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Abstract. Radio astronomy forms an interesting application area for array sig-
nal processing techniques. Current synthesis imaging telescopes consist of a small
number of identical dishes, which track a fixed patch in the sky and produce es-
timates of the time-varying spatial covariance matrix. The observations sometimes
are distorted by interference, e.g., from radio, TV, radar or satellite tranmissions.
We describe some of the tools that array signal processing offers to filter out the
interference, based on eigenvalue decompositions and factor analysis, a more general
technique applicable to partially calibrated arrays. We consider spatial filtering tech-
niques using projections and interference subtraction, and discuss how a reference
antenna pointed at the interferer can improve the performance. We also consider
image formation and its relation to beamforming. Finally, we briefly discuss some
future large scale radio telescopes.
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1. Introduction

The future of radio astronomical discoveries depends on achieving bet-
ter spatial resolution and sensitivity while maintaining immunity to
terrestrial interference which is rapidly growing. The last two demands
are obviously contradicting as improved sensitivity implies receiving
more interfering signals. RFI detection and removal is now an impor-
tant topic in radio astronomy. A promising track here is to switch to
massive phased array technology, where we will gain both in terms of
resolution and sensitivity while increasing the flexibility to filter out
interference. The international efforts in this direction are coordinated
under the framework of the Square Kilometer Array programme (SKA).
The first example of a flexible massive phased array radio telescope is
LOFAR (13,000 elements) which is currently under construction in The
Netherlands.

The principle of interferometry has been used in radio astronomy
since 1946 when Ryle and Vonberg constructed a radio interferometer
using dipole antenna arrays (Ryl52). In 1962 the principle of aperture
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synthesis using earth rotation was proposed (Ryl62), and applied for
example in the five kilometer Cambridge radio telescope, the 3 km
Westerbork Synthesis Radio Telescope (WSRT) in The Netherlands
and the 36 km Very Large Array (VLA) in the USA.

In this paper, we present a signal processing data model (section 2)
and subsequently give an overview of several problems in radio astron-
omy where array signal processing can make a contribution, namely
calibration using factor analysis (section 3), interference removal using
spatial filtering (section 5), and image formation (section 6). We also
have a brief look at future radio telescope designs, in particular LOFAR
(section 7).

Notation

Superscript t denotes matrix transpose, H denotes complex conjugate
transpose, vec(·) denotes the stacking of the columns of a matrix in a
vector, ⊗ the Kronecker product. I is the identity matrix, and 1 is a
vector with all ones.

2. Data model

2.1. RECEIVED DATA MODEL

Assume we have a telescope array with p elements. We consider the
signals xi(t) received at the antennas i = 1, · · · , p in a sufficiently
narrow subband. For the interference free case the array output vector
x(t) is modeled in complex baseband form as

x(t) = v(t) + n(t) (1)

where x(t) = [x1(t), . . . , xp(t)]t is the p × 1 vector of telescope signals
at time t, v(t) is the received sky signal possibly due to many astro-
nomical sources, assumed on the time scale of (order) 10 s to be a
stationary Gaussian vector with covariance matrix Rv = E{v(t)v(t)H}
(the astronomical ‘visibilities’), and n(t) is the p × 1 Gaussian noise
vector with covariance matrix D. We assume that the noise is gaussian,
and uncorrelated among the sensors, which means that D is diagonal.
Usually identically distributed noise is assumed, for which D = σ2I,
but this implies accurate calibration as discussed in section 3.

Suppose there are q interfering sources, stationary only over short
time intervals, with signals si(t) for i = 1 · · · q, and spatial signatures
ai. Without loss of generality, we can absorb the unknown amplitude
of si(t) into ai and thus stet the power of si(t) to 1. Let A be a p × q
matrix where the q columns represent the q interferer spatial signature
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vectors ai, and let s(t) be a vector with the q signals si(t). The output
vector, extended with interference, is modeled as

x(t) = v(t) + A(t)s(t) + n(t) (2)

We assume that the processing bandwidth is sufficiently narrow, mean-
ing that the maximal propagation delay of a signal across the telescope
array is small compared to the inverse bandwidth, so that this delay can
be represented by a phase shift of the signal. If the assumption is not
satisfied, as for many existing telescopes, a form of subband processing
has to be implemented.

