
APPROXIMATE INVERSION OF A LARGE SEMISEPARABLE
POSITIVE MATRIX

ALLE-JAN VAN DER VEEN∗

Abstract. The inversion of a large (n × n) positive matrix is considered. We assume that
the matrix has a semi-separable structure, which implies that all submatrices away from the main
diagonal have rank less than q (the matrix itself may be full). In practice, a specified matrix will
not exactly have low-rank submatrices. Given a threshold and a positive matrix T , the submatrices
of T are rank truncated to this threshold (balanced model reduction) and the inverse of a Cholesky
factor of T is computed using time-varying state-space techniques. The proposed algorithm requires
O(n2q) operations, where q is the average rank of the submatrices as detected by the algorithm.

1. Introduction. We consider the problem of the inversion of a large (n × n)
positive matrix T . Direct techniques require O(n3) operations (multiplications and
additions). We assume that the matrix has a semi-separable structure, which implies
that all submatrices away from the main diagonal have rank less than q. An example
of such a matrix is a banded matrix with band width q, but also the inverse of a
band matrix is semiseparable of order q. Using this structure, we show that O(n2q)
operations are required.

Semiseparable matrices were perhaps first considered in [13]. In [7], matrices with
a related structure were studied via an explicit link to time-varying system theory;
this produced QR factorization algorithms (called “inner-outer factorization” and
“external factorization”), matrix inversion techniques (see also [14]), and low-rank
approximation techniques (see also [6]). More recently, inversion algorithms based on
related algebraic formalisms were proposed [1–5,8–12].

In general, matrices with a semiseparable structure allow for inversion with a
complexity linear in the matrix dimension n. However, this holds for the case where
the matrix is already compactly represented, e.g., by a time-varying state space de-
scription. In this paper, we consider the more common case where an “unstructured”
matrix is specified via its entries, typically as a full matrix. The compact representa-
tion has to be derived along with the inversion steps, therefore the complexity cannot
be smaller than O(n2) unless the matrix is sparse.

Moreover, we consider the typical case where the matrix does not exactly have
low-rank submatrices: they will be rank truncated by the algorithm. To this end, a
threshold γ is specified. More specifically, we take the following approach:

1. Cholesky factorization: T = F ∗F , where F is upper triangular,
2. Truncate the rank of the submatrices of F according to a threshold γ,
3. Invert the resulting F̃ .

The algorithm is derived using a time-varying state-space approach [7].

2. Basic algorithm derivation. In this section, we summarize some of the
results in [7], which will lead to an inversion algorithm of complexity O(n3). This
algorithm forms the basis for subsequent improvements.

2.1. Matrix multiplication. As in [7], we describe the multiplication of a (row)
vector u = [u1, · · · , un] by an upper triangular matrix T , i.e., y = uT , by means of a

∗Delft University of Technology, Department of Electrical Engineering, Mekelweg 4, 2628 CD
Delft, The Netherlands, email: allejan@cas.et.tudelft.nl. This paper was presented at MTNS’04
(Brussels, 6 July 2004).

1



time-varying state space description (or recursion)

{

xk+1 = xkAk + ukBk

yk = xkCk + ukDk , k = 1, · · · , n
(1)

where y = [y1, · · · , yn]. This corresponds to multiplication by an upper-triangular
matrix

T =















D1 B1C2 B1A2C3 B1A2A1C4 · · ·
D2 B2C3 B2A3C4

D3 B3C4

0 D4 · · ·
. . .















.(2)

If the size of the state vector xk is qk and the average of qk is q, then matrix-vector
multiplication using the state recursion has a complexity of O(nq2), instead of O(n2)
for a direct implementation. The complexity can be further reduced to O(nq) by
using certain implementations of the recursion (e.g., factored state recursions).

For a given upper-triangular matrix T , define its Hankel submatrices Hk as the
collection of submatrices of T away from the main diagonal:

Hk =











Tk−1,k Tk−1,k+1 Tk−1,k+2 · · ·
Tk−2,k Tk−2,k+1

Tk−3,k
. . .

...











