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Radio astronomy forms an interesting application area for ar-
ray signal processing techniques. Current synthesis imaging tele-
scopes consist of a small number of identical dishes, which track
a fixed patch in the sky and produce estimates of the time-varying
spatial covariance matrix. The observations are distorted by RFI,
e.g., radio, TV, radar and satellite signals. We describe some of
the tools that array signal processing offers to filter out the inter-
ference, based on eigenvalue decompositions and factor analysis,
a more general technique applicable to partially calibrated arrays.
We consider spatial filtering techniques using projections, and dis-
cuss how a reference antenna pointed at the interferer can improve
the performance. We also consider image formation and its rela-
tion to beamforming. Finally, we briefly discuss some future ra-
dio telescopes, which will consist of distributed phased arrays with
10,000s to 100,000s of elements.

1. INTRODUCTION

The future of radio astronomical discoveries depends on achiev-
ing better resolution and sensitivity while maintaining immunity to
terrestrial interference which is rapidly growing. The last two de-
mands are obviously contradicting as improved sensitivity implies
receiving more interfering signals. RFI detection and removal is
now an important topic in radio astronomy. The most promising
track here is to switch to massive phased array technology, where
we will gain both in terms of resolution and sensitivity while in-
creasing the flexibility to filter out interference. The international
efforts in this direction are coordinated under the framework of the
Square Kilometer Array programme (SKA). The first example of
a phased array radio telescope is LOFAR (13,000 elements) which
is currently under construction in The Netherlands.

The principle of interferometry has been used in radio astron-
omy since 1946 when Ryle and Vonberg constructed a radio inter-
ferometer using dipole antenna arrays [9]. In 1962 the principle
of aperture synthesis using earth rotation was proposed [10], and
applied in the five kilometer Cambridge radio telescope, the 3 km
Westerbork Synthesis Radio Telescope (WSRT) in The Nether-
lands (figure 1) and the well-known 36 km Very Large Array
(VLA) in the USA.

In interferometric radio astronomy the signals from various
telescopes are usually split into narrow frequency bins (say 50 kHz),
and correlated over 1–100 milliseconds to yield short-term corre-
lation matrices. These are then integrated over longer periods of
typically 10–60 seconds to yield long-term correlation matrices,
which are stored onto tape and constitute the output of the tele-
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Figure 1. Westerbork Synthesis Radio Telescope (14 dishes)

scope interferometer. The long-term correlation matrices contain
contributions from the astronomical sources in the pointing direc-
tion through the main lobe of the telescope, from interferers in the
near and far field through the side lobes, and from spatially white
receiver noise. The astronomical signals usually have a signal-to-
noise ratio (SNR) of −20 dB or less, and hence they are too weak
to be detected over short integration periods. Harmful interference
may range from −70 dB up to

�
50 dB with respect to the instanta-

neous system noise level.

In this paper, we present a signal processing data model (sec-
tion 2) and subsequently give an overview of several problems in
radio astronomy where array signal processing can make a contri-
bution, namely calibration using factor analysis (section 3), inter-
ference removal using spatial filtering (section 4), and image for-
mation (section 5). We also have a brief look at future radio tele-
scope designs, in particular LOFAR (section 6).



Notation Superscript T denotes matrix transpose, H denotes com-
plex conjugate transpose, vec � · � denotes the stacking of the columns
of a matrix in a vector, ⊗ the Kronecker product. I is the identity
matrix, and 1 is a vector with all ones.

2. DATA MODEL

2.1. Received data model

Assume we have a telescope array with p elements. We consider
the signals xi � t � received at the antennas i � 1 � · · · � p in a suffi-
ciently narrow subband. For the interference free case the array
output vector x � t � is modeled in complex baseband form as

x � t ��� v � t � �
n � t �

where x � t ����� x1 � t ���
	
	
	�� xp � t �� T is the p×1 vector of telescope sig-
nals at time t, v � t � is the received sky signal possibly due to many
astronomical sources, assumed on the time scale of 10 s to be a sta-
tionary Gaussian vector with covariance matrix Rv (the astronom-
ical ‘visibilities’), and n � t � is the p × 1 Gaussian noise vector with
covariance matrix Rn. Usually independent identically distributed
noise is assumed, for which Rn � σ2I, but this implies accurate cal-
ibration as discussed in section 3. The astronomer is interested in
the non-redundant off-diagonal entries of Rv.

If an interferer is present the output vector is modeled as

x � t ��� v � t � �
a � t � s � t � �

n � t �
where s � t � is the interferer signal with spatial signature vector a � t �
which is assumed stationary only over short time intervals. With-
out loss of generality, we can absorb the unknown amplitude of s � t �
into a � t � and thus set the power of s � t � to 1. The model is easily ex-
tended to multiple narrowband interfering sources, in which case
we obtain

x � t ��� v � t � �
A � t � s � t � �

n � t �
where A : p × q has q columns corresponding to q interferers, and
s � t � is a vector with q entries.

We assume that the processing bandwidth is sufficiently nar-
row, meaning that the maximal propagation delay of a signal across
the telescope array is small compared to the inverse bandwidth, so
that this delay can be represented by a phase shift of the signal. If
the assumption is not satisfied, as for many existing telescopes, a
form of subband processing has to be implemented.