2.2. COVARIANCE MODEL

Suppose that we have obtained observations x[m] := x(mTs), where Ts

is the sampling period. We assume that A(t) is stationary at least over

intervals of MTs, and construct short-term covariance estimates R̂k,

R̂k =
1

M

(k+1)M∑

m=kM+1

x[m]x[m]H (3)

where M is the number of samples per short-term average. Several
filtering algorithms in this paper are based on applying operations to
each R̂k to remove the interference, followed by further averaging over
the resulting matrices to obtain a long-term average.

Consider the Ak := A(kMTs) as deterministic, and denote E{R̂k}
by Rk. According to the assumptions, Rk has model

Rk = Ψ + AkA
H
k = Rv + D + AkA

H
k (4)

where Ψ is the interference-free covariance matrix, Ψ = Rv + D.
So far, the formalism considered only single polarization arrays.

The models are easily extended to the polarization case. Let x̃(t) ≡
(x1x(t), x1y(t), · · · , xpx(t), xpy(t))

t, where the subscript ix and iy for the
ith telescope denote the two orthogonal polarizations. Then the 2p×2p
polarization covariance matrix R̃ is defined by R̃ ≡ E{x̃x̃t}. The result-
ing polarization data model is described in (Ham00; BV03a). Although
the data model is straightforward, extending the non-polarization sig-
nal processing to polarization processing is complicated. In this overview
paper we therefore focus on single polarization signal processing.
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3. Subspace analysis

3.1. EIGENVALUE DECOMPOSITION

The internal structure of the covariance matrix Rk can be expoited for
calibration purposes, for interference mitigation and imaging. Suppose
that the noise covariance is equal for each sensor, Rn = σ

2
nI, assume

that the visibilities are much weaker than the noise powers, and assume
that q < p. Then Rk, dropping the index k, can be decomposed using
an eigenvalue analysis as

R = UΛUH = [Us Un]

[
Λs + σ2

nIq 0
0 σ2

nIp−q

] [
UH

s

UH
n

]
(5)

where Us is the interferer subspace. It is a p× q matrix containing the
eigenvectors corresponding to the q eigenvalues in the q × q diagonal
matrix Λs. Un is a (p− q)× (p− q) matrix containing the eigenvectors
corresponding to the noise subspace. Note that the signal subspace and
the noise subspace span the entire space, U = [UsUn]. Note also that
this technique only works for noise matrices with identical diagonal
entries. An more general technique is factor analysis which is described
next.

3.2. FACTOR ANALYSIS DECOMPOSITION

Factor analysis is a statistical technique with origins in psychometrics
and biometrics (LM71; MKB79). It assumes a collection of data X =
[x(1), · · · ,x(N)] with covariance

R = E{x(k)x(k)H} = AAH + D (6)

where R : p × p Hermitian, A : p × q and D : p × p diagonal. The
objective of factor analysis is, for given R, to identify A and D, as well
as the factor dimension q. We can furthermore model R in terms of
noise subspace Un and signal subspace Us (LVB00)

R = UΛ0U
H + D = [Us Un]

[
Λs

0

] [
UH

s

UH
n

]
+ D (7)

where U = [UsUn], and where Λ is the diagonal eigenvalue matrix con-
taining the interferer powers. Here we assume q ≤ p. Thus, the “Factor
Analysis” Decomposition (FAD) can be viewed as a generalization of
the eigenvalue decomposition.

This decomposition is relevant in case the noise covariance is un-
known but diagonal, Rn = D, which corresponds to the noise being
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uncorrelated among the sensors. In contrast, the usual eigenvalue de-
composition for estimating Us is only valid if the noise powers are equal
among sensors (Rn = σ2I), which is generally true only after accurate
calibration and noise whitening.

In general we can not estimate A uniquely, since A can be replaced
by AV for an arbitrary unitary matrix V. If the eigenvalues are not
repeated and we sort them in descending order, then Us and Λs can
be uniquely determined. There are other ways to constrain A to be
a unique factor, e.g. by taking it to be a lower-triangular rectangular
Cholesky factor with positive real diagonal entries.

3.3. ESTIMATION OF THE FAD

Assume that the factor rank q is known. Given R̂ = 1
N

XXH , and a

sufficiently small q, we wish to estimate AH and DH such that R̂ ≈
ÂÂH + D̂H . There are several approaches for this.

