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In this article, we investigate the separation of a linear mix-
ture of Secondary Surveillance Radar (SSR) replies impinging on
an � -element antenna array. At base-band, a received SSR signal
consists of a binary sequence with alphabet ��� ��, modulated by
a complex exponential due to the residual carrier frequency. We
present two algebraic algorithms to compute the separating beam-
formers by taking into account the particular modulation format of
the received signal.

1. INTRODUCTION

Secondary Surveillance Radar (SSR) is essential for Air Traf-
fic Control (ATC). Unlike the primary radar, it is a communication
radar (transponder system) that informs the ATC about the identity
and the altitude of the aircrafts in the line of sight. A base station
sends a pulse at 1030 MHz to interrogate an aircraft, which ans-
wers with the SSR reply signal, a bursty pulse train modulated at
a carrier frequency of ���� MHz. The system was designed in the
1950s, but is currently limited by the fact that all replies use nomi-
nally the same carrier frequency, and may overlap in time. A new
protocol (mode S, for Selective) will selectively address the air-
crafts and permit short data communications between the station
and the aircrafts. This new mode will also assist the Traffic Advi-
sory and Collision Avoidance System (TCAS) by providing auto-
mated communication between the aircrafts. Nonetheless, also in
this protocol overlaps may occur.

We assume that in the future base stations will be equipped
with an antenna array [1, 2]. Our aim at the base station level is to
separate the overlapping reply signals using beamforming, to de-
tect the individual symbols, and to estimate the direction of arrival
(DOA) and residual carrier frequency of each source.

Source separation can be done based on properties of the array
response matrix or properties of the signals. The former has as
disadvantage that a carefully calibrated array must be used, and
that no multipath is tolerated. Therefore, we consider using the
rich structure of the source signals.

We have noted before in [3] that it is impossible to use Higher-
Order Statistical (HOS) methods because for SSR signals all cu-
mulants of order �, � and � have a large probability to be null.
However, algebraic techniques are possible. Earlier results were
reported in [4], and a full report is available in the PhD thesis [5].
In this article, we present two algorithms from [5] and compare
these to the algorithms in [4] in simulations.
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2. DATA MODEL

2.1. Received data model

A Mode S reply frame contains either �� or ��� binary sym-
bols ��. The bits are encoded in a “Manchester Encoding” scheme,
which means that a bit �� � � is coded as �� � 	�� �
, and a bit
�� � � as �� � 	�� �
. The emitted bit stream � consists of a
preamble, � � 	�� �� �� �� �� �� �� �� �� �� �
, followed by the enco-
ded data bits, i.e.,

� � 	�� �� �� �� �� �� �������� � � � ��������


of a total length � � ����� ����. The preamble is aimed to faci-
litate the synchronization (detection of the start of a frame).

The Mode S reply signal emitted by the transponder is a pulse
amplitude modulation of �, and has the form

���
 �

��������

���

�	�
� ��� �� 
 (1)

where �	�
 is the �-th entry of �, and ���
 is a (nominally) rectan-
gular pulse of width � � ��� 	s, for Mode S.

Before being emitted by the antenna, the signal is up-converted
to the frequency band 
�. Nominally, the carrier frequency is

� � ���� MHz, but the tolerance permitted by the ICAO is
�� MHz, thus 
� �� 
�. In future, this tolerance will be reduced to
�� MHz. Due to this carrier frequency mismatch, a residual fre-
quency 
 remains after down-conversion by 
� to baseband. This
residual carrier adds a significant phase rotation to the transmit-
ted symbols : up to a complex gain, the received baseband signal
�	�
 � ���� 
 is described as

�	�
 � �	�
 ��� ���
�
� 
 � �	�
�� (2)

where � � ��� ���

� 
 is the phase shift due to the carrier fre-
quency shift over a sampling period.