2.2. Covariance model

Suppose that we have obtained observations x �m � : � x � mTs � , where
Ts is the sampling period. We assume that A � t � is stationary at
least over intervals of MTs, and construct short-term covariance es-
timates R̂k,

R̂k � 1
M

�
k � 1 � M
∑

m � kM � 1
x �m � x �m � H

where M is the number of samples per short-term average. Several
filtering algorithms in this paper are based on applying operations
to each R̂k to remove the interference, followed by further averag-
ing over the resulting matrices to obtain a long-term average.

Considering the Ak : � A � kMTs � as deterministic, the expected
value of each R̂k is denoted by Rk. According to the assumptions,
Rk has model

Rk ��� �
AkAH

k � Rv
�

Rn
�

AkAH

k (1)

where ��� Rv
�

Rn is the interference-free covariance matrix.

3. FACTOR ANALYSIS

3.1. The “Factor Analysis” Decomposition

Factor analysis is a statistical technique with origins in psycho-
metrics and biometrics [11, 12]. It assumes a collection of data
X ��� x � 1 ��� · · · � x � N �� with covariance

R � E{x � k � x � k � H} � AAH �
D

where R : p × p Hermitian, A : p × q and D : p × p diagonal. The
objective of factor analysis is, for given R, to identify A and D, as
well as the factor dimension q. We can furthermore set

R � U � 0UH �
D ���Us Un � � � s

0 � � UH
s

UH
n � �

D

Thus, the “Factor Analysis” Decomposition (FAD) can be viewed
as a generalization of the eigenvalue decomposition. This decom-
position is relevant in case the noise covariance is unknown but di-
agonal, Rn � D, which corresponds to the noise being uncorrelated
among the sensors. In contrast, the usual eigenvalue decomposi-
tion for estimating Us is only valid if the noise powers are equal
among sensors (Rn � σ2I), which is generally true only after accu-
rate calibration and noise whitening.

It is clear that for an arbitrary Hermitian matrix R, this factor-
ization can exist only for q � p, in which case we can set D � 0,
or any other value. Hence, for a noise-perturbed matrix, we wish
to detect the smallest q which gives a “reasonable fit”, and we will
assume that q is sufficiently small so that unique decompositions
exist. Furthermore, we can not estimate A uniquely, since A can
be replaced by AV for an arbitrary unitary matrix V. Thus, we can
only estimate ran � A ��� ran � Us � , as well as the “signal eigenvalues”� s. If the eigenvalues are not repeated and we sort them in descend-
ing order, then Us and � s can be uniquely determined. There are
other ways to constrain A to be a unique factor, e.g. by taking it to
be a lower-triangular rectangular Cholesky factor with positive real
diagonal entries.

We consider the following two problems:

– Detection: given X, estimate q.

– Identification: given X and q, estimate D, � s and Us.

3.2. Detection

The detection problem is given by a collection of hypotheses�
q : x � k � ∼ ����� 0 � Rq ��! 

: x � k � ∼ ����� 0 � R  ��� q � 1 � 2 � · · · (2)

where �"�#� 0 � R � denotes the zero-mean complex normal distribu-
tion with covariance R, Rq is the covariance matrix of the model
with q interferers,

Rq � AAH �
D � where A : p × q � D diagonal

and
�$ 

corresponds to a default hypothesis of an arbitrary (unstruc-
tured) positive definite matrix R

 
.

The Generalized Likelihood Ratio Test (GLRT) detector for
this problem tests

�
q versus

�  
, where the unknown parameters

are replaced by maximum likelihood estimates under each of the
hypotheses. Under

�
q, the likelihood function is given by

L � X|
�

q � ≡ L � X|Rq �%�'& 1
|Rq|

e−tr � R−1
q R̂ �)( N �

where X ��� x � 1 ���
	
	
	*� x � N �� is the data and R̂ � 1
N ∑N

k � 1 x � k � x � k � H
is the sample covariance matrix, | · | denotes the determinant and
tr � · � the trace operator.



The ML estimate of Rq is found by maximizing L � X|Rq � over
the parameters of the model Rq � AAH �

D, or equivalently the
log-likelihood function� � X|Rq �!� N

�
− ln |Rq| − tr � R−1

q R̂ ���$	
Denote the estimate by R̂q � ÂÂH �

D̂. Under
�$ 

we obtain that
the ML estimate of R

 
is given by R̂, the sample covariance matrix.

The log-likelihood GLRT test statistic is thus given by

ln
L � X|

�
q �

L � X|
�  � � −N � tr � R̂−1

q R̂ � − ln |R̂−1
q R̂| − p ��	

A further result is that the ML estimate of R̂q is such that tr � R̂−1
q R̂ ���

p so that we can base the test on

Tq � X � : � N ln |R̂−1
q R̂| 	 (3)

A threshold for the test can be found if we generalize the results
in [11, 12] to complex data:

Lemma 3.1 If
�

q is true and N is moderately large (say N − q ≥
50), then 2Tq � X � has approximately a χ2

v distribution with v � � p−
q � 2 − p degrees of freedom.

This provides a threshold for a test of
�

q versus
�$ 

correspond-
ing to a desired probability of “false alarm” (here the probability
of rejecting

�
q when it is true). The test replaces the more familiar

eigenvalue test on the rank of R̂ in the case of white noise, D � σ2I.