An ML estimate of the factors A : p × q and D is dependent on
the choice of q. The largest permissible value of q is that for which the
number of degrees of freedom v = (p− q)2 − p ≥ 0, or q ≤ p−√

p. For
larger q, there is no identifiability of A and D: any sample covariance
matrix R̂ can be fitted. Even for smaller q, A can be identified only
up to a q × q unitary transformation at the right, i.e., we can identify
span(A). Luckily, this is sufficient for many applications.

For q > 0, there is no closed form solution to the estimation of the
factors A and D in the ML estimation of R̂q = AHAHH +DH . There
are several approaches for obtaining an estimate.

A technique known as alternating least squares, is to alternatingly
minimize ‖R̂ − (AAH + D)‖2

F over A keeping D fixed, and over D

keeping A fixed. This technique tend to converge very slowly but may
be used for fine-tuning.

A fast converging technique is Gauss-Newton iterations on the origi-
nal (determinant) cost function, or on the (weighted) least squares cost.
This requires an accurate starting point.

Ad-hoc techniques exist for solving the least squares problem, pos-
sibly followed by a Gauss-Newton iteration. These techniques try to
modify the diagonal of R̂ such that the modified matrix is low-rank q,
hence can be factored as AAH . The case q = 1 was studied in more
detail in (BV03b).

3.4. RADIO ASTRONOMY APPLICATION EXAMPLES

We mention two applications of the decompositions described above.
The first example is signal subspace estimation in the presence of

uncorrelated noise (LV01), e.g., for the purpose of spatial filtering of
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Figure 1. The left figure shows the residual interference power after projections in a
simulation: UA is estimated from (i) eigenvalue decomposition, (ii) Factor Analysis,
and (iii) eigendecomposition after whitening by D−1/2, assuming true D is known.
The right figure shows spatial projection filter attenuation of television sound carrier
waves observed at the WSRT. The projection filter was applied after whitening by

D−
1

2 ; the diagonal noise term D was estimated by using factor analysis.

interference. An example is shown in figure 1. Here, the data model is
R = AAH + D + Rv, where A corresponds to the interfering
signals, D is the diagonal noise covariance matrix, and Rv � D is
the sky covariance. Using factor analysis, the number of interferers q
is detected, and a basis UA ∼ ran(A) is estimated, subsequently a
projection P⊥

A = U⊥
AU⊥H

A is applied to R to cancel the interference:

R̃ = P⊥
A R̂P⊥

A (8)

The left figure shows ‖R̃ − P⊥
A (D + Rv)P

⊥
A‖F . Clearly, the solution

using eigenvalue decompositions is not suitable if the noise covariance
is not a multiple of the identity matrix. The right figure shows an
application of factor analysis on observed data at the WSRT. It shows
projection filter attenuation curves of television sound carrier waves

after whitening by D− 1

2 . The diagonal noise term D was estimated by
using factor analysis.

A second example is gain calibration (BV03b). Initially the antenna
gains and noise powers of the telescopes are unknown. To estimate
them, a common procedure is to point the telescopes at a strong sky
source and make an observation. This produces a rank-1 factor model
R = gσ2

sg
H + D, where σ2

s is the source power (assumed to be known
from tables), g is the antenna gain vector, and D is a diagonal matrix
containing the noise powers of each antenna. These can be estimated
using rank-1 factor analysis. Figure 2, left, shows the principle of a rank-
1 column ratio factor analysis. Two columns ci and cj , excluding the

diagonal, are related by: ci = αijcj . The complex ”ratio” αij = c
†
jci can
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Figure 2. Column ratio factor estimation, principle (left) and estimation accuracy
of the method compared to the Cramer-Rao bound (right).

then be used to estimate the diagonal terms. Applying an eigenvalue
decomposition on the resulting matrix will yield the factor A, which in
this case is a vector a. The right figure shows a simulation of a rank-1
gain estimation problem, where the phase estimation accuracy of the
COLR method was compared with the theoretical Cramer-Rao bound.

