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Radio astronomical observations are increasingly contami-
nated by RF interference. Assuming an array of telescopes, we
have previously considered spatial filtering techniques based on
projecting out the interferer array signature vector. In this paper,
we consider extending the astronomical array with a reference an-
tenna (or array), and develop spatial filtering algorithms for this sit-
uation. The information from the reference antenna improves the
quality of the interferer signature vector estimation, hence more of
the interference can be projected out. The conditioning of the prob-
lem improves as well. The algorithms are tested both on simulated
and experimental data.

1. INTRODUCTION

Radio astronomical observations are increasingly contaminated by
man-made RF interference, and there is a growing need for interfer-
ence cancellation techniques. Depending on the interference and
the type of instrument, several kinds of RFI mitigation techniques
are applicable [1, 2]. For continually present interference, an in-
teresting option is to utilize a reference antenna which picks up
only the interference, so that LMS-type adaptive cancellation tech-
niques can be implemented [3–5].

With an array of p telescope dishes (an interferometer), spa-
tial filtering techniques are applicable as well. The desired instru-
ment outputs in this case are p× p correlation matrices, integrated
to 10 s. Based on short-term correlation matrices (integration to
e.g., 10 ms) and narrow subband processing, the array signature
vector of an interferer can be estimated and subsequently projected
out [6]—we describe this technique in section 3.2.

To improve the performance for weak or stationary interferers,
we consider in this paper to extend the telescope array with one or
more reference antennas. In general, a higher gain (interference-
to-noise ratio) than that obtained from an omnidirectional antenna
is needed to expect any benefits. Most flexibility is obtained by
using a phased array which can adaptively be pointed towards the
strongest interferers. We have actually built a demonstrator set-up
along these lines, utilizing a wideband phased array of 64 elements
(see section 5). The reference signal is correlated along with the
telescope signals as if it was an additional telescope, and spatial
filtering algorithms can be applied to the resulting short-term in-
tegrated covariance matrices. This set-up is shown in figure 1.

Spatial filtering on extended arrays was first considered by
Briggs et al. [7] for a single dual-polarized telescope (two chan-
nels) and two reference antennas. With their technique a single
interferer can be cancelled. Jeffs et al. [8, 9] propose spatial fil-
tering algorithms along the lines of [6]; we will summarize their
approach in section 3.2 and subsequently make extensions which
may improve the performance.

∗This research was supported in part by the STW under DEL77-4476.

2. PROBLEM STATEMENT

2.1. Data model

Assume we have a telescope array (primary array) with p0 ele-
ments, and a reference array with p1 elements.1 The total number
of elements is p � p0

�
p1.

We consider the signals xi
�
t � received at the antennas i �

1 � · · · � p in a sufficiently narrow subband. For the interference free
case the primary array output vector x0

�
t � is modeled in complex

baseband form as

x0
�
t � � v0

�
t � �

n0
�
t �

where x0
�
t � � � x1

�
t � � 
 
 
 � xp0

�
t � � T is the p0 × 1 vector of telescope

signals at time t, v0
�
t � is the received sky signal, assumed on the

time scale of 10 s to be a stationary Gaussian vector with covari-
ance matrix Rv � 0 (the astronomical ‘visibilities’), and n0

�
t � is the

p0 × 1 noise vector with independent identically distributed Gaus-
sian entries and covariance matrix σ2

0I. The astronomer is inter-
ested in Rv � 0.

If an interferer is present and the processing bandwidth is suf-
ficiently narrow, then the primary array output is modeled as

x0
�
t � � v0

�
t � �

a0
�
t � s �

t � �
n0

�
t �

where s
�
t � is the interferer signal with spatial signature vector a0

�
t �

which is assumed stationary only over short time intervals. With-
out loss of generality, we can absorb the unknown amplitude of s

�
t �

into a0
�
t � and thus set the power of s

�
t � to 1.

Consider now that we also have a reference antenna array. The
outputs of the p1 reference antennas are stacked into a vector x1

�
t � ,

modeled as
x1

�
t � � a1

�
t � s �

t � �
n1

�
t � 


It is assumed here that the contribution of the astronomical sources
to the reference signals is negligible. The noise on the reference
antennas is assumed to be i.i.d. Gaussian with covariance matrix
σ2

1I. Stacking all antenna signals in a single vector xT � � xT
0 xT

1 � T ,
we obtain

x
�
t � � v

�
t � �

a
�
t � s �

t � �
n

�
t � 


We make the following additional assumptions on this model:

(A1) The noise variances σ2
0 and σ2

1 are known from calibration.