3.3. Estimation of the FAD

Assume that the factor rank q is known. Given R̂ � 1
N XXH, and

a sufficiently small q, we wish to estimate Â and D̂ such that R̂ ≈
ÂÂH �

D̂. There are several approaches for this.
An ML estimate of the factors A : p × q and D is dependent

on the choice of q. The largest permissible value of q is that for
which the number of degrees of freedom v �#� p − q � 2 − p ≥ 0, or
q ≤ p− � p. For larger q, there is no identifiability of A and D: any
sample covariance matrix R̂ can be fitted. Even for smaller q, A can
be identified only up to a q × q unitary transformation at the right,
i.e., we can identify span � A � . Luckily, this is sufficient for many
applications.

For q � 0, there is no closed form solution to the estimation of
the factors A and D in the ML estimation of R̂q � ÂÂH �

D̂. There
are several approaches for obtaining an estimate:

– Suppose that the optimal ML-estimate D̂ has been found. We
can then whiten R̂ to R̃ � D̂−1 � 2R̂D̂−1 � 2, and similarly the
model, giving R̃q � ÃÃH �

I. Note that |R−1
q R̂| � |R̃−1

q R̃|,
which is the usual problem for white noise, solved via an
eigenvalue decomposition of R̃. This is equivalent to solv-
ing min 	 R̃ − � ÃÃH �

I �
	 2
F . Since D̂ is not known, this leads to

an iteration where Ã is plugged back, D̂ is estimated, etc.
A related technique is alternating least squares, where we alter-
natingly minimize 	 R̂− � AAH �

D �
	 2
F over A keeping D fixed,

and over D keeping A fixed. Both iterative techniques tend to
converge very slowly but may be used for fine-tuning.

– Gauss-Newton iterations on the original (determinant) cost
function, or on the (weighted) least squares cost. This requires
an accurate starting point.

– Ad-hoc techniques for solving the least squares problem, pos-
sibly followed by a Gauss-Newton iteration. These techniques
try to modify the diagonal of R̂ such that the modified matrix

rank deficient

Figure 2. Column ratio factor estimation
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Figure 3. Residual interference power after projections. UA es-
timated from � i � eigenvalue decomposition, � ii � Factor
Analysis, and � iii � eigendecomposition after whitening
by D−1 � 2, assuming true D is known.

is low-rank q, hence can be factored as AAH. For this we can
exploit the fact that submatrices away from the main diagonal
with at least q

�
1 columns and rows have rank q, hence one

column can be written as a linear combination of q others. The
same linear combination can be used to estimate the main di-
agonal of AAH. See figure 2. This works for q � 1

2 p. The case
q � 1 was studied in more detail in [6].



433.4 433.6 433.8 434 434.2 434.4

15

20

25

30

35

40

45

50

55
noise powers per telescope

frequency [MHz]

Figure 4. Amateur broadcast interference, both continuous and in-
termittent, recorded at the WSRT: estimated noise pow-
ers (dashed: averaged diagonal entries of the R̂k; solid:
filtered using factor analysis).

3.4. Application to radio astronomy

We mention two applications of the factor analysis decomposition.

1. Signal subspace estimation in the presence of uncorrelated
noise [4], e.g., for the purpose of spatial filtering of interfer-
ence. An example is shown in figure 3. Here, the data model
is R � AAH �

D
�

Rv, where A corresponds to the in-
terfering signals, D is the diagonal noise covariance matrix,
and Rv � D is the sky covariance. Using factor analysis, the
number of interferers q is detected, and a basis UA ∼ ran � A �
is estimated, subsequently a projection P⊥

A � U⊥
AU⊥H

A is ap-
plied to R to cancel the interference:

R̃ � P⊥
A R̂P⊥

A

The figure shows 	 R̃−P⊥
A � D �

Rv � P⊥
A 	 F . Clearly, the solu-

tion using eigenvalue decompositions is not suitable if the
noise covariance is not a multiple of the identity matrix.

2. Gain calibration [6]. Initially the antenna gains and noise
powers of the telescopes are unknown. To estimate them,
a common procedure is to point the telescopes at a strong
sky source and make an observation. This produces a rank-1
factor model R � gσ2

s gH �
D, where σ2

s is the source power
(assumed to be known from tables), g is the antenna gain
vector, and D is a diagonal matrix containing the noise pow-
ers of each antenna. These can be estimated using rank-1
factor analysis.

As an example for the noise power estimation, we consider an
uncalibrated data set which includes time continuous and intermit-
tent interference observed at the WSRT. The data set is a p � 8-
channel recording of a 1.25 MHz-wide band at 434 MHz contain-
ing signals from the astronomical source 3C48 (white noise signal)
contaminated by narrow-band amateur radio broadcasts. The data
was partitioned into 32 frequency bins (each processed separately),
the short term averaging period was 10 ms (M � 781 samples), and
the number of time intervals was N � 1000.

For each short-term correlation matrix, the rank qk and the fac-
tors are determined using factor analysis. This gives a sequence of
Dk � f � -matrices. These are subsequently averaged (median filter-
ing) to obtain the noise power estimate at a single frequency. The

process is repeated for all 32 frequency bins. The results are shown
in figure 4: the dashed lines are the unfiltered averages of the origi-
nal diagonals of Rk � f � , the solid lines are the filtered averages. Al-
though the factor analysis did not remove all interference (in par-
ticular interference entering on only a single telescope), the graphs
give sufficient information to derive smooth noise calibration func-
tions. The data set is subsequently whitened using these calibration
parameters.