4. Detection

The detection problem is given by a collection of hypotheses

Hq : x(k) ∼ CN (0, Rq)
H′ : x(k) ∼ CN (0, R′) , q = 1, 2, · · · (9)

where CN (0, R) denotes the zero-mean complex normal distribution
with covariance R, Rq is the covariance matrix of the model with q
interferers,

Rq = AAH + D , where A : p × q , D diagonal (10)

and H′ corresponds to a default hypothesis of an arbitrary (unstruc-
tured) positive definite matrix R′.

The Generalized Likelihood Ratio Test (GLRT) detector for this
problem tests Hq versus H′, where the unknown parameters are re-
placed by maximum likelihood estimates under each of the hypotheses.
In case the noise matrix D can be written as D = σ2

nI, where the noise
power σ2

n is known, then the test statistic (Box, 1949) can be written
as

T (X) = −Np log
p∏

i=1

λ̂i

σ2
n

(11)
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Figure 3. Eigenvalue distribution of the covariance matrix after whitening for an
observation at the LOFAR test station (ITS). The figure shows multiple transmitters
at 26.36 MHz, and three frequencies with single transmitters.

where N is the number of samples, λ̂i is the ith eigenvalue estimate,
and X = [x(1), · · · ,x(N)] is the data. The statistic T (X) is χ2 dis-
tributed, which allows us to select the threshold for a desired false
alarm rate(LVB00).

In case the noise matrix D is diagonal with unknown entries, we can
use a more general factor analysis approach (MKB79; LM71), resulting
in a maximum likelihood test statistic (vdVLB04) given by

T (X) = N log |R̂−1
q R̂| (12)

If Hq is true and N is moderately large (say N − q ≥ 50), then 2Tq(X)
has approximately a χ2

v distribution with v = (p − q)2 − p degrees of
freedom. This provides a threshold for a test of Hq versus H′ corre-
sponding to a desired probability of “false alarm” (here the probability
of rejecting Hq when it is true).

A relatively simple to implement test is an eigenvalue threshold test
based on an asymptotic formula for the largest singular value of a p×M
white gaussioaan noise matrix (Ede88).

γ = σ2
n(1 +

√
p√
N

)2 (13)

Figure 3 shows an eigenvalue distribution of pre-whithed data ob-
tained at the (60 antenna-element) LOFAR phased array test sta-
tion (ITS). Clearly visible is that at three frequencies only a single
transmitter can be detected; at 26.36 MHz multiple transmitters are
present.

The detection theory can be applied to mitigate intermittent inter-
ference. Results concerning detection probabilities and residual interfer-
ence after detection and excision can be found for example in (LVB00).

overview10.tex; 12/07/2004; 13:43; p.8



Signal processing for radio astronomical arrays 9

Interference detection can also improve spatial filtering approaches, by
avoiding application of spatial filters (and resulting distortions) in cases
when there is no interference detected.

5. Spatial filtering

Interference cancellation is becoming increasingly important in radio
astronomy. Depending on the interference and the type of instrument,
several kinds of RFI mitigation techniques are applicable (LVB00; FB01).
For intermittent interference, the most effective techniques are based on
detection and “blanking”: omitting the contaminated samples from the
covariance estimate, using a single sensor (Fri96; WFBD97) or multiple
sensors (LVB00). For continually present interference and an array of
p telescope dishes, spatial filtering is possible. The desired instrument
outputs in this case are p×p correlation matrices, integrated to several
seconds (eg, 10 s). Based on short-term correlation matrices (integra-
tion to e.g., 10 ms) and narrow subband processing, the array signature
vector of an interferer can be estimated and subsequently projected out
(RBvdV02)—we describe this technique below.

An interesting option is to utilize a reference antenna which picks up
only the interference, so that adaptive cancellation techniques can be
implemented (BB98; EBB01). Spatial filtering on extended arrays was
first considered by Briggs et al. (BBK00) for a single dual-polarized tele-
scope (two channels) and two reference antennas. Jeffs et al. (JKL03;
JLK04) propose spatial filtering algorithms along the lines of (RB-
vdV02).