(A2) Rv � 0 � σ2
0I. This is reasonable as even the strongest sky

sources are about 15 dB under the noise floor.

(A3) The interferer signature a
�
t � is stationary over short process-

ing times (say 10 ms). It may or may not vary over longer
periods.

1In subsequent notation, the subscript ‘0’ will generally refer to the pri-
mary array and ‘1’ to the reference array.
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Figure 1. Telescope array augmented with a reference phased array

This was the model considered in [6]. The model is easily extended
to multiple interfering sources, in which case we obtain

x
�
t � � v

�
t � �

A
�
t � s �

t � �
n

�
t � ⇔

�
x0

�
t � � v0

�
t � �

A0
�
t � s �

t � �
n0

�
t �

x1
�
t � � A1

�
t � s �

t � �
n1

�
t �

where A : p × q has q columns corresponding to q interferers, and
s

�
t � is a vector with q entries.

2.2. Covariance model
Let be given observations x � n � : � x

�
nTs � , where Ts is the sampling

period. We assume that A
�
t � is stationary at least over intervals of

MTs, and construct short-term covariance estimates R̂k,

R̂k � 1
M � k � 1 � M

∑
n � kM

x � n � x � n � H

where M is the number of samples per short-term average. All in-
terference filtering algorithms in this paper are based on applying
operations to each R̂k to remove the interference, followed by fur-
ther averaging over N resulting matrices to obtain a long-term av-
erage.

Considering the Ak : � A
�
kMTs � as deterministic, the expected

value of each R̂k is denoted by Rk, which can be written in block-
partitioned form as

Rk � � R00 � k R01 � k
R10 � k R11 � k � �

According to the assumptions, Rk has model

Rk � ΨΨΨ �
AkA

H

k � Rv
� ΣΣΣ �

AkA
H

k

� 	 Rv � 0 �
A0 � kAH

0 � k
� σ2

0I A0 � kAH

1 � k
A1 � kAH

0 � k A1 � kAH

1 � k
� σ2

1I 
 (1)

where ΨΨΨ is the interference-free covariance matrix, and ΣΣΣ : �
diag � σ2

0I 	 σ2
1I � is the diagonal noise covariance matrix (assumed

known). The objective is to estimate the interference-free covari-
ance submatrix ΨΨΨ00 : � Rv � 0 � σ2

0I.

3. ALGORITHMS

3.1. Traditional subtraction technique
In array signal processing, a classical technique for interference re-
moval using a reference antenna is based on taking the covariance
of the primary antennas, R00 � k, and subtracting the estimated con-
tribution of the interferers, A0 � kAH

0 � k. In effect, the rank deficiency

of the interference term

AAH � � A0A
H

0 A0A
H

1
A1A

H

0 A1A
H

1 �
is exploited: if q ≤ p1 and moreover A1 : p1 × q has full column
rank q, then the first p0 columns must be linear combinations of
the remaining p1. Under these conditions,

A0A
H

0 � A0A
H

1
�
A1A

H

1 � †A1A
H

0

where † indicates the pseudo-inverse, and hence a ‘clean’ instanta-
neous covariance estimate is

Ψ̂ΨΨ00 � k � R̂00 � k − R̂01 � kR̂†
11 � kR̂10 � k

(ignoring the effect of the noise term σ2I). The final ‘clean’ co-
variance estimate is obtained by averaging over N such matrices to
obtain a long-term estimate

Ψ̂ΨΨ00 � 1
N

N

∑
k � 1

Ψ̂ΨΨ00 � k �

Briggs et al. [7] derive essentially this algorithm and several vari-
ants of it, for the special case of q � 1 and p1 � 2. Jeffs et al. [8] de-
scribe the same technique as a generalization of the classical Mul-
tiple Sidelobe Canceller.

The mentioned conditions on A1 entail that this technique can
be used for at most p1 interferers, and only if the reference antennas
are sufficiently independent so that they receive independent linear
combinations of the interferers. Unlike some of the techniques to
be discussed in later sections, the technique does not rely on the
variation of Ak: in principle, Ak can be stationary. Also, no detec-
tion of the number of interferers is done, nor of any noise powers.
This simplifies the algorithm but might also limit its performance.