, k = 1, · · · , n .(3)

Substituting (2), it is seen that the state recursion corresponds to a low rank factor-
ization of the Hk:

Hk =











Bk−1

Bk−2Ak−1

Bk−3Ak−2Ak−1

...











[Ck AkCk+1 AkAk+1Ck+2 · · ·] =: CkOk ,(4)

Numerically, the factors Ck and Ok represent qk-dimensional bases of the column
span and row span of Hk, respectively. It can be shown that, for any upper-triangular
matrix T , minimal realizations with qk = rank(Hk) states always exist. Efficient
computations are possible if rank(Hk) is small for all k.

In system theory, Ck is known as the controllability operator, and Λc,k := C∗

kCk

as the controllability gramian at time k. It satisfies the recursion

Λc,k+1 = A∗

kΛc,kAk + B∗

kBk .(5)

Similarly Λo,k = OkO
∗

k is the observability gramian at time k, with recursion

Λo,k+1 = AkΛo,kA∗

k + CkC∗

k .(6)

A realization is said to be in ‘output normal form’ if Λo,k = I for all k. A realization
is minimal if both Λc,k and Λo,k are full rank for all k (in that case, the factorization
Hk = CkOk has full-rank factors for all k).

2



2.2. Cholesky factorization.
Theorem 1 (Spectral Factorization Theorem, p.369 of [7]). Given T > 0, where

the upper triangular part of T has state-space realization {Ak, Bk, Ck , Dk}, let T =
F ∗F where F is upper triangular. Then a realization {AF,k, BF,k, CF,k, DF,k} of F is
given by















AF,k = Ak

CF,k = Ck

DF,k = (Dk − C∗

kΛkCk)−1/2

BF,k = D−1

F,k(Bk − C∗

kΛkAk)

(7)

where Λk is given by the iteration

Λk+1 = A∗

kΛkAk + (B∗

k − A∗

kΛkCk)(Dk − C∗

kΛkCk)−1(Bk − C∗

kΛkAk) .(8)

The expression for Λk is recognized as a discrete-time Riccati equation. The resulting
F is ‘outer’, meaning that it is upper triangular and that it has a ‘stable’ upper
triangular inverse (stable in a system-theoretical sense [7], which practically means
that the entries of F−1 do not exponentially grow away from the main diagonal).

Λk is interpreted as the controllability gramian of F , because (cf. (5))

Λk+1 = A∗

kΛkAk + B∗

F,kBF,k .(9)

2.3. Inverse of an outer matrix.
Theorem 2. The inverse of F with realization {Ak, Bk, Ck , Dk} is S = F−1 with

realization
[

AS,k CS,k

BS,k DS,k

]

=

[

Ak − CkD−1

k Bk −CkD−1

k

D−1

k Bk D−1

k

]

.

Proof. This is because

{

xk+1 = xkAk + ukBk

yk = xkCk + ukDk
⇔

{

xk+1 = xk(Ak − CkD−1

k Bk) + ykD−1

k Bk

uk = −xkCkD−1

k + ykD−1

k

�

2.4. Trivial realization. Consider an upper triangular matrix T . A realization
of T is given by

[

Ak Ck

Bk Dk

]

=















1 0
. . .

...
1 0

0 · · · 0 1
Tk,n · · · Tk,k+1Tkk















.

This trivial realization is in output normal form (AkA∗

k + CkC∗

k = I), but not
minimal: Λo,k = I but Λc,k is singular. It is used as a starting point to be able
to apply the preceding theorems, which were all formulated in terms of state space
realizations.

3



2.5. Algorithm 0 (complexity O(n3)). Consider a matrix T > 0 of size n×n.
By combining the preceding sections, we can find a trivial realization of T , factor
T = F ∗F in state space, and compute a state space representation of S = F−1. This
gives the following algorithm:

1. Λ1 = 0n×n

2. for k = 1 to n do
3. [Ak Ck] = In−k+1

4. Bk = [Tk,n · · ·Tk,k+1]
5. Dk = Tkk

6. DF,k = (Dk − C∗

kΛkCk)−1/2

7. BF,k = D−1

F,k(Bk − C∗

kΛkAk)

8. Λk+1 = A∗

kΛkAk + B∗

F,kBF,k

9.