4. SPATIAL FILTERING

Interference cancellation is becoming increasingly important in ra-
dio astronomy. Depending on the interference and the type of in-
strument, several kinds of RFI mitigation techniques are applicable
[2,13]. For intermittent interference, the most effective techniques
are based on detection and “blanking”: omitting the contaminated
samples from the covariance estimate, using a single sensor [14,15]
or multiple sensors [2]. For continually present interference and an
array of p telescope dishes, spatial filtering is possible. The desired
instrument outputs in this case are p × p correlation matrices, inte-
grated to several seconds (eg, 10 s). Based on short-term correla-
tion matrices (integration to e.g., 10 ms) and narrow subband pro-
cessing, the array signature vector of an interferer can be estimated
and subsequently projected out [5]—we describe this technique be-
low.

An interesting option is to utilize a reference antenna which
picks up only the interference, so that adaptive cancellation tech-
niques can be implemented [16, 17]. Spatial filtering on extended
arrays was first considered by Briggs et al. [18] for a single dual-
polarized telescope (two channels) and two reference antennas.
Jeffs et al. [19, 20] propose spatial filtering algorithms along the
lines of [5].

4.1. Spatial filtering using projections

Suppose that an orthogonal basis Uk of the subspace spanned by
interferer spatial signatures span � Ak � is known. We can then form a
spatial projection matrix Pk : � I−UkUH

k which is such that PkAk �
0. When this spatial filter is applied to the data covariance matrix
all the energy due to the interferer will be nulled: let

Q̂k : � PkR̂kPk

then
E{Q̂k} � Pk � Pk

where � : � Rv
� σ2I is the interference-free covariance matrix.

When we subsequently average the modified covariance matrices
Q̂k, we obtain a long-term estimate

Q̂ : � 1
N

N

∑
k � 1

Q̂k � 1
N

N

∑
k � 1

PkR̂kPk 	 (4)

Q̂ is an estimate of � , but it is biased due to the projection. To cor-
rect for this we first write the two-sided multiplication as a single-
sided multiplication employing the matrix identity vec � ABC � �� CT ⊗ A � vec � B � . This gives

vec � Q̂ ��� 1
N

N

∑
k � 1

Ckvec � R̂k � where Ck : � PT
k ⊗ Pk 	 (5)

If the interference was completely removed then

E{vec � Q̂ � } � 1
N

N

∑
k � 1

Ckvec � � ��� Cvec � � � ; C : � 1
N

N

∑
k � 1

Ck 	
(6)



In view of this, we can apply a correction C−1 to Q̂ and define�� : � vec−1 � C−1vec � Q̂ �
� 	
If the interference was completely projected out then

�� is an un-
biased estimate of the covariance matrix without interference. A
detailed analysis of this algorithm will appear in [8]. The main
conclusion is that the variance of the estimate of � is equal to� 1 � N � C−1σ4, whereas for “clean” data it would be � 1 � N � σ4. For
interferers which are sufficiently moving, C−1 is well conditioned
and the penalty is comparable to a loss in number of samples. Even
for stationary interferers, C−1 might be well conditioned due to the
motion of the telescopes, but it depends on the integration length
and the location of the sky source which is being tracked. Cases
where an interferer enters only on a single telescope always lead to
a singular C and cannot be resolved by this algorithm.

4.2. Spatial filtering with an extended array

If the telescope array is extended with one or more reference an-
tennas, we can follow the same procedure. Let p0 be the number
of primary antennas, and p be the total number of antennas. The
data covariance matrix can be partitioned accordingly as

Rk � �
R00 � k R01 � k
R10 � k R11 � k � 	

where Rk has model

Rk � � �
AkAH

k � Rv
��� �

AkAH

k� � Rv � 0 �
A0 � kAH

0 � k � σ2
0I A0 � kAH

1 � k
A1 � kAH

0 � k A1 � kAH

1 � k � σ2
1I � (7)

� is the interference-free covariance matrix, and
�

: �
diag �σ2

0I � σ2
1I � is the diagonal noise covariance matrix (assumed

known). The objective is to estimate the interference-free covari-
ance submatrix � 00 : � Rv � 0 � σ2

0I.
Following the preceding algorithm applied to Rk, the recon-

structed covariance matrix is size p × p, and we can simply select
the p0 × p0 submatrix in the top-left corner,

�� 00 [19, 20]. An im-
proved algorithm would not reconstruct the other blocks of

�� [7].
Indeed, let the projected estimates Q̂ be as before in (4). Then (6)
applies:

E{vec � Q̂ � } � Cvec � � ��	
Partition � as in (7) into 4 submatrices. Since we are only inter-
ested in recovering � 00, the other submatrices in

�� are replaced by
their expected values, respectively � 01 � 0, � 10 � 0, � 11 � σ2

1I.
This corresponds to solving the reduced-size covariance model er-
ror minimization problem,�� 00 � argmin�

00

	 vec � Q̂ � − Cvec � � � 00 0
0 σ2

1I � � 	 2 	
The solution of this problem reduces to a standard LS problem af-
ter separating the knowns from the unknowns. Thus, rearrange the
entries of vec � � � into �	

vec � � 00 �
σ2

11
0 
�

where 1 indicates a vector with all entries equal to 1, and repartition
C accordingly, to obtain the equivalent problem

vec � �� 00 ��� argmin�
00

	 vec � Q̂ � − �C1 C2 C3 �
�	
vec � � 00 �

σ2
11
0 
� 	 2

� argmin�
00

	 � vec � Q̂ � − σ2
1C21 � − C1vec � � 00 � 	 2

� C†
1 � vec � Q̂ � − σ2

1C21 ��	

Figure 5. The “THEA platform” reference phased array (AS-
TRON)

(If σ2
1 is unknown, then it can be estimated using a straightforward

modification.) The advantage compared to the preceding algorithm
is that C1 is a tall matrix, and better conditioned than C. This im-
proves the performance of the algorithm in cases where C is ill-
conditioned, e.g., for stationary interferers, or an interferer enter-
ing on only a single telescope. Asymptotically for large INR of the
reference array, the algorithm is seen to behave similar to the tra-
ditional subtraction technique.

4.3. Experiment

A reference signal is useful only if it has a better SNR than the pri-
mary antennas. Therefore, an omnidirectional antenna is not good
enough. To be versatile, we have tested the preceding technique on
a reference signal obtained from the beamformed output of a wide-
band phased array of 64 elements, shown in figure 5. This system
has a bandwidth of 600-1700 MHz, a baseband of 20 MHz, two
digital beamforming outputs, and it is part of an envisioned “Thou-
sand Elements Array” (THEA), developed by ASTRON. The ref-
erence signal is correlated along with the telescope signals as if it
was an additional telescope, and spatial filtering algorithms can be
applied to the resulting short-term integrated covariance matrices.

The test data is an observation of the strong astronomical
source 3C48 contaminated by Afristar satellite signals. The pri-
mary array consists of p0 � 6 of the 14 telescope dishes of the
WSRT. The reference signals are p1 � 2 beamforming outputs of
the THEA system. One beam was pointed approximately to the
satellite, the other was used for scanning. We recorded 65 kSam-
ples at 20 MS/s, and processed these offline. After short-term win-
dowed Fourier transforms, the data was split into 64 frequency
bins, correlated, and averaged over 32 samples to obtain 16 short-
term covariance matrices.

The resulting auto- and crosscorrelation spectra after filtering
are shown in figure 6. The autocorrelation spectra are almost flat,
and close to 1 (the whitened noise power). The cross-correlation
spectra show that the spatial filtering with reference antenna has
done much better to remove the interference than the case without
reference antenna. The residual correlation of about 4% is known
to be the SNR of the astronomical source. The lines are noisy due
to the finite sample effect; the predicted standard deviation (based
on number of samples averaged) are indicated for a few frequen-
cies.
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Figure 6. � a � Averaged autocorrelation spectrum before and after
filtering, � b � Averaged cross-correlation spectrum

5. IMAGING

As described in more detail in [1], image formation is also a fruit-
ful area for array signal processing techniques. Astronomers try to
estimate the intensity (brightness) I f � s � of the sky as a function of
the location s and frequency f . They do this by measuring the cor-
relation (called the “visibility” V f ) between identical sensors i and
j with locations ri and r j , corresponding to a baseline ri − r j . Let��� � m � denote normalized coordinates of the sky source � −1 ≤ � � m ≤
1 � , and � u � v � w � the baseline vector of the antenna pair measured in
wavelengths. Assuming a planar array, w can be removed from the
equations via geometrical delay compensation. Under certain ap-
proximations, the “measurement equation” is given by [21]

V f � u � v �!� ���
I f ��� � m � e− j2π

�
u�� vm � d � dm 	 (8)

It has the form of a Fourier transformation.
The function V f � u � v � is sampled at various coordinates� ui j � t ��� vi j � t �
� by first of all taking all possible sensor pairs i � j or

baselines ri − r j , and second by realizing that the sensor locations
ri, r j are actually time-varying since the earth rotates. Given a suf-
ficient number of samples in the � u � v � domain, the relation can be
inverted to obtain an image (the ‘map’).

5.1. Matrix formulation

Assume that the sky consists of a large number (d) point sources.
Equation (8) can then be written slightly differently as

V � ui j � t ��� vi j � t �
���� d

∑
l � 1

e− j2π
�
ui0
�
t ��� l � vi0

�
t � ml � · I ��� l � ml � · e j2π

�
u j0
�
t ��� l � v j0

�
t � ml � 	

where � ui0 � vi0 � are coordinates of the ith antenna with respect to
a common reference point. The connection to our previous frame-
work is obtained by collecting the visibilities into correlation ma-
trices R, where Ri j � t ��� V � ui j � t ��� vi j � t �*� . The above equation can
then be written as

Rk � AkBAH

k

where Rk ≡ R � tk � , Ak ��� ak ��� 1 � m1 ���
	
	*	
� ak ��� d � md � � � and

ak ��� � m ���
��	

e− j2π
�
u10
�
tk ���� v10

�
tk � m �

...
e− j2π

�
up0
�
tk ���� vp0

�
tk � m � 
 	� (9)

B �
��	
I ��� 1 � m1 � 0

. . .
0 I ��� d � md � 
 	�

where ak ��� � m � is recognized as the array response vector. As usual,
the array response is frequency dependent. The response is also
slowly time-varying due to the earth rotation.