3.2. Spatial filtering using projections
In [6], a spatial filtering algorithm based on projections was intro-
duced. Although that algorithm did not assume the presence of ref-
erence antennas, it can also be used in our current situation.

Suppose that an orthogonal basis Uk of the subspace spanned
by interferer spatial signatures span

�
Ak � is known. We can then

form a spatial projection matrix Pk : � I−UkU
H

k which is such that
PkAk � 0. When this spatial filter is applied to the data covariance
matrix all the energy due to the interferer will be nulled: let

Q̂k : � PkR̂kPk

then
E � Q̂k � � PkΨΨΨPk
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When we subsequently average the modified covariance matrices
Q̂k, we obtain a long-term estimate

Q̂ : � 1
N

N

∑
k � 1

Q̂k � 1
N

N

∑
k � 1

PkR̂kPk � (2)

Q̂ is an estimate of ΨΨΨ, but it is biased due to the projection. To cor-
rect for this we first write the two-sided multiplication as a single-
sided multiplication employing the matrix identity vec

�
ABC � ��

CT ⊗A � vec
�
B � , This gives

vec
�
Q̂ � � 1

N

N

∑
k � 1

Ckvec
�
R̂k � where Ck : � PT

k ⊗Pk � (3)

If the interference was completely removed then

E � vec
�
Q̂ � � � 1

N

N

∑
k � 1

Ckvec
�
ΨΨΨ � � Cvec

�
ΨΨΨ � ; C : � 1

N

N

∑
k � 1

Ck �
(4)

In view of this, we can apply a correction C−1 to Q̂ and define

Ψ̂ΨΨ : � unvec
�
C−1vec

�
Q̂ � � �

If the interference was completely projected out then Ψ̂ΨΨ is an unbi-
ased estimate of the covariance matrix without interference. This
was the algorithm introduced in [6].

The reconstructed covariance matrix is size p × p. In the
present case, we are only interested in the submatrix correspond-
ing to the primary antennas. Hence, the estimate produced by the
algorithm is the p0 × p0 submatrix in the top-left corner, Ψ̂ΨΨ00. This
is one of the algorithms introduced in [8, 9].

The spatial signature of the interferer is generally unknown,
but it can be estimated from an eigen-analysis of the sample co-
variance matrices R̂k. To do this, recall that the noise powers on
the two antenna arrays are not necessarily the same, and first they
have to be made equal. This noise whitening is done by working
with ΣΣΣ−1 � 2R̂kΣΣΣ−1 � 2. Without interference and assuming Rv is neg-
ligible compared to ΣΣΣ , all eigenvalues of this matrix are expected
to be close to 1. With q interferers, q eigenvalue become larger,
and the eigenvectors corresponding to these eigenvalues are an es-
timate of span

�
Ak � .

3.3. Improved spatial filter with projections
We now derive an improved algorithm. Compute the projections
and long-term average of the projected estimates Q̂ as before in (2).
Then (4) applies:

E � vec
�
Q̂ � � � Cvec

�
ΨΨΨ � �

Based on this, we previously set vec
�
Ψ̂ΨΨ � � C−1vec

�
Q̂ � , which is

the solution in Least Squares sense of the covariance model er-
ror minimization problem, � vec

�
Q̂ � −Cvec

�
Ψ̂ΨΨ � � 2. Now, instead of

this, partition ΨΨΨ as in (1) into 4 submatrices. Since we are only
interested in recovering ΨΨΨ00, the other submatrices in Ψ̂ΨΨ are re-
placed by their expected values, respectively ΨΨΨ01 � 0, ΨΨΨ10 � 0,
ΨΨΨ11 � σ2

1I. This corresponds to solving the reduced-size covari-
ance model error minimization problem,

Ψ̂ΨΨ00 � argmin
ΨΨΨ 00

� vec
�
Q̂ � −Cvec � � ΨΨΨ00 0

0 σ2
1I � � � 2 �

The solution of this problem reduces to a standard LS problem af-
ter separating the knowns from the unknowns. Thus, rearrange the
entries of vec

�
ΨΨΨ � into �� vec

�
ΨΨΨ00 �

σ2
11
0

�	

where 1 indicates a vector with all entries equal to 1, and repartition
C accordingly, to obtain the equivalent problem

vec
�
Ψ̂ΨΨ00 � � argmin

ΨΨΨ00

� vec
�
Q̂ � − � C1 C2 C3 �

�� vec
�
ΨΨΨ00 �

σ2
11
0

�	 � 2

� argmin
ΨΨΨ00

� �
vec

�
Q̂ � − σ2

1C21 � −C1vec
�
ΨΨΨ00 � � 2

� C†
1

�
vec

�
Q̂ � − σ2

1C21 � �
The advantage compared to the preceding algorithm is that C1 is a
tall matrix, and better conditioned than C. This improves the per-
formance of the algorithm in cases where C is ill-conditioned, e.g.,
for stationary interferers, or an interferer entering on only a sin-
gle telescope. Asymptotically for large INR of the reference array,
the algorithm is seen to behave similar to the traditional subtraction
technique.

