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The delay-hopped transmit-reference ultra wideband
communication system introduced by Hoctor and Tomlin-
son results in a receiver based on a bank of correlators and
a sliding window integrator. In this paper, we derive a com-
plete signal processing model for this receiver structure. In
particular, we take the effects of the radio propagation chan-
nel on the correlations into account, as well as the effects
of the additive noise. Blind and semi-blind receiver algo-
rithms are proposed to estimate the effective channel coeffi-
cients and the data, and the performance of the algorithms
is tested in simulations.

1. INTRODUCTION

In the context of ultrawideband (UWB) communications, a
variety of transceiver schemes have been proposed. While
the multi-band (OFDM) solution has been most widely
adopted as a natural evolution of existing technology, a po-
tentially simpler solution is offered by Transmit Reference
(TR) impulse-based systems, studied here. As initially pro-
posed by Hoctor and Tomlinson in [1, 2], TR-UWB systems
have the advantage of not requiring channel parameter es-
timation at the nanosecond level. Instead the detection of
the transmitted data relies on the autocorrelation with a
reference pulse, while multi-user access capabilities are pro-
vided by a delay-hopping (DH) code in addition to a code
modulation (CDMA) scheme.

The receivers proposed in [1, 2] did not take the delay
spread of more realistic FIR channels into account. This ex-
tension was made in our preceding paper [3], where a data
model for a multi-user delay-hopped transmit-reference
(DH-TR) UWB system over a dispersive channel was for-
mulated. These effects were further quantized in [4] for
Rayleigh-fading channels with an exponential path delay
profile. Furthermore, a similar autocorrelation system was
studied in [5, 6] for the case of differential transmissions (at
symbol and frame level), with a detailed analysis of inter-
frame and inter-symbol interference. Work has started
to build implementations of these transceivers, based on
CMOS technology [7].

In this paper, we extend this work, and derive a de-
tailed data model for a DH-TR UWB system, including
the effect of dispersive channels and additive noise, as pro-
cessed by the correlator (in previous research, noise was
ignored). Based on this, we propose several receiver algo-
rithms, first for the noiseless single-user case (matched fil-
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ter, blind multi-symbol, and iterative extensions of both),
and subsequently for the complete data model. The pro-
posed algorithms are blind or semi-blind: the channel pa-
rameters (in this case correlations) are estimated along with
the data. Section 5 shows the simulated performance of the
algorithms.

2. TRANSMIT-REFERENCE DATA MODEL

2.1. Analog receiver model

We consider a single-user DH TR system as in [2] where
narrow pulses g(t) are transmitted in pairs (doublets) d(t),
spaced by varying time intervals of duration Di. In a dou-
blet, the first pulse is fixed, the second is modulated by the
chip value c ∈ {+1,−1}, d(t) = g(t) + c · g(t − Di). A chip
consists of Nd identical doublets, spaced by Td. A sequence
of Nc chips [c1, · · · , cNc ] forms a code vector for a symbol of
duration Ts = NcTc, where Tc = NdTd is the chip duration,
as depicted in figure 1(a).

The signal propagates through a radio channel with im-
pulse response hp(t), and at the receiver it is passed through
a bank of M correlators, each correlating the signal with a
delayed version of itself at lags Dm, m = 1, · · · , M . Subse-
quently, the outputs of the correlators are integrated over
a sliding window of duration W = Tc, as in figure 1(b).

Consider the output signal of an integrator due to a
single doublet at transmitted lag Di and received lag Dm.
Assuming W � Th, where Th is the effective length of the
impulse reponse, it can be modeled as [3]

xm(t) = b(t)(αmic + βmi) (1)

where b(t) is a “brick” function (equal to 1 between 0 and
W , and zero elsewhere), and αmi, βmi are unknown channel
parameters. Since αmi is associated with the modulated
data c, we may regard it as a gain, while βmi is an offset.
For a stationary channel, we can derive that

αmi = ρ(Di − Dm) + ρ(Di + Dm) (2)
βmi = 2ρ(Dm) (3)

where ρ(∆) is the channel auto-correlation function,

ρ(∆) =

∫ ∞

−∞
h(t)h(t − ∆)dt (4)

and h(t) = g(t)∗hp(t). For a chip consisting of Nd identical
doublets spaced by Td, the model becomes

xm(t) = p(t)(αmic + βmi) (5)

where the “tent” function p(t) has a staircase triangular
shape with support on 0 ≤ t ≤ 2Tc:

p(t) =

Nd−1∑
k=0

b(t − kTd)
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Figure 1. (a) Structure of the transmitted data burst, (b) Structure of the auto-correlation receiver.