We extend this model to the reception of � independent source
signals on an � -element antenna array, assuming the multipath is
negligible. The baseband antenna signals are sampled at rate ���
and stacked in vectors �	�
 (size � ). After collecting � samples,
the observation model is

� � ���� (3)

where� � 	�	�
� � � � ��	� 

 is the��� received signal matrix,
� is the � � � mixing matrix that contains the array signatures
and the complex gains of the sources, and � � 	�	�
� � � � � �	� 

 is
the � �� source matrix, where �	�
 � 	��	�
 � � � � � ��	�



� is a
stacking of the � source signals (superscript � denotes transpose).
� is the � �� noise matrix. We assume that the noise is tempo-
rally and spatially white. We also assume that � � � and that �
has full column rank.
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Our aim is to compute beamformers ��, � � �� � � � � �, such
that ��

� ���� � ������ is an estimate of the �-th SSR signal (su-
perscript � denotes complex conjugate transpose). In this blind
source separation context, we can only try to ensure that each ������
looks like an SSR signal, and that the collection of signal estimates
is independent.

2.2. Preprocessing

In our application, � is typically tall and full column rank,
but not square. To simplify our algorithms, we assume that first a
preprocessing is applied on � to reduces its row dimension from
� to �. This is done by computing a singular value decomposition
of�,

� � ���

where � and � are unitary and � is diagonal containing the sin-
gular values in decreasing order. The number of signals � is detec-
ted from�. Let �� be a � � �-dimensional matrix containing the
corresponding left singular vectors, then

�
� � ��

�
� � ����

���� ����
	� �� ��

��	�

This is the same model as we had before, except that�� is ���
and �� is � � � and invertible. In the algorithms, we assume that
this preprocessing has been done, and we drop the primes from the
notation.

3. ALGORITHMS

3.1. Manchester encoding property

The Manchester encoding of the SSR signals gives rise to an
interesting temporal correlation property which is deterministic
and independent of the actual transmitted data. In case the receiver
is synchronized to the beginning of a packet, the product of the
data stream with a � -delayed version of itself will always be equal
to zero. Otherwise, when unsynchronized, we can still multiply
by an additional � -delayed version, so that we are sure that one
of the three factors is zero. A similar property holds for a single
baseband signal ���� at the receiver, independent of a fractional
sampling offset.

Property 3.1 Independent of the transmitted data, a mode S reply
signal 	�
� obeys :

	 �
� � � 	�
� 	 �
� � � � 	 � �
 � � (4)

���� �� ���� ���� �� � 	 � �� � � (5)

This property can be used to design a receiver algorithm to
separate multiple SSR signals.

3.2. MDA : Manchester Decoding Algorithm

Consider a beamformer �. If the output of the beamformer,
������, looks like an SSR signal, then using Property (3.1) we
obtain that it satisfies

����� �� � ����� ���� ���� �� �� ��� � 	 (6)

for � � 
� � � � � � � 
, where � is the Kronecker product. To
collect these conditions, define the matrix 
 � � � 
 � �� as the
stack of rows ����� ��� ���� � ���� ���� , so that


�
� � 	 � �

� ���
� � ���� (7)

For � sources, there are � linearly independent separating
beamformers ��, � � �� � � � � �. Thus we have � linearly inde-
pendent vectors ��

� that belong to the kernel of 
. If the kernel
is �-dimensional, then the subspace spanned by the ��

� is exactly
equal to the kernel, and a basis for the kernel must be a linear
combination of the ��

� . Similar to [6], the algorithm will be to
estimate an arbitrary basis for the kernel, then to find the linear
combinations to map the basis to the structured vectors ��

� , and
subsequently to estimate the corresponding �� for each vector.

In the next proposition, we state that as the number of samples
increases and the sources are completely overlapping, then the ker-
nel of 
 will be precisely of dimension �. This implies that there
are no other solutions than ��

� , � � �� � � � � �, so that the problem
is identifiable.

Proposition 3.2 Assume that � is square and invertible, the
sources are temporally totally overlapping, and that there is no
noise. Then for large number of samples � , the matrix 
 will al-
most surely have rank ���� ��, equivalently its kernel will almost
surely be of dimension �.

