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The constant modulus of many types of communication signals is a robust property for blind
source separation and equalization. In this chapter, we discuss algebraic methods that use
this constant modulus property to blindly compute separating beamformers from instanta-
neous mixtures of such sources, needing only a small number of observations.����� ����� �"!�#�$&%'�)(*!��
Constant modulus algorithms (CMAs) enjoy widespread popularity as methods for blind
source separation and equalization of communication signals. As a typical application, con-
sider a wireless scenario in which a number of users are broadcasting signals at the same
frequency at the same time. The signals received at a base station will be some superposi-
tion of the transmitted sources. If the base station is equiped with multiple antennas, then
it is likely that each antenna will receive a different combination of the signals. By linearly
combining the antenna outputs, the objective is to separate the signals and to receive each
of them while suppressing interference from the other signals. The task of the blind beam-
former is to compute the proper linear combinations from the measured data only, without
detailed knowledge of the signals or the channel.

Mathematically, the situation is described by the simple and well-known data model (af-
ter sampling and baseband conversion)

x + k ,�- As + k , (5.1.1)
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Figure 5.1. Blind beamforming scenario

where the vector x + k , is a stacking of the m antenna outputs xi + k , at discrete time k, s + k , is
a stacking of the d source signals si + k , , and A is the array response matrix which describes
the linear combinations of the signals as received by the antennas. This model is a reason-
ably accurate description for stationary propagation environments in which the multipath
has only a short delay spread (as compared to the inverse of the signal bandwidths), so that
no equalization is required. The beamforming problem is to find weight vectors wi, one for
each source, such that w∗

i x + k ,�- si + k , is equal to one of the original sources, without inter-
ference from the others. (∗ denotes a complex conjugate transpose.) Equivalently, we try to
find A and then a pseudo-inverse of it such that W∗A - I. The columns of W are equal to
the wi.

Although we will be concerned with blind beamforming, it is useful to note that a
quite similar problem arises in the context of blind equalization of a single source observed
through an unknown time-dispersive FIR channel. In that situation, the received signal x + k ,
is a linear combination of shifts of the original source s + k , . By feeding x + k , through a tapped
delay line, we can construct a vector of received signals and we will arrive at the same model
as (5.1.1), be it with more structure since si + k ,W- s + k− i , and xi + k ,0- x + k− i , . Another aspect
that distinguishes blind equalization from blind beamforming is that in the latter we try to
receive all independent sources.

Originally, most blind beamforming algorithms have been focusing on properties of A.
For example, direction finding algorithms assume that the columns of A are vectors on the
array manifold, each associated to a certain direction-of-arrival (DOA). By finding these
directions, we obtain an estimate of A, and subsequently we can construct a beamformer W
to separate the sources. This approach requires a calibrated array, and a scenario with very
limited multipath propagation (since all DOAs have to be estimated).

A second class of approaches, more promising in the presence of unstructured multipath
and useful in the context of blind equalization as well, exploits structural properties of the
source vector that should hold and be reconstructed by the beamformer. One widely used
property, and the property considered here, is the constant modulus of many communication
signals (e.g. FM and PM in the analog domain, and FSK, PSK, 4-QAM for digital signals).
For such signals, the amplitude |s + k , | is a constant, typically normalized to 1, and all infor-
mation is carried in the phase. A related but distinct property is the finite alphabet of digital
signals, for example for a BPSK source s + k ,&- ±1. The idea of modulus restoral is to play
with the weights of a beamformer w until the output ŝ + k ,&- w∗x + k , has the same property,
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|ŝ + k , | - 1, for all k. If that is the case, the output signal will be equal to one of the original
sources [44].c`d6e fYg>d3hji)elknmporq

A popular implementation of such property restoral algorithms is found
by writing down a suitable cost function and minimizing it using stochastic gradient-descent
techniques. For example, for a sample vector x we can consider as cost function the ex-
pected deviation of the squared modulus of the output signal w∗x to a constant, say 1:

Jw - E + |w∗x|2 − 1 , 2 s
The corresponding so-called CMA(2,2) stochastic gradient-descent algorithm to find a min-
imizer w is given by the iteration

w t k u 1 v - w t k v − µxx∗w t k v + |w t k v ∗x|2 − 1 ,
where µ is a small step size. The vector x is usually taken to be equal to a sample vector x + k , ,
in which case we obtain an adaptive LMS-type algorithm, but it is also possible to revisit the
data. In any case, we need to select a suitable step size µ and an initial point w t 0 v for the iter-
ation. This type of ideas for modulus restoral has its roots in the work of Sato [38], Godard
[17], and Treichler, Agee, and Larimore [44], [28], all for the purpose of blind equalization.
See [26] for a recent review. The application of the CMA to blind beamforming is straight-
forward and was first considered in [45], [19] (see also [40]); a combined spatio-temporal
CMA was proposed in [20].

A second type of algorithms are block-iterative. We consider a block of data X -w
x + 1 , x · · · x x + n ,�y and try to find w and s that minimize

min
w z s { w∗X − s { x s.t. |s + k , | - 1 x k - 1 x · · · x n s (5.1.2)

where { · { is the vector 2-norm. Optimizing jointly over w and s is hard. However, given
w, we can easily minimize over s with w fixed: the solution is to take w∗X and project it onto
the set of constant modulus signals by dividing entrywise by the moduli, using the projection
operator

P|Y}~+ s , : -�� s + 1 ,
|s + 1 , | x · · · x s + n ,

|s + n , | � s
Similarly, if s is kept fixed, we can optimize over w and find the Least Squares solution
w∗ - sX†, where † denotes the Moore-Penrose pseudo-inverse. Given an initial point w t 0 v ,
we thus obtain the following two-step block-iteration:� s t k u 1 v - P |�}~+ w t k v ∗X ,

w t k u 1 v ∗ - s t k u 1 v X† (5.1.3)

Note that s t k u 1 v - P |Y}�+ s t k v X†X , where X†X is a projection onto the row span of X: the
iteration is recognized as an Alternating Projection algorithm. It is known as the Gerchberg-
Saxton algorithm (GSA), a well-established algorithm in the field of optics for solving the
phase-retrieval problem [16]. It is closely connected to several variants of the CMA iteration
(the OCMA [19] and the LSCMA [2]), except that it iterates on blocks rather than individual
vectors.
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A complication with the above iterative CMAs is that

they find only a single weight vector, hence only a single signal will be recovered. It depends
on the initialization of w t 0 v to which one we converge to. This is sufficient in the context of
equalization where all signals are equal up to a shift, but for blind beamforming, we would
like to recover all independent signals. One idea is to redo the iteration with a range of initial
points. The problem with this is that we might converge to the same solution: we have to
verify that the resulting signals are indeed independent, and there is no good way to know
that we have found all CM signals present in the data. Several solutions have been proposed
for this. For example, once signal s1 + k , is found, we can try to remove it from the data by
estimating its corresponding response vector a1, and continue with the residual x − â1ŝ1.
This is the strategy followed by the CM Array algorithm [40], [33], [27] and more recently
in the context of CDMA by Parallel/Serial Interference Cancellation (PIC/SIC) algorithms,
of which there are many variants. Another remedy is to augment the cost function with
a term expressing independence [36], [35]. In both cases, several hundreds of samples are
usually needed before convergence is satisfactory. (This number may be reduced if the same
data is revisited.)

A further complication in finding all independent solutions is that, if the number of sen-
sors is larger than the number of sources, there exist vectors w0 in the left null space of A
such that w∗

0A - 0. These vectors can be added to any solution w without changing the out-
put signal. It is thus possible that independent beamforming vectors give rise to the same
output signals, and hence it is not sufficient to require the independence of the w.

Iterative CMAs are straightforward to implement and computationally of modest com-
plexity. They can however converge slowly, with unpredictable convergence speed, and the
recovering of all independent sources remains a problem. It is thus interesting to note that
the problem admits an elegant and algebraic solution. This is the Algebraic CMA (ACMA),
and the topic of this chapter.orkrmpo

The ACMA was introduced in [50]. In this paper, it was noted that in the noise-
free case the collection of d beamformers for all individual signals can be computed exactly
and algebraically, as the solution of a generalized eigenvalue problem. Only a limited num-
ber of samples is needed: for d signals, it is sufficient to have n � d2 samples. Also the
number of CM signals can be detected.