2.2. Matrix formulation

Consider the transmission of Nc consecutive chips c =
[c1 · · · cNc ]

T for a single symbol s. Each chip is transmitted
using one of the delays D1, · · · , DM and is received using a
bank of M correlators at delays D1, · · · , DM .

Based on the channel coefficients αmi and βmi, we define
the channel matrices A = [αmi] and B = [βmi] of size
M × M . From (3), we know that the offset coefficients
βmi are independent of transmitter delay, i.e., the i index.
Therefore, all columns of B are identical. Similarly, it is
observed that A is symmetric, thus

B = b1T
M , A = AT . (6)

Additionally, a “code delay” or selector matrix J = [Jij ] of
size M × Nc is defined as

Jij =

{
1, if chip j is transmitted at delay Di

0, elsewhere
(7)

Note that matrix J has for each column only one nonzero
entry, corresponding to the transmitted delay index. There-
fore, JT 1M = 1Nc . From (5), the received signal for a single
symbol can be written as

xm(t) =

M∑
i=1

Nc∑
j=1

p(t − jTc)(αmiJijcj + βmiJij) . (8)

Assume that the outputs of the integrators are sampled at
P times the chip rate, where P is the oversampling rate
(typically P = 2). The sampled data at the instances t =
k Tc

P
is given by

xmk =

M∑
i=1

Nc∑
j=1

pkj(αmiJijcj + βmiJij)

where pkj = p(t − jTc) |t=kTc/P . Define P = [pkj ], where
k = 0, · · ·N −1 and j = 1, · · · , Nc. Collecting the temporal
samples into a vector, we obtain the model

xm =

M∑
i=1

Nc∑
j=1

pj [αmiJijcj + βmiJij ]

=

Nc∑
j=1

pj [a
T
mjjcj + bT

mjj ]

=

Nc∑
j=1

[pjcjj
T
j am + pjj

T
j bm]

= [p1c1, · · · ,pNccNc ]J
T am + [p1, · · · ,pNc ]J

T bm

= Pdiag(c)JT am + PJT bm

(9)

where aT
m and bT

m are the m-th rows of A and B matrices,
and pj and jj are the j-th columns of P and J, respectively.

Collecting all vectors xm into a matrix X = [x1, · · · ,xM ]

X = Pdiag(c)JT AT + PJT BT .

Finally, if we transmit multiple symbols s = [s1, · · · , sNs ]T ,
and ignore the overlaps between consecutive symbols due
to ISI (can be up to 1 chip duration), we have for the n-th
symbol

Xn = Pdiag(c)JT AT sn + PJT BT

= P[diag(c)JT 1Nc ][Asn b ]T (10)

The absence of ISI is a reasonable assumption in case we are
synchronized at the chip level: in that case the rows of Xn

affected by ISI are simply dropped. The more general case
(no synchronization, and ISI taken into account) is studied
in [8].

3. RECEIVER ALGORITHMS IGNORING
NOISE TERMS

In the data model (10), J, P and c are known, where J is the
transmitted “code delay” matrix at chip level, P depends
on the integration method and the distribution of doublets
in each chip, and c is the user’s modulation code. The
problem is, given the received signal Xn, to estimate data
symbol sn along with the unknown “channel” matrices A
and B = b1T

M .

3.1. Matched filter receiver

A simple receiver can be derived if we assume that the chan-
nel does not have temporal correlations. The channel ma-
trices, thus, will be

A = αI , B = 0

where α > 0 is the only unknown constant (the channel
power). The simplified data model is

Xn = Pdiag(c)JT αsn , (11)

and the matched filter receiver is

αŝn = tr[Jdiag(c)PT Xn] , (12)

where tr is the trace operator. Since α is always positive,
it does not change the result for BPSK modulations or dif-
ferential modulations, and, thus, does not need to be esti-
mated.