5.2. Classical inverse Fourier imaging

The relation between sky brightness I ��� � m � and visibilities V � u � v �
(where u, v are taken at frequency f ) is given by the measurement
equation (8). We have measured V on a discrete set of baselines
{ � ui � vi � }. The “dirty image” (a lumpy image obtained via direct
Fourier inversion possibly modified with some weights ci) is de-
fined by

ID ��� � m � : � ∑
i

ci V � ui � vi � e j2π
�
ui �� vim � (10)

It is equal to the 2D convolution of the true image I with a point
spread function known as the “dirty beam”:

ID ��� � m ���� ∑i ci V � ui � vi � e j2π
�
ui �� vim �� ∑i ci 
���� I ���  � m  � e− j2π

�
ui �� � vim  � d �  dm

 �
e j2π

�
ui � � vim �� ��� I ���  � m  � 
 ∑i ci e j2π

�
ui
� � − �� � � vi

�
m−m  � � � d �  dm

 � ��� I ���  � m  � B0 ��� − �  � m − m
 � d �  dm

 
or

ID � I ∗ B0 � B0 ��� � m � : � ∑
i

ci e j2π
�
ui �� vim �

B0 is the dirty beam, centered at the origin. The weights {ci} are
arbitrary coefficients designed to obtain an acceptable beam-shape,
with low side lobes, in spite of the irregular sampling.

Specializing to a point source model, I ��� � m � � ∑l Il δ ��� −� l � m−ml � where Il is the intensity of the source at location ��� l � ml � ,
gives

V � u � v �!� ∑
l

Il e− j2π
�
u � l � vml �

ID ��� � m �%� ∑
l

Il B0 ��� − � l � m − ml �
Thus, every point source excites the dirty beam centered at its lo-
cation ��� l � ml � .



From the dirty image ID and the known dirty beam B0, the de-
sired image I is obtained via a deconvolution process. A popular
method for doing this is the CLEAN algorithm [22]. The algorithm
assumes that B0 has its peak at the origin, and consists of a loop in
which a candidate location ��� l � ml � is selected as the largest peak in
ID, and subsequently a small multiple of B0 ��� − � l � m − ml � is sub-
tracted from ID. The objective is to minimize the residual, until it
converges to the noise level.

5.3. Inverse Fourier imaging after projections

If we take projections or any other linear combination � ci j � of the
visibilities {V � ui � vi � } during measurements we have instead avail-
able

Z � ui � vi �%� ∑
j

ci j V � u j � v j �
E.g., in section 4 we took projections of the short-term covariance
matrices and averaged the results. In that case, the coefficients ci j

correspond to C in equation (6), and Z � ui � vi � corresponds to Q̂ in
equation (5). This further assumes that we did not make the cor-
rection by C−1 as suggested in that section, perhaps because it is ill
conditioned.

Suppose we compute the dirty image in the same way as be-
fore, but now from Z,

ID ��� � m � : � ∑i Z � ui � vi � e j2π
�
ui �� vim �� ∑i ∑ j ci j V � u j � v j � e j2π

�
ui �� vim � 	

Then

ID ��� � m ��� ∑i ∑ j ci j V � u j � v j � e j2π
�
ui �� vim �� ∑i ∑ j ci j 
���� I ���  � m  � e− j2π

�
u j �  � v jm  � d �  dm

 �
e j
�
ui � � vim �� ��� I ���  � m  � 
 ∑i ∑ j ci j e− j2π

�
u j �� � v jm  � e j2π

�
ui �� vim � � d �  dm

 � ��� I ���  � m  � B ��� � m ���  � m  � d �  dm
 

where

B ��� � m ���  � m  � : � ∑
i

∑
j

ci j e− j2π
�
u j �� � v jm  � e j2π

�
ui � � vim � 	

Thus, the dirty image is again obtained via a convolution, but the
dirty beam is now space-varying. B ��� � m ���  � m  � is a beam centered
at ���  � m  � and measured at ��� � m � .

With a point source model,

ID ��� � m � � ∑
l

Il B ��� � m ��� l � ml � � ∑
l

Il Bl ��� � m �
where

Bl ��� � m � : � ∑
i

∑
j

ci j e− j2π
�
u j � l � v jml � e j2π

�
ui �� vim � 	

Again, every point source excites a beam centered at its location��� l � ml � , but the beams may all be different: they are space vary-
ing. Nonetheless, they are completely known if we know the linear
combinations that we took during observations. Thus, the CLEAN
algorithm can readily be modified to take the varying beam shapes
into account: simply replace B0 ��� � m � by Bl ��� � m � everywhere in
the algorithm.

5.4. Imaging via beamforming techniques

CLEAN and sequential beamforming Using a parametric point-
source model, the image deconvolution problem can be interpreted
as a direction-of-arrival (DOA) estimation problem, e.g., as

� {ŝl} � B̂ � � argmin
{sl} �B K

∑
k � 1

	 R̂k − Ak � {sl} � BAH

k � {sl} � − σ2I 	 F (11)

(B is constrained to be diagonal with positive entries.) This is rec-
ognized as the same model as used for DOA estimation in array
processing. Note however that the array is moving (Ak is time-
dependent), and that there are many more sources than the dimen-
sion of each covariance matrix.