5.1. SPATIAL FILTERING USING PROJECTIONS

Suppose that an orthogonal basis Uk of the subspace spanned by inter-
ferer spatial signatures span(Ak) is known. We can then form a spatial
projection matrix Pk := I − UkUkH which is such that PkAk = 0.
When this spatial filter is applied to the data covariance matrix all the
energy due to the interferer will be nulled: let

QH
k := PkR̂kPk (14)

then

E{QH
k } = PkΨPk (15)

where Ψ := Rv + σ2I is the interference-free covariance matrix. When
we subsequently average the modified covariance matrices QH

k , we ob-
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Figure 4. Observed spatial filter correction matrix condition numbers for different
observed transmitters at the WSRT telescope.

tain a long-term estimate

QH :=
1

N

N∑

k=1

QH
k =

1

N

N∑

k=1

PkR̂kPk . (16)

QH is an estimate of Ψ, but it is biased due to the projection. A bias
correction matrix C can be derived using the relation vec(ABC) =
(Ct ⊗ A)vec(B) (RBvdV02)

C =
1

N

N∑

k=1

Pt
k ⊗ Pk (17)

leading to the following (bias-corrected) estimate of Ψ:

Ψ := unvec(C−1vec(QH)) . (18)

If the interference was completely projected out then Ψ is an unbiased
estimate of the covariance matrix without interference. A detailed anal-
ysis of this algorithm will appear in (TV04). The main conclusion is
that the variance of the estimate of Ψ is equal to (1/N)C−1σ4, whereas
for “clean” data it would be (1/N)σ4. For interferers which are suffi-
ciently moving, C−1 is well conditioned and the penalty is comparable
to a loss in number of samples. Even for stationary interferers, C−1

might be well conditioned due to the motion of the telescopes, but it
depends on the integration length and the location of the sky source
which is being tracked. Cases where an interferer enters only on a single
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telescope always lead to a singular C and cannot be resolved by this
algorithm.

Figure 4 shows observed condition numbers of C for different trans-
mitters as a function of long-term integration time. This is relevant
because a high condition number implies a strong increase of the system
noise due to application of the filter. For fixed location transmitters
such as television (TVL) and amateur broadcasts (amat), the condition
number decreases to low values (< 5) after about 100 s, as is expected
from an analysis of the telescope instrumental fringe rotation. The
condition number for the satellite GPS signal decreases more rapidly,
because of its motion. Airplane radar (DME) transmits in bursts, the
integrated covariance matrices therefore contain many short-time full-
rank noise matrices. As a result, the long-term correction matrix C will
have a low condition number.

An alternative to projection filtering is filtering by subtraction. This
type of filtering will lead to comparable results. The subtraction filter
however will also be biased (LVB00), and needs correction. The atten-
uation for both projection and subtraction filtering is limited by the
spatial signature estimation accuracy, which is described in (LvdV00)

5.2. SPATIAL FILTERING WITH AN EXTENDED ARRAY

If the telescope array is extended with one or more reference antennas,
we can follow the same procedure. Let p0 be the number of primary
antennas, and p be the total number of antennas. The data covariance
matrix can be partitioned accordingly as

Rk =

[
R00,k R01,k

R10,k R11,k

]
. (19)

where Rk has model

Rk = Ψ + AkAkH = Rv + Σ + AkAkH

=

[
Rv,0 + A0,kA0,kH + σ2

0I A0,kA1,kH
A1,kA0,kH A1,kA1,kH + σ2

1I

]
(20)

Ψ is the interference-free covariance matrix, and Σ :=
diag[σ2

0I, σ
2
1I] is the diagonal noise covariance matrix (assumed known).

The objective is to estimate the interference-free covariance submatrix
Ψ00 := Rv,0 + σ2

0I.
Following the preceding algorithm applied to Rk, the reconstructed

covariance matrix is size p × p, and we can simply select the p0 × p0

submatrix in the top-left corner, Ψ00 (JKL03; JLK04). An improved
algorithm would not reconstruct the other blocks of Ψ (VB04). Indeed,
let the projected estimates QH be as before in (16). Then (??) applies:
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Figure 5. (a) Averaged autocorrelation spectrum before and after filtering, (b)
Averaged cross-correlation spectrum

Evec(QH) = Cvec(Ψ) . (21)

Partition Ψ as in (20) into 4 submatrices. Since we are only inter-
ested in recovering Ψ00, the other submatrices in Ψ are replaced by
their expected values, respectively Ψ01 = 0, Ψ10 = 0, Ψ11 = σ2

1I.
This corresponds to solving the reduced-size covariance model error
minimization problem,