3.2. Blind multiple symbol receiver

If A and B are unknown, they can be estimated along with
the data s = [s1, · · · , sNs ]T in a blind scheme as follows.
Write the model as

[X1 X2 · · · XNs ] = P[diag(c)JT 1 ]

[
AT s1 AT s2 · · · AT sNs

bT bT · · · bT

]
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or, with simplified notation,

X = Q

[
AT s1 AT s2 · · · AT sNs

bT bT · · · bT

]
(13)

where Q is known, and A, b, s are unknown. We can solve
this equation by first pre-multiplying both sides with the
left pseudo-inverse of Q,

Y := Q†X =

[
AT s1 AT s2 · · · AT sNs

bT bT · · · bT

]
(14)

Partition matrix Y into n sub-matrices Yi of size (M +1)×
M . The offset b can be estimated from the last row of Y
as

bT =
1

n

n∑
i=1

Yi(M + 1, :)

where Yi(M +1, :) is the (M +1)-th row of the matrix Yi.
To estimate A and s, we unstack all the matrices Yi(1 :

M, :) into vectors yi, and define Y′ = [y1, · · · ,yNs ]. This
matrix has the model

Y′ = vec(AT )sT . (15)

Hence, the source symbol vector s and channel matrix A
can be estimated up to a scaling by computing a rank-1
decomposition (SVD) of Y′.

3.3. Iterative estimation receiver

In the preceding receiver algorithm, the inversion of Q may
be undesirable (e.g., it may color the noise). Improved per-
formance can be obtained by a two-step iterative receiver
which is initialized by the preceding one: (1) assume s is
known, and estimate A, b; (2) assume A,b are known, es-
timate s. For the first step, we rewrite the data model (13)
as ⎡

⎢⎣
X1

...
XNs

⎤
⎥⎦ =

⎡
⎢⎣

P[s1diag(c)JT 1]
...

P[sNsdiag(c)JT 1]

⎤
⎥⎦

[
AT

bT

]
(16)

from which A, b can be estimated using least squares. For
the second step, we partition Q in (13) as Q = [Q′ q] and
obtain

vec(Xn) = vec(Q′AT )sn + b ⊗ q (17)

Therefore, a LS solution is

ŝn = [vec(Q′AT )]†(vec(Xn) − b ⊗ q)

which is straightforward to evaluate.

4. DATA MODEL WITH NOISE TERMS

4.1. Single doublet

We will now analyze the effect of noise on the sampled signal
after integration. Due to the correlation, it has two com-
ponents: a cross-term with the data, and a cross-term with
itself. We first look at the single doublet case, for which we
only give the main results; the derivations are omitted due
to lack of space.

For one doublet in additive white Gaussian noise with
variance σ2 = N0

2
, the resulting data model is found to be

xm(t) ≈ b(t){(βm + γ′
m) + c (αmi + γ′′

mi)} + n2(t) (18)

where b(t) is the brick function, c is the chip value, and
αmi, βm are as in (2), (3). These parameters only depend
on the channel correlation function ρ(·) and are constant
over multiple doublets.

The first noise term in (18) is due to the correlation of
the received pulses with the noise. It gives rise to pertur-
bations on αmi, βm,∗ and is given by

n1(t) ≈ b(t)(γ′
m + c γ′′

mi) (19)

where b(t) is the brick function, and γ′
m and γ′′

mi are random
variables, selected once for each doublet and different for the
next doublet. We can derive that

E(γ′
m) = E(γ′′

mi) = 0
E(|γ′

m|2) = E(|γ′′
mi|2) = 2σ2[ρ(0) + ρ(2Dm)]

E(γ′
mγ′′

mi) = σ2[2ρ(Di) + ρ(2Dm − Di) + ρ(2Dm + Di]
(20)

Thus, the variance of these variables depends both on the
noise power σ2 and the channel correlation function ρ(·),
but not on the integration length W . Note that the vari-
ance depends on ρ(0), which is always positive and the cor-
responds to the maximum of the correlation function. In
contrast, αmi depends on ρ(Di − Dm), which is maximum
only for Dm = Di.

The second noise term is caused by the correlation of
the noise with itself, i.e.,

n2(t) :=

∫ t

t−W

n(τ)n(τ − Dm) dτ . (21)

When we assume white Gaussian noise with noise density
N0, and a prefilter with a processing bandwidth B, the
expected value and the variance of this term are

E(n2(t)) = rnn(Dm) · W ≈ 0 (22)

var(n2(t)) =
N2

0 BW

2
(23)

where W is the integration length, rnn(·) is the auto-
correlation function of noise.

4.2. Matrix formulation

Following the same derivation as in section 2.2, the sampled
integrated data xmk = xm(k Tc

P
) due to a single symbol (Nc

chips {cj}, one doublet per chip) has the model

xmk =

M∑
i=1

Nc∑
j=1

pkj [(αmi+γ′′
mij)Jijcj+(βm+γ′

mj)Jij ]+(n2)mk

Note that the noise terms γ′
mij and γ′′

mj change from chip
to chip. As before, we collect N samples xmk into a vector
xm.