4. SIMULATIONS

We first test the performance of the algorithms in a simulation set-
up. We use p � 6 antennas, with p0 � 5 primary antennas (tele-
scopes) and p1 � 1 reference antenna. For simplicity, the array is
a uniform linear array with half-wavelength spacing and the same
noise power on all antennas. The astronomical source is simulated
by a source with a constant direction-of-arrival of 10 � with respect
to array broadside. The source has SNR0 � −20 dB with respect
to each primary array element, and SNR1 � −40 dB for the refer-
ence antenna. The interferer is simulated by a source with a ran-
domly generated and varying complex ak, and varying INRs as ex-
plained in the simulations. This corresponds to a Rayleigh fading
interferer.

The following algorithms are compared:

– the subtraction method in section 3.1 denoted ‘traditional’,

– the spatial filtering algorithm using projections and eigenvalue
computations, section 3.2, denoted ‘eig filt’,

– the spatial filtering algorithm with reduced-size covariance re-
construction, section 3.3, denoted ‘eig filt (red corr)’,

– for comparison, the spatial filtering technique without refer-
ence antenna, denoted ‘eig filt (no ref)’, the covariance esti-
mate without RFI (‘RFI free’), and the estimate obtained with-
out any filtering (‘no filtering’).

Figure 2(a)-(b) shows the mean-squared-error (MSE) of the
primary filtered covariance estimate compared to the theoretical
value Rv 	 0 
 σ2

0I, for varying interferer power INR0 and interferer
array gain INR1 −INR0 respectively. Here, we took M � 400 short-
term samples and N � 2 long-term averages, which is unrealisti-
cally small but serves to illustrate the effect of limited variability
of ak (only two different vectors).

It is seen that the new algorithm has a great advantage over the
spatial filtering algorithm without reference antena in case the ak-
vector is not sufficiently varying. The MSE performance is flat for
varying INR and INR difference, which is very desirable. More-
over, it is very close to the RFI-free case. The new algorithm is
also often better than the subtraction technique.

Additional simulations (not shown here) indicate that if the
interferer enters only on one telescope and on the reference an-
tenna, then the algorithm without a reference antenna is performing
poorly: it cannot reconstruct the contaminated dimension. The al-
gorithm with reference antennas performs fine.
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Figure 2. MSE
�
a � as function of interferer power at the reference antenna,

�
b � as function of the interferer power difference between the

reference antenna and the primary array elements.
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Figure 3.
�
a � Averaged autocorrelation spectrum before and after

filtering,
�
b � Averaged cross-correlation spectrum

5. EXPERIMENT

To test the algorithm on actual data, we have made a short observa-
tion of the strong astronomical source 3C48 contaminated by Afris-
tar satellite signals. The set-up follows figure 1. The primary ar-
ray consists of p0 � 6 of the 14 telescope dishes of the Westerbork
Synthesis Radio Telescope (WSRT), located in The Netherlands.
As reference we use p1 � 2 beamforming outputs of a wideband
64-element phased array constructed by ASTRON. One beam was
pointed approximately to the satellite, the other was used for scan-
ning. We recorded 65 kSamples at 20 MS/s, and processed these
offline. After a short-term windowed Fourier transforms, the data
was split into 64 frequency bins, correlated, and averaged over 32
samples to obtain 16 short-term covariance matrices.

The resulting auto- and crosscorrelation spectra after filtering
are shown in figure 3. The autocorrelation spectra are almost flat,
and close to 1 (the whitened noise power). The cross-correlation
spectra show that the spatial filtering with reference antenna has
done much better to remove the interference than the case without
reference antenna. The residual correlation of about 4% is known
to be the SNR of the astronomical source. The lines are noisy due
to the finite sample effect; the predicted standard deviation (based
on number of samples averaged) are indicated for a few frequen-
cies.
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