRB, which is by the way the worst among all CRB’s. The DML method with
Ar = 4 has the best CRB, but the simulated performance saturates at high SNR. The
saturation level can be lowered by increasing the number of iterations, but it goes
slowly. The CRB of the GML method is somewhere in between and improves with
Ar. As for the DML method with Ar = 4, its simulated performance moves away
from the CRB, but not as much. In addition, only a few more iterations will shift the
simulated performance close to its CRB.

We finally consider a situation where the conventional ML method can not be used
due to the fact that Nt < L + 1. This happens for instance for the pilot symbol as-
sisted modulation (PSAM) scheme [25], where training symbols (pilots) are periodi-
cally inserted in the total burst. In the considered MIMO setup, the PSAM approach
corresponds to taking Nt = 1. From Remark 2, we know that the DML method
with Ar = 1, 2 corresponds to the first step of the GML method with Ar = 1, 2,
and thus should not be considered. Remark 4, on the other hand, tells us that the
GML method converges in one step and performs the same for Ar = 1, 2, 4. Only
the DML method with Ar = 4 does better, as can be observed from Figure 1.4(c).
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Notice that whereas the GML method performs close to its CRB, the performance of
the DML method with Ar = 4 is generally far from its CRB (in a positive sense at
low SNR, but in a negative sense at high SNR). This gap reduces by increasing the
number of iterations, but this goes very slowly.

1.6.2 Semi-Blind Results

In this section, we illustrate the performance of the semi-blind methods. We consider
a MIMO system with At = 2 transmit antennas and Ar = 4 receive antennas. Note
that Ar > At is required for the semi-blind criterion to be useful (this is in contrast
with the enhanced training-based methods). The channel order is again assumed to
be L = 3. We consider K = 10 symbols blocks, Nt = 7 training symbol vectors per
block, and Nd = 80 unknown data symbol vectors per block (as a result, we have a
total of N = K(Nt+Nd) = 870 symbol vectors in one burst). Since Nt = 2L+1 =
7, we again use the optimal training strategy of Section 1.3.2.1. We consider R =
100 simulation runs and the received SNR per transmit antenna is set to 15 dB. Figure
1.5 compares the performance of the semi-blind method using the subspace and the
least-squares smoothing criterion with the conventional training-based method as a
function of α. Clearly, at the optimal α (different for the two aproaches), the semi-
blind method outperforms the conventional training-based method. We also observe
that the subspace approach does better than the least-squares smoothing approach. A
similar behavior was observed for different settings.

1.7 CONCLUSIONS AND ADDITIONAL POINTERS

This chapter has covered only a very small part of the available literature. As a
general reference to wireless channel estimation algorithms, we suggest the edited
book [26], and the overview article [27].

Optimal training symbol placement and design has recently become a popular
topic, e.g., in context of capacity maximization; some contributions are [28–32].
In particular relevant to the discussion in this chapter is [30], which gives optimal
placement of training symbols in the semiblind context based on Cramer-Rao Bound
(CRB) considerations (i.e., minimizing the MSE of the channel estimate and un-
known data symbols).

In this chapter, we did not cover multi-carrier MIMO systems (e.g., based on or-
thogonal frequency division multiplexing (OFDM)). For these systems, the frequency-
selective channel can be transformed into a set of parallel frequency-flat (or instanta-
neous) channels. Although each subband is a special case of a single-carrier MIMO
system, more optimal methods can be adopted by exploiting the OFDM structure
(the dependencies between subbands) . For more details in this direction, we refer to
[31–35] and references therein.

A new trend in the field of channel estimation considers linear time-varying (LTV)
channels. Here, the channel is assumed to vary over a data block. There are two
approaches: (i) channel tracking, where an initial estimate is updated as time pro-



CONCLUSIONS AND ADDITIONAL POINTERS 23

(a)

0 0.5 1 1.5 2

x 10
4

10
−3

10
−2

10
−1

N
M

S
E

α

conventional
subspace

(b)

0 5 10 15 20
10

−3

10
−2

10
−1

N
M

S
E

α

conventional
least−squares smoothing

Fig. 1.5 Semi-blind algorithms: Comparison of the different methods (a) subspace

method, (b) least-squares smoothing method.
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gresses, and (ii) model-based block solutions, where the number of unknown chan-
nel coefficients is limited via a parametric model for the channel time variation, such
as an exponential or polynomial basis expansion model. These parametric models
are studied in, e.g., [36–39].

Another recent trend is to consider superimposed training. The schemes in this
chapter were based on time-division multiplexing. Superimposed training is to add
to the data stream x(d)(t) a known training signal x(t)(t), so that x(t) = x(d)(t) +
x(t)(t). Channel estimation is possible e.g., if the data symbols are i.i.d. and zero-
mean, whereas the pilot has certain periodicities (cyclostationary properties) [40].

For the FIR-SIMO case, semi-blind methods of the type we discussed have been
presented in [6], [41]. Some of the earlier (FIR-SISO) semi-blind papers are [42–45].
In Section 1.5, we presented two deterministic techniques for blind channel estima-
tion. In general, such techniques may exploit (i) the convolutive structure (Han-
kel/Toeplitz), via oversampling or multiple channels, (ii) instantaneous properties
of the sources, such as their finite alphabet and constant modulus, or (iii) stochastic
properties such as statistical independence and cyclostationarity. This area has seen
tremendous activity in the 1990s. Overviews can be found in [26, 46–48]. There are
also several examples of algorithms which combine training with blind source prop-
erties, but the topic has not systematically been researched. As mentioned in Section
1.5.4, the problem of “α”-scaling of the training vs. blind parts of the cost function
remains essentially open, although several heuristics are known [6].
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