Ψ00 = arg min
Ψ00

‖ vec(QH) − Cvec(

[
Ψ00 0

0 σ2
1I

]
) ‖2 . (22)

The solution of this problem reduces to a standard LS problem
after separating the knowns from the unknowns. Partition C in C1

(corresponding to vec(Ψ00) and C2 (corresponding to vec(σ2
1I), then

the solution is (VB04):

vec(Ψ00) = C
†
1(vec(QH) − σ2

1C21) (23)

If σ2
1 is unknown, then it can be estimated using a straightfor-

ward modification. The advantage compared to the preceding algo-
rithm is that C1 is a tall matrix, and better conditioned than C. This
improves the performance of the algorithm in cases where C is ill-
conditioned, e.g., for stationary interferers, or an interferer entering
on only a single telescope. Asymptotically for large INR of the refer-
ence array, the algorithm is seen to behave similar to the traditional
subtraction technique.
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5.3. EXPERIMENT

A reference signal is useful only if it has a better SNR than the primary
antennas. Therefore, an omnidirectional antenna is not good enough.
To be versatile, we have tested the preceding technique on a reference
signal obtained from the beamformed output of a wideband phased
array of 64 elements, shown in figure ??. This system has a bandwidth
of 600-1700 MHz, a baseband of 20 MHz, two digital beamforming
outputs, and it is part of an envisioned “Thousand Elements Array”
(THEA), developed by ASTRON. The reference signal is correlated
along with the telescope signals as if it was an additional telescope, and
spatial filtering algorithms can be applied to the resulting short-term
integrated covariance matrices.

The test data is an observation of the strong astronomical source
3C48 contaminated by Afristar satellite signals. The primary array
consists of p0 = 6 of the 14 telescope dishes of the WSRT. The reference
signals are p1 = 2 beamforming outputs of the THEA system. One
beam was pointed approximately to the satellite, the other was used for
scanning. We recorded 65 kSamples at 20 MS/s, and processed these
offline. After short-term windowed Fourier transforms, the data was
split into 64 frequency bins, correlated, and averaged over 32 samples
to obtain 16 short-term covariance matrices.

The resulting auto- and crosscorrelation spectra after filtering are
shown in figure 5. The autocorrelation spectra are almost flat, and
close to 1 (the whitened noise power). The cross-correlation spectra
show that the spatial filtering with reference antenna has done much
better to remove the interference than the case without reference an-
tenna. The residual correlation of about 4% is known to be the SNR
of the astronomical source. The lines are noisy due to the finite sample
effect; the predicted standard deviation (based on number of samples
averaged) are indicated for a few frequencies.

6. Imaging

6.1. MATRIX FORMULATION

As described in more detail in (LV00), image formation is also a fruitful
area for array signal processing techniques. Astronomers try to estimate
the intensity (brightness) If (s) of the sky as a function of the location
s and frequency f . They do this by measuring the correlation (called
the “visibility” Vf ) between identical sensors i and j with locations ri

and rj , corresponding to a baseline ri − rj . Let (`, m) denote normal-
ized coordinates of the sky source (−1 ≤ `, m ≤ 1), and (u, v, w) the
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14 A.J. van der Veen, A. Leshem, and A.J. Boonstra

baseline vector of the antenna pair measured in wavelengths. Assuming
a planar array, w can be removed from the equations via geometrical
delay compensation. Under certain approximations, the “measurement
equation” is given by (PSB94)

Vf (u, v) =

∫∫
If (`, m) e−j2π(u`+vm) d`dm . (24)

It has the form of a Fourier transformation.
The function Vf (u, v) is sampled at various coordinates

(uij(t), vij(t)) by first of all taking all possible sensor pairs i, j or base-
lines ri−rj , and second by realizing that the sensor locations ri, rj are
actually time-varying since the earth rotates. Given a sufficient number
of samples in the (u, v) domain, the relation can be inverted to obtain
an image (the ‘map’).