To simplify the derivation, we first consider only the
“gain” part of the channel (omitting the “offset” and the
noise n2). A derivation similar to (9) shows that

xm,gain = Pdiag(c)JT am + Pdiag(c)J′T γ ′′
m

=: Pdiag(c)(ãm + γ̃ ′′
m)

where aT
m is the m-th row of A, γ ′′

mj is a stacking of
{γ′′

mij , i = 1, · · · , M}, γ ′′
m is the stacking of all vectors

{γ ′′
mj , j = 1, · · · , Nc} and J′ = J ◦ INc . Remind that J

is only the “code delay” selection matrix (each column
has exactly one nonzero entry), therefore the “signal” term
ãm := JT am can be considered as a vector of which the
entries are mapped from am. Similarly, the “noise” term

γ̃ ′′
m = J′T γ ′′

m can also be considered as a vector of which

∗We could thus consider these parameters as random vari-
ables with nonzero mean and which are selected once for each
transmitted doublet.
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the j-th element is mapped from γ ′′
mj . The noise term has

a known covariance, with uncorrelated entries:

E{γ̃ ′′
mγ̃ ′′T

m } = σ′′2
m I ,

where σ′′2 can be computed using (20).
For the offset part we follow the same procedures, and

note that βm and γ′
mj do not depend on index i, and∑M

i=1 Jij = 1 for all j. Therefore we obtain

xm,offset = P1Ncβm + Pγ ′
m (24)

where γ ′
m is a stacking of {γ′

mj , j = 1, · · · , Nc}. Note that
J is removed from (24) because the offset term does not
depend on the transmitted delays. Finally, collecting the
gain and offset parts, stacking all samples xm into a matrix,
and taking the symbol value sn into account, we obtain the
complete data model as follows:

Xn = Pdiag(c)(Ã + Γ̃′′
n)sn + P(B̃ + Γ̃′

n) + N2 (25)

where
Ã = JT AT , B̃ = 1Ncb

T

Γ̃′′ = [γ̃ ′′
1 · · · γ̃ ′′

M ] , Γ̃′ = [γ ′
1 · · · γ ′

M ]

In this model, P, Ã, B̃ depend on the channel correlation, c
is known, and the noise terms have the following properties:

E{Γ̃′} = E{Γ̃′′} = 0

E{Γ̃′′Γ̃′′T } =

M∑
m=1

E{γ̃ ′′
mγ̃ ′′T

m } = I

M∑
m=1

σ′′2
m (26)

and

E{Γ̃′Γ̃′T } =

M∑
m=1

E{γ̃ ′
mγ̃ ′T

m } = I

M∑
m=1

σ′2
m

4.3. A receiver algorithm with noise terms

We briefly indicate a training-based receiver algorithm
based on the data model for the single doublet case is
derived. Assuming a single data symbol sk is known, the
data model in (25) can be expressed as

Xk = Pdiag(c)Ãsk + PB̃ + Ñ (27)

In this equation, we have an aggregate noise term Ñ :=
(Pdiag(c)skΓ̃

′′ + PΓ̃′
k + N2) with known covariance R̃

(scaled by an unknown constant), which can be derived
straightforwardly from (26). To take the noise into account,
a receiver algorithm can first whiten it, i.e., pre-multiply

both sides of (27) with R̃− 1
2 . Subsequently, the two-step

iteration described in section 3.3 can be applied.

5. SIMULATION

We simulate the transmission of Ns = 20 symbols over an
exponentially decaying channel with M = 4 delay posi-
tions, Nc = 10 chips per symbol, single doublet per chip,
and P = 4 times oversampling at the integrators’ outputs.
The transmitted pulses duration is 0.5 ns. Two pulses in a
doublet are separated by 1, 2, 3 or 4 ns, the doublets are
separated by Td = 50 ns.

Due to lack of space, we only show the performance of
the receiver algorithms that ignore the noise terms (sec-
tion 3): the matched filter receiver, the blind multi-symbol
receiver and the iterative receivers initialized by one of the
previous algorithms. BER vs. SNR plots of these algorithms
are shown in Fig. 2. It can be seen that the iterative algo-
rithms give significant performance improvement over both
proposed non-iterative algorithms. The gain becomes arbi-
trary large when SNR increases.
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Figure 2. BER vs. SNR for different receiver algorithms
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