In this notation, the image formation in section 5.2 can be
formulated as follows. If we write ID � s � ≡ ID ��� � m � and ak � s � ≡
ak ��� � m � , we can rewrite the dirty image (10) as

ID � s ��� ∑
i � j � kV � ui j � tk ��� vi j � tk �
� e j2π

�
ui0
�
tk ���� vi0

�
tk � m � ·

·e− j2π
�
u j0
�
tk ���� v j0

�
tk � m �� ∑

i � j � k � Rk � i j � āk � s �
� i � ak � s �
� j� ∑
k

aH

k � s � Rkak � s ��	
(We omitted the optional weighting. Also note that, with noise, we
have to replace Rk by Rk − σ2I.) The iterative beam removing in
CLEAN can now be posed as an iterative LS fitting between the
sky model and the observed visibility [23]. Finding the brightest
point s0 in the image is equivalent to trying to find a point source
using classical Fourier beamforming, i.e., ,

ŝ0 � argmax
s

K

∑
k � 1

aH

k � s � � Rk − σ2I � ak � s ��	 (12)

Thus, the CLEAN algorithm can be regarded as a generalized clas-
sical sequential beamformer, where the brightest points are found
one by one, and subsequently removed from Rk until the LS cost
function (11) is minimized. An immediate consequence is that the
estimated source locations will be biased, a well known fact in ar-
ray processing. When the sources are well separated the bias is neg-
ligible compared to the standard deviation, otherwise it might be
significant. This gives an explanation for the poor performance of
the CLEAN in imaging extended structures (see e.g., [21]).

Minimum variance beamforming approaches Once we view im-
age formation/deconvolution as equivalent to direction-of-arrival
(DOA) estimation with a moving array, we can try to adapt var-
ious other DOA estimators for handling the image formation. In
particular the deflation approach used in the CLEAN algorithm can
be replaced by other source parameters estimators. One approach
that seems particularly relevant in this context is the Minimum-
Variance Distortionless Response (MVDR) method of beamform-
ing [24]. The major new aspect here is the fact that the array is mov-
ing and that there are more sources than sensors.

Instead of working with the dirty image ID � s � � ∑k aH

k � s � Rkak � s � ,
the basis for high-resolution beamforming techniques is to look at
more general “pseudo-spectra”

I
 
D � s � : � ∑

k

wH

k � s � Rkwk � s � (13)

Here, wk � s � is the beamformer pointing towards direction s, and
I
 
D � s � is the output energy of that beamformer. Previously we had

wk � s ��� ak � s � ; the objective is to construct beamformers that pro-
vide better separation of close sources.

A generalized MVDR follows by defining the problem as fol-
lows: At each time instance k we would like to generate a weight
vector wk which minimizes the output power at time k subject to the
constraint that we have a fixed response towards the look direction
s of the array, i.e.,

ŵk � s �%� argmin
wk

wH

kR̂kwk such that wH

kak � s ��� 1 	



Figure 7. Examples of “dirty images” from the LOFAR test sta-
tion: (top row) classical beamforming and MVDR im-
age of Cassiopeia A along with interference at the hori-
zon, (bottom row) similar images at a different frequency
where interference is more dominant (Cas-A is not ex-
pected to be visible at this frequency due to ionosphere
occlusion).

The solution to this problem is

ŵk � βkR̂−1
k ak � s � � where βk � 1

aH

k � s � R̂−1
k ak � s � 	

Inserting in (13) shows that the overall spectral estimator is given
by

I
 
D � s �%� K

∑
k � 1

1

aH

k � s � R̂−1
k ak � s � 	 (14)

and the locations of the strongest sources are given by the maxima
of I
 
D � s � . It is known that the MVDR has improved resolution com-

pared to the classical beamformer which is the basis for the CLEAN
algorithm. The algorithm is readily extended to handle the “space-
varying” beamshapes that occur after spatial filtering. It is also pos-
sible to use more advanced forms of beamforming, e.g., “robust
Capon beamforming” (RCB) [25].

Figure 7 illustrates this by comparing a dirty image produced
in the classical way to the dirty image corresponding to (14). The
measurement data is a 1-minute “snapshot” (K � 1) collected from
a 60-element test station for the LOFAR telescope discussed in sec-
tion 6. Since this is a two-dimensional array, it does not depend
on earth rotation to enable imaging. Due to the limited integration
time, the sky sources are not yet observed and only interference
shows up, which is visible at the horizon. All other features are due
to the sidelobes of the dirty beam. However, using MVDR imaging
it is possible to recover Cassiopeia A, which is the strongest extra-
solar radio source in the sky. Figure 8 shows some additional detail
at the location of the interferer; the Robust Capon Beamforming
technique is seen to give superior resolution.

6. FUTURE RADIO TELESCOPES

Technological advances in the last decade have created interesting
possibilities for large distributed interferometric radio telescopes
with very large receiving areas and a sensitivity which is one to

� a �

� b �

� c �
Figure 8. Zoom of figure 7 (bottom row) at the location of the dom-

inant interferer: � a � Classical beamforming, � b � MVDR,� c � Robust Capon Beamforming.

two orders of magnitude better than the current generation. Two
proposed instruments in this context are LOFAR [26,27] and SKA
[28, 29]; the previously mentioned THEA system is a smallscale
step-up in the design of SKA. Prominent among the challenges of
designing and building these telescopes (apart from the costs) are
the mitigation of radio interference, the calibration of the system,
and the sheer signal processing complexity.