[

AF,k CF,k

BF,k DF,k

]

=

[

Ak Ck

BF,k DF,k

]

10.

[

AS,k CS,k

BS,k DS,k

]

=

[

Ak − CkD−1

F,kBF,k −CkD−1

F,k

D−1

F,kBF,k D−1

F,k

]

11. end

The complexity of this algorithm is determined by the size of Bk (n − k × 1) and
Λk (n − k × n − k). Multiplication of Λk by Ak or Ck in steps 6 and 7 amounts to
the selection of certain submatrices, and to not count for the complexity. The total
complexity (due mostly to the rank-1 updates in step 8 and 10) is O(n3). Since each
AS,k has size n − k × n − k, storage is large, O(n3). It is actually more efficient to
store only BF,k, DF,k, which are simply the entries of the Cholesky factor and which
requires O(n2) storage entries. Application of the inverse factor to a vector can then
be computed from step 10 without computing the matrices explicitly (this corresponds
to backsubstitution in triangular matrix inversion).

In subsequent sections, we will make refinements to this algorithm to reduce its
complexity. A first observation is that Λk is usually rank deficient, because it starts
as an all-zero matrix (step 1) and step 8 gives only rank-1 updates. Therefore, we
would like to work with a minimal factor Mk of Λk = M∗

k Mk, where the rows of Mk

are linearly independent. Suppose that Mk has size qk × (n − k), then we will first
derive an algorithm that has complexity O(n2q2), where q is the ‘average’ size of qk

over k; and in section 4 this is reduced further to O(n2q). We also will implement
a rank approximation of Λk, i.e., truncate all eigenvalues smaller than a threshold.
This will reduce the size qk of the approximated M̃k.

Along with the rank reduction, we will use the observation that [Ak Ck] = I is
trivial, but unnecessarily large because the realization we start with does not have a
minimal number of states. We will derive a realization where AF,k has size qk × qk+1.

3. Approximate inversion.

3.1. State transformation and minimal realization. Let Rk be a sequence
of invertible matrices, and compute

[

A′

k C ′

k

B′

k D′

k

]

=

[

R−1

k

I

] [

Ak Ck

Bk Dk

] [

Rk+1

I

]

.

Then {A′

k, B′

k, C ′

k, D′

k} has the same input-output relationship as {Ak, Bk, Ck, Dk}
(it is an equivalent realization of the same upper triangular matrix but with different

4



internal states), and

Λ′

c,k = R∗

kΛc,kRk , Λ′

o,k = R−∗

k Λo,kR−1

k .

In our application we start with a trivial realization for which Λo,k = I , but Λc,k

is often rank deficient: the realization does not have a minimal number of states. The
following theorem will be instrumental to reduce the number of states:

Theorem 3. Suppose an upper triangular matrix T has a realization {Ak, Bk, Ck, Dk}
with controllability gramian

Λc,k =

[

Λ̃k

0

]

.

Then the realization matrix (partitioned conformably) has the following structure:

[

Ak Ck

Bk Dk

]

=





A11,k 0 C1,k

A21,k A22,k C2,k

B1,k 0 Dk



 .

Furthermore, {A11,k, B1,k, C1,k, Dk} is a realization of T , with controllability gramian

Λ̃k.
To apply this theorem in more general cases, consider a realization with a singular

controllability gramian Λc,k of rank q̃k, and compute its eigenvalue decomposition

Λc,k =: Vk

[

Λ̃k

0

]

V ∗

k = ṼkΛ̃kṼ ∗

k ,(10)

where Λ̃k is a diagonal matrix containing the nonzero eigenvalues of Λc,k, Vk is unitary,

and Ṽk contains the columns of Vk corresponding to the entries in Λ̃k. Applying Vk

as a state transformation gives

[

A′

k C ′

k

B′

k D′

k

]

=

[

V ∗

k

I

][

Ak Ck

Bk Dk

][

Vk+1

I

]

, Λ′

c,k=V ∗

k Λc,kVk =

[

Λ̃k

0

]

.