Assume that the sky consists of a large number (d) point sources.
Equation (24) can then be written slightly differently as

V (uij(t), vij(t)) =

=
d∑

l=1

e−j2π(ui0(t)`l+vi0(t)ml) · I(`l, ml) · ej2π(uj0(t)`l+vj0(t)ml) .
(25)

where (ui0, vi0) are coordinates of the ith antenna with respect to a
common reference point. The connection to our previous framework is
obtained by collecting the visibilities into correlation matrices R, where
Rij(t) = V (uij(t), vij(t)). The above equation can then be written as

Rk = AkBAH
k (26)

where Rk ≡ R(tk), Ak = [ak(`1, m1), . . . ,ak(`d, md)] , and

ak(`, m) =




e−j2π(u10(tk)`+v10(tk)m)

...

e−j2π(up0(tk)`+vp0(tk)m)


 (27)

B =




I(`1, m1) 0
. . .

0 I(`d, md)




where ak(`, m) is recognized as the array response vector. As usual,
the array response is frequency dependent. The response is also slowly
time-varying due to the earth rotation.
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6.2. INVERSE FOURIER IMAGING

6.2.1. Classical inverse Fourier imaging

The relation between sky brightness I(`, m) and visibilities V (u, v)
(where u, v are taken at frequency f) is given by the measurement
equation (24). We have measured V on a discrete set of baselines
{(ui, vi)}. The “dirty image” (a lumpy image obtained via direct Fourier
inversion possibly modified with some weights ci) is defined by

ID(`, m) :=
∑

i

ci V (ui, vi) ej2π(ui`+vim) (28)

It is equal to the 2D convolution of the true image I(l, m) with a point
spread function B0(l, m) known as the “dirty beam”:

ID = I ∗ B0 , B0(`, m) :=
∑

i

ci ej2π(ui`+vim) (29)

B0 is the dirty beam, centered at the origin. The weights {ci} are
arbitrary coefficients designed to obtain an acceptable beam-shape,
with low side lobes, in spite of the irregular sampling.

Specializing to a point source model, I(`, m) =
∑

l Il δ(`−`l, m−ml)
where Il is the intensity of the source at location (`l, ml), gives

V (u, v) =
∑

l

Il e−j2π(u`l+vml) (30)

ID(`, m) =
∑

l

Il B0(` − `l, m − ml) (31)

Thus, every point source excites the dirty beam centered at its
location (`l, ml).

From the dirty image ID and the known dirty beam B0, the desired
image I is obtained via a deconvolution process. A popular method for
doing this is the CLEAN algorithm (Hog74). The algorithm assumes
that B0 has its peak at the origin, and consists of a loop in which a
candidate location (`l, ml) is selected as the largest peak in ID, and
subsequently a small multiple of B0(` − `l, m − ml) is subtracted from
ID. The objective is to minimize the residual, until it converges to the
noise level.

6.2.2. Inverse Fourier imaging after projections

If we take projections or any other linear combination [cij ] of the
visibilities {V (ui, vi)} during measurements we have instead available

Z(ui, vi) =
∑

j

cij V (uj , vj) (32)
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16 A.J. van der Veen, A. Leshem, and A.J. Boonstra

Suppose we compute the dirty image in the same way as before, but
now from Z, then it can be shown (vdVLB04) that the dirty image is
obtained via a convolution, but the dirty beam is now space-varying.
Nonetheless, they are completely known if we know the linear combi-
nations that we took during observations. Thus, the CLEAN algorithm
can readily be modified to take the varying beam shapes into account:
simply replace B0(`, m) by Bl(`, m) everywhere in the algorithm.

6.3. IMAGING VIA BEAMFORMING TECHNIQUES

6.3.1. CLEAN and sequential beamforming

Using a parametric point-source model, the image deconvolution prob-
lem can be interpreted as a direction-of-arrival (DOA) estimation prob-
lem, e.g., as

[{ŝl},BH ] = arg min
{sl},B

K∑

k=1

‖ R̂k −Ak({sl})BAH
k ({sl}) − σ2I ‖F (33)

(B is constrained to be diagonal with positive entries.) This is recog-
nized as the same model as used for DOA estimation in array process-
ing. Note however that the array is moving (Ak is time-dependent), and
that there are many more sources than the dimension of each covariance
matrix.

In this notation, the image formation in section 6.2.1 can be formu-
lated as follows. If we write ID(s) ≡ ID(`, m) and ak(s) ≡ ak(`, m), we
can rewrite the dirty image (28) as (?)