LOFAR (Low Frequency Array) is a next generation radio tele-
scope which is currently under design in an international consor-
tium formed by ASTRON (Dwingeloo, The Netherlands), MIT
Haystack Observatory (Boston area), and the US Naval Research
Laboratory (Washington), as well as in a Dutch national consor-
tium with many partners, headed by ASTRON. The goal of LO-
FAR is to enable radio astronomical observations in the 20–240
MHz band with an unprecedented high resolution and sensitivity.
This portion of the spectrum corresponds to very high redshifts,
and can be used to image the most distant and oldest radio galax-
ies and quasars in the universe. These can hardly be studied with
existing instruments, and since their signals are so faint, an order
of magnitude increase in collecting area and baseline lengths is
needed. This is not practical anymore with the traditional mechan-
ically steerable dishes.

The preliminary LOFAR design calls for an instrument consist-
ing of about 13,000 ‘simple’ omni-directional antennas, grouped in
about 50 stations spread in spirals over an area with a diameter of
about 360 km, as well as in a more densely populated central core.
The 200 antennas in each remote station are used as a phased ar-
ray and are combined in such a way that a beam is formed into a



Figure 9. � a � LOFAR distribution of the stations; � b � LOFAR
Initial Test Station under construction by ASTRON in
snow-covered Borger-Odoorn.

desired look-direction. The same is done for the 3,000 elements in
the core. The resulting output of each beamformer is similar to the
output of a telescope dish pointing into the same direction, but is
obtained without the use of any moving parts. For large collecting
areas, this results in significant cost savings; moreover, by dupli-
cating the electronics it is simple to form multiple beams in differ-
ent directions at the same time. The preliminary LOFAR design
defines 8 simultaneous beams, each spanning a (non-contiguous)
bandwidth of 4 MHz in the range 20–240 MHz. At this moment,
a test station is under construction in Borger-Odoorn (The Nether-
lands), see figure 9(b), and preliminary datasets using 60 elements
are becoming available.

A similar example is the Square Kilometer Array (SKA). This
new generation telescope should have an effective aperture area of
one square kilometer, in the frequency range from 150 MHz up to
20 GHz. Just as as LOFAR, it will be a large distributed telescope
with many individual elements. The telescope concept for SKA is
not yet defined.

A few of the research challenges for LOFAR relevant for array

signal processing are mentioned next.

Calibration. Initially the locations and frequency-dependent gains
and phases of each receiver unit are unknown and need to be
estimated. Additionally, the disturbance due to the propagation
through the earth ionosphere has to be measured and compensated
for. For LOFAR this is very much complicated by the fact that,
at low frequencies, the ionosphere is not uniform and can change
within minutes. The final sensitivity of the instrument is strongly
dependent on how accurate this calibration is carried out.

RFI mitigation. The band 10–240 MHz contains many sources of
RFI (radio frequency interference). The band 88-108 MHz is oc-
cupied by FM radio transmitters, and actually this band is given up
in the LOFAR design. Apart from this, there are TV broadcasts,
digital audio broadcasts, etc. LOFAR will be the first radio tele-
scope in which RFI mitigation techniques will (necessarily) form
an integral part of the system design.

There will be two levels of RFI mitigation: at the station level
and at the central level. At the station level, the 200 antennas in a
station can be combined to modify the beamshape such that an in-
terferer is nulled. This will at the same time modify the reception of
the sky signals, and hence the resulting beamshape has to be known
at the central correlator, which is complicated by the irregular struc-
ture of the array. This form of spatial filtering can be used to null
strong local interference. At the central level, the signals from each
station can be combined to null any remaining interference that is
received by several stations simultaneously. A correction is needed
to take the disturbance of the sky signals into account [5].

Postcorrelation processing and imaging. In its simplest form,
image formation consists of a spatial Fourier transform of the
received correlation data—similar to seismic, synthetic aperture
radar (SAR) and NMR imaging. Accurate array calibration pa-
rameters are needed to perform this step correctly.

Because the number of correlation samples (u � v data) is finite
and irregularly spaced, the response of a single point source in the
sky is not a point, but an irregular cloud in the initial, “dirty” im-
age. Iterative deconvolution algorithms such as CLEAN are used
to find the locations of the point sources and subtract their effect in
the image. (Certain types of interfering sources can be removed in
this way as well.) At each step, the residual image can be compared
to a image with only point sources, and the difference (error) can be
used to improve the calibration parameters into a direction that will
minimize the error. This gradient search technique is the essence of
the iterative calibration algorithm SELFCAL [23, 30–32], devel-
oped in the 1970s for the Westerbork telescope and subsequently
used in most other synthesis telescopes.

For LOFAR, the idea is to use similar imaging algorithms.
However, the complexity is orders of magnitude higher: the num-
ber of calibration parameters is in the order of a few million rather
than a hundred, the number of dominant point sources to be esti-
mated is also much larger, and the convergence of a proposed mod-
ified SELFCAL algorithm for such a large number of parameters
has not been demonstrated.
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