Therefore, an equivalent but reduced size realization (q̃k states) is

[

Ãk C̃k

B̃k D̃k

]

=

[

Ṽ ∗

k

I

][

Ak Ck

Bk Dk

][

Ṽk+1

I

]

.(11)

which has as controllability gramian Λ̃k.

3.2. Square-root implementation of Λ. Equation (9) to update Λk can be
implemented in square root form: let Λk = M∗

kMk where Mk is a full-rank factor
(minimal number of rows). Define the SVD

[

MkAk

BF,k

]

=: Uk+1Σk+1V
∗

k+1 = Ũk+1Σ̃k+1Ṽ
∗

k+1(12)

where Uk+1 and Vk+1 are square and unitary, and Σk+1 is diagonal and of the same size
as the matrix at the left hand side. Similarly Ũk+1Σ̃k+1Ṽ

∗

k+1 is an SVD in ‘economy

size’, where Σ̃k+1 is square diagonal and contains the nonzero singular values in Σk+1,

5



and Ũk+1 and Ṽk+1 collect the corresponding columns of Uk+1 and Vk+1. In terms of
this factorization, we can define the recursion

Mk+1 = Ũ∗

k+1

[

MkAk

BF,k

]

= Σ̃k+1Ṽ
∗

k+1 .(13)

It is such that M∗

k+1
Mk+1 = Λk+1 as required by (9). Moreover, Λk = ṼkΣ̃2

kṼ ∗

k , which

has a correspondence with (10). Therefore, we can use Ṽk as a state transformation
as in (11) to reduce the number of states of the resulting realization of F . The
controllability gramian of this realization is Σ̃2

k.

3.3. Balanced model reduction. Assume the realization of F is in output
normal form (Λo,k = I , valid e.g., for the trivial realization), and the input gramian
is Λk = M∗

kMk. Let Hk be the k-th Hankel matrix of F . Since

Hk = CkOk , Λc,k = C∗

kCk , Λo,k = OkO
∗

k

it follows immediately that the nonzero eigenvalues of HkH∗

k are equal to the nonzero
eigenvalues of Λc,kΛo,k. Since in the trivial realization for F we have Λo,k = I , it
follows for this realization that the nonzero singular values of Hk are equal to the
singular values of Mk.

Therefore, if we compute a singular value decomposition of Mk and truncate
the singular values at a threshold γ (setting those that are smaller than γ to zero),
then in fact this is equal to reducing the rank of the Hankel matrices of F , and
‖H̃k −Hk‖ = ‖M̃k −Mk‖, in 2-norm or Frobenius norm. This technique is known as
balanced model reduction.1

Suppose qk singular values are larger than γ, and let M̃k be the rank-qk ap-
proximation, with corresponding right singular vectors Ṽk . Then the corresponding
realization of the approximant of F is given by (11). This realization has qk states
and is minimal.

To reduce the complexity of the computations, a further approximation is needed,
namely in the propagation of Mk to Mk+1, equation (13). Here we propose to use the
approximation M̃k as well. The effect of this approximation is not predicted by the
theory of balanced model reduction. Therefore the approximation error ‖H̃k − Hk‖
will be somewhat larger than γ.

For future use, we will also apply to the realization in (11) a subsequent state
transformation by Σ̃−1

k , which will give
[

Ãk C̃k

B̃k D̃k

]

=

[

Σ̃kṼ ∗

k

I

] [

Ak Ck

BF,k DF,k

][

Ṽk+1Σ̃
−1

k+1

I

]

(14)

The controllability gramian of this realization is Iq×q . Note that Σ̃kṼ ∗

k = M̃k, and

since [Ak Ck] = I , we have Mk[Ak Ck] = [M ′ m], a partitioning of M̃k where m
is the last column of M̃k and M ′ contains the preceding columns. Further note that
(using equation (11))

[

M̃kAk

BF,k

]

Ṽk+1Σ̃
−1

k+1
= Ũk+1(15)

We have obtained the following algorithm.

1In the theory of balanced model reduction, one would first apply a state transformation to
make Λ′

c,k = Λ′

o,k = Σ (diagonal), then truncate Σ and select the corresponding submatrices of

the realization. Since in our case Λo,k is already diagonal, this procedure is actually equivalent to
truncating the rank of Mk.