ID(s) =
∑

k

aH
k (s)Rkak(s) (34)

We omitted the optional weighting. Also note that, with noise, we have
to replace Rk by Rk − σ2I. The iterative beam removing in CLEAN
can now be posed as an iterative LS fitting between the sky model
and the observed visibility (Sch78). Finding the brightest point s0 in
the image is equivalent to trying to find a point source using classical
Fourier beamforming, i.e., ,

sH
0 = arg max

s

K∑

k=1

akH(s)
(
Rk − σ2I

)
ak(s) . (35)

Thus, the CLEAN algorithm can be regarded as a generalized classical
sequential beamformer, where the brightest points are found one by
one, and subsequently removed from Rk until the LS cost function
(33) is minimized. An immediate consequence is that the estimated
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source locations will be biased, a well known fact in array processing.
When the sources are well separated the bias is negligible compared
to the standard deviation, otherwise it might be significant. This gives
an explanation for the poor performance of the CLEAN in imaging
extended structures (see e.g., (PSB94)).

6.3.2. Minimum variance beamforming approaches

Once we view image formation/deconvolution as equivalent to direction-
of-arrival (DOA) estimation with a moving array, we can try to adapt
various other DOA estimators for handling the image formation. In
particular the deflation approach used in the CLEAN algorithm can
be replaced by other source parameters estimators. One approach that
seems particularly relevant in this context is the Minimum-Variance
Distortionless Response (MVDR) method of beamforming (Cap69).
The major new aspect here is the fact that the array is moving and
that there are more sources than sensors.

Instead of working with the dirty image ID(s) =
∑

k akH(s)Rkak(s),
the basis for high-resolution beamforming techniques is to look at more
general “pseudo-spectra”

I ′D(s) :=
∑

k

wH
k (s)Rkwk(s) (36)

Here, wk(s) is the beamformer pointing towards direction s, and
I ′D(s) is the output energy of that beamformer. Previously we had
wk(s) = ak(s); the objective is to construct beamformers that provide
better separation of close sources.

A generalized MVDR follows by defined by a minimization of a
weight vector wk which minimizes the output power at time k subject to
the constraint that we have a fixed response towards the look direction
s of the array. Solving this (well known) problem leads to the overall
spectral estimator

I ′D(s) =
K∑

k=1

1

akH(s)R̂−1
k ak(s)

. (37)

and the locations of the strongest sources are given by the maxima
of I ′D(s). It is known that the MVDR has improved resolution com-
pared to the classical beamformer which is the basis for the CLEAN
algorithm. The algorithm is readily extended to handle the “space-
varying” beamshapes that occur after spatial filtering. It is also possi-
ble to use more advanced forms of beamforming, e.g., “robust Capon
beamforming” (RCB) (SWL03).
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18 A.J. van der Veen, A. Leshem, and A.J. Boonstra

Figure 6. Examples of “dirty images” from the LOFAR test station: classical
beamforming (left), MVDR image (middle), and Robost Capon beamforming
(right).

Figure 6 illustrates this by comparing a dirty image produced in the
classical way to the dirty image corresponding to (37) and to Robust
Capon beamforming (BvdT04). The measurement data is a “snapshot”
collected from a 60-element test station for the LOFAR telescope. Since
this is a two-dimensional array, it does not depend on earth rotation to
enable imaging. Due to the limited integration time, the sky sources are
not yet observed and only interference shows up, which is visible at the
horizon. All other features are due to the sidelobes of the dirty beam.
An MVDR beamformer usually has sharper beams than a classical
beamformer. A disadvantage of MVDR beamformers however is that
due to array calibration errors, the scaling of the spectral estimator is
affected. This problem is remedied in the Robust capon beamformer,
also shown in figure 6.

7. Conclusion

Technological advances in the last decade have created interesting pos-
sibilities for large distributed interferometric radio telescopes with very
large receiving areas and a sensitivity which is one to two orders of
magnitude better than the current generation. Two proposed instru-
ments in this context are LOFAR (wsa; Bre99) and SKA (wsb; AB02);
the previously mentioned THEA system is a smallscale step-up in
the design of SKA. Prominent among the challenges of designing and
building these telescopes (apart from the costs) are the mitigation of
radio interference, the calibration of the system, and the sheer signal
processing complexity. Signal processing techniques such as discussed
in this paper are vital to meet the sensitivity requirements for the next
generation of radio telescopes.
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