A proof can be found in [5]. The last step of the algorithm
consists in estimating a basis of the kernel of the matrix 
. From
each vector of size �� of this basis, it is possible to create a tensor
of size �� �� �. These � tensors can be jointly diagonalized, and
the eigenvectors are the desired � beamformers. The joint diago-
nalization of a collection of cubes can be performed either by the
method presented in [7] or by the technique from [6].

The cost of this algorithm is driven by the cost of estimating
the kernel of 
 (� � 
� ��), or its QR factorization, which is of
order ����
 complex multiplications.

A limitation of the algorithm is that, for almost completely
non-overlapping SSR replies, there are additional vectors in the
kernel. This will break the assumption on which the algorithm is
based (i.e., any vector in the kernel is a linear combination of the
��
� , � � �� � � � � �), and without further corrections the algorithm

will show poor performance in this situation.

3.3. MS-ZCMA : Multi-Shift Zero Constant Modulus Algo-
rithm

The received signal model (2) states that for any integer � ,
two non-zero samples with a distance of � in time have a phase
difference of 
� . So for the �-th sample, either the product is zero :
�������� � � � � 	 or it is �������� � � � � 
� , where ‘�’ denotes
the complex conjugate. Combining the two conditions, we obtain
the relation

�������� � � � ���������� � �� 
� � � 	 (8)

Let� be a �-dimensional beamforming vector to recover ����,
������ � �����. Using properties of the Kronecker product, equa-
tion (8) becomes

������ ����� � �� ���� � ���� � � ��� ���
�����

���

� 
� ����� � ����� � ��� ���
���

(9)
Let ��� be an ���� � ���
��-dimensional vector that contains
only the non-redundant elements of the Kronecker product ���

�

� � ��
� ��. We define by �� the �� � ���� � ���
�� matrix

such that ���
�� ���

��� � �����. We also define

��� ���
��

�
��	
��� � ����� � ���� � � �� ���� � ���� � � ��� ��

�
��	
��� � ����� � ���� � � ���
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Then (9) can be written as

�
���
����

�� � ����������
�� (10)

Stacking the rows ������� and �������, � � �� � � � � � , into matrices
�
���
� and ����

� , respectively, we obtain

�
���
� �

�� � ������
� �

�� (11)

where����
� is ���� ���, and����

� is ���� ����. This equation
holds for all � � �, and is somewhat similar to an matrix pencil
problem (eigenvalue equation for non-square matrices).

To solve this equation, we first need to find the common co-
lumn span of ����

� and ����
� . Let �� be a matrix whose columns

form an orthonormal basis of this subspace, and let����
� and����

�

be the orthogonal complements of �� over ����
� and ����

� . Then
we can compute the decomposition into ‘common’ and ‘not com-
mon’ subspaces as

�
���
� �

�
�� �

���
�

� �
�

���
�

�
���
�

�

�
���
� �

�
�� �

���
�

� �
�

���
�

�
���
�

�
where the����

� , � � ��� �� are of full row rank. Inserting these two
equations into (11), we obtain

�
� �

���
� �

���
�

�����
���
� �

�� � ���
���
� �

��

�
���
� �

��

����
���
� �

��

��	 � � (12)

where the first matrix compound has full column rank by defini-
tion. Thus, we have

�
���
� �

�� � ������
� �

�� � �

�
���
� �

�� � �
�

���
� �

�� � � (13)

Since it is hard to work with the three equations simultaneously, we
propose in our algorithm to use only equation (13). This equation
holds for any � , and we can obtain several similar conditions by
taking a range of � different � � �. Stacking the matrices����

� in
a single matrix �, we obtain

��
�� ��

������
�

���
�

�
���
�

...
�

���
�

�����	��� � � (14)

For � SSR sources, there are � linearly independent beamfor-
mers ��, � � �� � � � � �, and these correspond to � independent
solutions : nonzero vectors in the kernel of �. Note that � has ��

columns. We assume that, for a sufficient number of time-lags �,
the matrix is very tall and does not have other vectors in the kernel.