6



3.4. Algorithm 1 (order n2q2). Given a positive matrix T (size n × n), the
following algorithm computes a realization for an upper triangular approximate factor
F and its inverse S = F−1. The threshold γ determines the number of states in the
realization of F and S as qk, approximately corresponding to the number of singular
values of the Hankel matrices of T larger than γ.

1. q1 = 0, M1 = · (0 × n)
2. for k = 1 to n do
3. B = [Tk,n · · ·Tk,k+1] 1 × n − k

4. D = Tkk

5. Mk =: [M ′ m] qk × n − k + 1

6. DF = (D −m∗m)1/2

7. BF = D−∗

F (B −m∗M ′)

8. X :=

[

M ′

BF

]

=: UΣV ∗ (economy-size SVD) qk + 1 × n − k

9. qk+1 = #(σi > γ), Ũ = U(:, 1 : qk+1) qk + 1 × qk+1

10. Mk+1 = Ũ∗X = Σ̃Ṽ ∗ qk+1 × n − k

11.

[

AF,k CF,k

BF,k DF,k

]

=

[

Ũ
m
DF

]

12.

[

AS,k CS,k

BS,k DS,k

]

=

[

AF,k − CF,kD−1

F,kBF,k −CF,kD−1

F,k

D−1

F,kBF,k D−1

F,k

]

13. end

The computational complexity is determined by the SVD of X (size qk × n − k)
in step 8, which is of order O(nq2), where q is the average number of states qk. The
total complexity of the algorithm is O(n2q2).

Interpreting the steps in the algorithm, we see that Mk is a basis of the (dominant)
row span of the k-th Hankel matrix of F . In going to the k + 1-st Hankel, the tail
(m) is chopped, and a new row is added. The SVD in step 8 incorporates the new
row and a minimal basis is kept. The new basis is Mk+1 = Σ̃Ṽ ∗, whereas Ũ relates
the old basis to the new, and becomes part of the realization of the factor.

4. Reduced complexity.

4.1. Derivation. In the complexity of the algorithm (n2q2), the factor n2 cannot
be avoided: all entries of the matrix have to be visited at least once. However, the
factor q2 can be reduced to q, by using the fact that the qk rows of Mk are orthogonal.
The necessary modifications to the algorithm are discussed in this section.

Thus introduce a QR factorization: Mk = RkQk, where Rk : qk × qk, and Qk :
qk × n − k + 1, with orthonormal rows. Initially, Rk = Σ̃k (diagonal) and Qk = Ṽ ∗

k

(orthonormal), but during the computations this may change. We update Rk and Qk

separately, and minimize operations on Qk.
The following subsections list the required changes to the algorithm.

Step 5: Mk =: [M ′ m]. Let Mk = RkQk with Qk having orthonormal rows.
We aim to have

Mk =: [M ′ m] = Rk[Q′ αe1]

where e1 is a unit vector in the direction of the x-axis. Note that Q′ has orthonormal
rows (up to a scaling of the first row), so that we can continue in subsequent steps
with the factorization M ′ = RkQ′.

7



Starting from Mk = RkQk, we compute a sequence of qk − 1 Givens rotations
G to map m to αe1. The Givens rotations are applied both to Rk and to Qk. The
result is

Rk := RkG∗ ; Qk := GQk =: [Q′ αe1]

If α = 1, then the first row of Q′ is equal to zero and should be dropped. Also, if Q′

is tall its dimension must be reduced by dropping the first row.

Step 8: X :=

[

M ′

BF

]

. We aim to have

X =

[

M ′

BF

]

=

[

RkQ′

BF

]

=: RQ

Therefore the new row BF must be made orthogonal to the rows of Q′. This is
obtained by a Gram-Schmidt orthonormalization of BF versus the basis Q′,

b := BF Q′∗

βq1 := BF − bQ′, q1 normalized

R :=

[

R 0
b β

]

, Q :=

[

Q′

q1

]

If β = 0 then BF was already contained in the subspace spanned by the rows of Q′.
In that case, q1 and the corresponding column of the new R must be dropped.

Step 8: X =: UΣV ∗ . Since Q is orthonormal, this step is easily carried out on
R.

R =: UΣV ∗ (size q + 1 × q + 1)

Step 10: Mk+1 = Σ̃Ṽ ∗. After step 8, step 10 is now

Mk+1 = Σ̃Ṽ Q = RQ (Σ̃ : q × q, Ṽ : q × q + 1)

Since the rows of Q have length of order n, and Ṽ is full, a direct multiplication
Q := Ṽ Q is too expensive. But (i) Ṽ is a submatrix of a unitary matrix, and (ii) we
only have to compute a basis for the subspace spanned by Ṽ Q, so we can apply some
multiplications on R instead. In fact all row operations applied to Ṽ (and matched
by column operations on R) can be used to reduce the number of computations.

We start by setting R = Σ̃ and then update R and Ṽ to reduce the complexity
of Ṽ . Compute a sequence of Givens rotations G acting on the rows of Ṽ such that
entries Ṽj,i below the main diagonal of Ṽ are zeroed against the pivot entries Ṽi,i on
the main diagonal:

R := RG∗, Ṽ := GṼ =







∗ · · · ∗ ∗

0
. . .

...
...

0 0 ∗ ∗







For this, 1

2
q(q − 1) rotations are needed. The complexity of Ṽ cannot be reduced by

row operations any further. Subsequently, column operations are applied to Ṽ and
matched by similar operations on Q, to cancel all entries beyond the q-th column of

8



Ṽ . Using the diagonal entries of Ṽ as pivots and starting at the (q, q)-th entry, we
obtain after q rotations

Ṽ := Ṽ G =







∗ · · · ∗ 0

0
. . .

...
...

0 0 ∗ 0






, Q := G∗Q

We can ensure that the diagonal entries are real and positive. Since the rows of Ṽ are
orthonormal, it follows that at this point in fact

Ṽ =







1 0 0 0

0
. . . 0 0

0 0 1 0







We finish by reducing the size of Q appropriately:

Q := Ṽ Q = Q(1 : q, :)

We have thus obtained Mk+1 = RQ, with a complexity of order q rotations on the
rows of Q. The resulting algorithm appears in the following subsection.

9



4.2. Algorithm 2 (order n2q).

1. q = 0, R = · (0 × 0), Q = · (0 × n)
2. for k = 1 to n do
3. B = [Tk,n · · ·Tk,k+1], D = Tkk

4. Q =: [Q q] q × (n − k + 1)
m = Rq q × 1

5. DF = (D − m∗m)1/2 , BF = D−∗

F [B − (m∗R)Q]

6. for i = q − 1, · · · , 1 do
Gi = givens([qi,qi+1]

T )
q([i, i + 1]) = Giq([i, i + 1])
Q([i, i + 1], :) = GiQ([i, i + 1], :)
R(:, [i, i + 1]) = R(:, [i, i + 1])G∗

i

end

α = ‖Q(1, :)‖
if α > 0 and Q square or wide

Q(1, :) = (1/α)Q(1, :) q × (n − k)
R(:, 1) = αR(:, 1) q × q

else
Q = Q(2 : q, :) (q − 1) × (n − k)
R = R(:, 2 : q) q × (q − 1)

end

7. b = BF Q∗ 1 × q
q = BF − bQ 1 × (n − k)
α = ‖q‖
if α > 0 and Q square or wide

R :=

[

R 0
b α

]

, Q :=

[

Q
(1/α)q

]

R : (q + 1) × (q + 1) or (q + 1) × q
Q : (q + 1) × (n − k) or q × (n − k)

else

R :=

[

R
b

]

R : (q + 1) × q or (q + 1) × (q − 1)
Q : q × (n − k) or (q − 1) × (n − k)

end
8. R =: UΣV (economy-size SVD) (q + 1) × m, where m ∈ {q + 1, q, q − 1}
9. q = #(σi > γ)