Thus, the algorithm continues by estimating an orthogonal ba-
sis �������� for the kernel of the matrix �. Each vector �� of
size �� of this basis is a linear combination of the solutions, or
�� �


�

��� ����
��
� . Reshaping the �� into � � � matrices 	�,

we obtain	� �
��

� , where
 � ��� � � � � � ���, and the

�� are diagonal matrices containing the coefficients ��� . This is
a joint diagonalization problem which can be solved as in [6] to
obtain the beamformer matrix
.

The computational cost is dominated by the decomposition
(12) for each � . This corresponds to the cost of a QR factoriza-
tion of �����

� �
���
� �, which is of the order ���	�.

4. SIMULATIONS

To demonstrate the effectiveness of the proposed algorithms
(MDA and MS-ZCMA), we compare them to JADE [8] (a HOS
method), to AFZA, AZCMA, and AZCMA0 proposed in [4], to
ESPRIT [9], and to the relevant Cramer-Rao Bound [10]. The al-
gorithms compute beamformers, but for simplicity of presentation,
we convert this into direction-of-arrival estimates.

For the simulations, we have considered an array of four ele-
ments, with an inter-element distance of a half wavelength (to be
able to use ESPRIT). We consider two equal powered sources with
a SNR of 	
 dB, � � �

 samples taken at rate �	
 � � MS/s
(corresponding to �
 SSR symbols), DOAs of ��
� ��
� degree,
and frequency shifts of ��� � �
�� � � �
�� Hz. There are �


 in-
dependent Monte-Carlo runs.

In the implementation of our algorithms, the joint diagonali-
zation algorithm is the Jacobi angle method in [6]. To recover the
DOAs, we use the beamformers to estimate �, then estimate the
matrix � using �� in equation (3), and apply ESPRIT to each co-
lumn of ��.

For the MS-ZCMA, the set of time delays ���� � � � � ���
can be chosen arbitrarily, as long as the matrix � is expected
to achieve its maximal rank. In our implementation, the follo-
wing set has given satisfactory results : �
� �� ��� �� ��� �

��
�

��
��

� �
�
� ��

�
� �

�
� ��

�
�. In order to save some computational

cost, the algorithm implementation worked in an iterative fashion :
the � were taken one by one until the estimate of the kernel of �
was declared stable, i.e. the subspaces at the iteration � 
 � and �
were similar.

We show the results of two simulations. In the first simulation,
the source packets are totally overlapping, and we varied the angle
separation between the two sources. In the second simulation, we
inserted a varying time offset between the arrival of the two pa-
ckets. We show the failure rate, where a failure is declared if we re-
cover the same source twice, rather than two independent sources.
For the cases without failure, we show the root mean squared error
(RMSE) of the DOA estimates, because they show a better dis-
crimination between the algorithms. In these figures, we included
Wiener estimates, which were obtained from the known symbols.
The DOA’s are estimated by an ESPRIT on each columns of the
estimated mixing matrix.

For varying angle separations, figure 1 shows that the algo-
rithms JADE, AZCMA, and AZCMA0 are not trustworthy. We
also note that if the angle separation is below � degree, ESPRIT
algorithm begin to break down, and only MDA, MS-ZCMA and
AZFA can handle closely spaced sources. Figure 2 demonstrates
that only MDA and MS-ZCMA can attain the CRB, along with
ESPRIT.

For varying delays between the two SSR data bursts (non-
overlapping packets), figure 3 presents clearly the shortcoming of
MDA : it cannot resolve well in case of non-overlapping sources.
Note that as soon as the sources are not completely overlapping,
JADE performs well. This effect is explained in [3]. Figure 4 de-
monstrates that ESPRIT and MS-ZCMA are the only algorithms
that have an acceptable performance over the range of time delay
offset.

5. CONCLUSIONS

We presented two algorithms (MDA and MS-ZCMA) to se-
parate SSR replies impinging on an antenna array. Numerous si-
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Fig. 1. Failure rate of the algorithms as a function of the angle
separation.
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mulations not presented here for reasons of space have shown that
both of them behave reliably. The proposed algorithms use proper-
ties of the sources, hence can work with uncalibrated or non-linear
arrays, which is an advantage over algorithms based on the array
manifold structure, such as ESPRIT.
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