Ũ = U(:, 1 : q), Σ̃ = Σ(1 : q, 1 : q), Ṽ = V (1 : q, :) Ṽ : q × m

10. R = Σ̃
for i = 1, · · · , q − 1 do

for j = i + 1, · · · , q do

Gij = givens([Ṽi,i, Ṽj,i]
T )

Ṽ ([i, j], :) = Gij Ṽ ([i, j], :)
R(:, [i, j]) = R(:, [i, j])G∗

ij

end
end
for i = q, · · · , 1 do

for j = q + 1, · · · , m do

Gij = givens([Ṽi,i, Ṽi,j ]
T )

Ṽ (:, [i, j]) = Ṽ (:, [i, j])G∗

Q([i, j], :) = GQ([i, j], :)
end

end
Q = Q(1 : q, :)

11.

[

AF,k CF,k

BF,k DF,k

]

=

[

Ũ
m

DF

]

q + 1 × q + 1

12.

[

AS,k CS,k

BS,k DS,k

]

=

[

AF,k − CF,kD−1

F,kBF,k −CF,kD−1

F,k

D−1

F,kBF,k D−1

F,k

]

13. end



5. Conclusions. We have derived an algorithm for the approximate inversion of
a general strictly positive matrix. The approximation involves a low-rank truncation
of the off-diagonal submatrices Hk. This approximation is well controlled (threshold
γ) but we do not have an expression for the final approximation error.

The computational complexity is order n2q as opposed to n3.
The numerical stability of the algorithm needs to be studied. There is one weak

point, the computation of DF = (D−m∗m)1/2 and its subsequent inversion to obtain
BF . Clearly, D−m∗m should should remain strictly positive (condition corresponds
to positivity of T ). In theory this is guaranteed but if the matrix is close to singular
numerical problems may occur.

REFERENCES

[1] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A.-J. van der Veen, Fast stable

solver for sequentially semi-separable linear systems of equations, in Lecture Notes in
Computer Science, vol. 2552, Springer Verlag, Heidelberg, 2002.

[2] S. Chandrasekaran and M. Gu, A divide-and-conquer algorithm for the eigendecomposition

of symmetric block-diagonal plus semiseparable matrices, accepted for Numerische Math-
ematik, (1999).

[3] , Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices,
Linear Algebra and its Applications, 313 (2000), pp. 107–114.

[4] , A fast and stable solver for recursively semi-separable systems of equations, Contem-
porary Mathematics series, AMS publications, 2001.

[5] , Fast and stable algorithms for banded plus semiseparable systems of linear equations,
SIAM Journal on Matrix Analysis and Applications, 25 (2003), pp. 373–384.

[6] P. Dewilde and A.J. van der Veen, On the Hankel-norm approximation of upper-triangular

operators and matrices, Integral Equations and Operator Theory, 17 (1993), pp. 1–45.
[7] P.M. Dewilde and A.J. van der Veen, Time-varying systems and computations, Kluwer

academic publishers, Dordrecht, June 1998.
[8] P. Dewilde and A.J. van der Veen, Inner-outer factorization and the inversion of locally

finite systems of equations, Linear Algebra Appl., 313 (2000), pp. 53–100.
[9] Y. Eidelman and I. Gohberg, Inversion formulas and linear complexity algorithm for diagonal

plus semiseparable matrices, Computers and Mathematics with Applications, 33 (1997),
pp. 69–79.

[10] , A look-ahead block Schur algorithm for diagonal plus semiseparable matrices, Comput-
ers and Mathematics with Applications, 35 (1998), pp. 25–34.

[11] , On a new class of structured matrices, Integral Equations and Operator Theory, 34
(1998), pp. 293–324.

[12] , A modification of the dewilde van der veen method for inversion of finite structured

matrices, Linear Algebra and its Applications, 343-344 (2002), pp. 419–450.
[13] T. Kailath I. Gohberg and I. Koltracht, Linear complexity algorithms for semiseparable

matrices, Integral Equations and Operator Theory, 8 (1985), pp. 780–804.
[14] A.J. van der Veen, Time-varying lossless systems and the inversion of large structured ma-

trices, Archiv f. Elektronik u. Übertragungstechnik, 49 (1995), pp. 372–382.

11