The algorithm is derived by setting up the equations for the weight vector w such that
w∗X is a CM signal. This gives n quadratic equations in the entries of w. Using properties
of Kronecker products, the problem can be formulated as an overdetermined linear system
subject to a quadratic structural constraint. The linear system can be solved, and leads to a
d-dimensional basis of solutions on which we have to apply the structural constraint. This
can then be formulated as a generalization of an eigenvalue problem: the simultaneous di-
agonalization of a number of matrices.

An illustration of the performance of ACMA on experimental data [50] is shown in fig-
ure 5.2. The sources are six FM modulated analog speech/music signals, occupying the
same subband of 25 kHz in the 900 Mhz band, and broadcast at different locations at a
rooftop. The receiving antenna array consists of m - 6 omnidirectional antennas, with
a maximal baseline of 2.5m. The signal-to-noise ratio is around 17 dB per antenna per
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Figure 5.2. Residual signal-to-interference ratio after blind beamforming of a mixture of d
signals using ACMA.

source, and the sources have roughly equal powers. The figure shows the worst signal-to-
interference ratio (SIR) among the signals after beamforming, as a function of the number
of samples that have been used, and for a varying number of sources. It is seen that only a
small number of samples are required (order 2d2 or so) to give a good separation of all d
sources, even though some of the sources are only spaced by 1.5 � .��� d3�`h`� e�� ��da� e����RgR� d6e>f

Section 5.3 provides a compact derivation of the original
ACMA. We then analyze the noise-free properties (section 5.4) and asymptotic properties of
the algorithm, discuss its connection to the related JADE algorithm, and show that ACMA
converges to the Wiener solution (section 5.6). We also derive a Weighted ACMA which
approximately converges to the zero-forcing solution (section 5.7), and compare ACMA,
WACMA and JADE in simulations (section 5.9). Section 5.8 considers a specialization to
binary sources. Finally, section 5.10 goes into more details on simultaneous diagonalization
algorithms.���C� ���" &¡*(Z¢£(Z�¥¤¥�6(* �¦§¨¤©�ª¤«¢£!�#¬ &¡�¤¬�&#¤�¦�¦�$H¢¯®��)(*!��¥¦
Starting from the data model xk - Ask, let us assume that we have collected n sample vectors.
If we store the samples in an m × n matrix X - w

x1 x · · · x xn y , then we obtain that X has a
factorization

X - AS (5.2.1)
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where the rows of S ∈ |C d×n contain the samples of the source signals. All sources are as-
sumed to be constant modulus, |Si j | - 1. Note that the source powers are absorbed in A.

In the blind signal separation scenario, both A and S are unknown, and the objective is,
given X, to find the factorization X - AS such that |Si j | - 1. Alternatively, we try to find a
beamforming matrix W ∈ |C m×d of full row rank d such that S - W∗X. For this left inverse
W∗ of A to exist, it immediately follows that we need A to have full rank d, and m ≥ d. We
also require the rows of S to be linearly independent. As will become clear in the derivation
of the algorithm, we will not really need stochastic independence of the sources, but some
form of persistence of excitation should hold. The algorithm will also require that n ≥ d2.

As in other blind source separation problems, it is clear that we can recover A and S
only up to a permutation of the sources, and up to a complex unimodular diagonal (since the
initial phases of the sources does not follow from the data, these factors can be exchanged
between A and S). This is precisely the indeterminacy of the eigenvalue problem from which
the beamformers will be derived.

In the presence of additive noise, we write x̃k - Ask ° nk, or

X̃ - AS ° N s (5.2.2)

We use the tilde ( ˜ ) to denote variables derived from the noisy data. The noise is assumed
to be additive, temporally i.i.d., zero mean, circularly symmetric, with finite covariance
E + nn∗ , and fourth-order moments, and independent from the sources.c8±²e ��d3hj³WgR´²hµ�µh d�¶

We will assume that the problem is essentially identifiable, i.e., that for a
given matrix X of size m × n, we can find a factorization X - AS (|Si j| - 1) which is unique
up to the above-mentioned indeterminacies. Minimal conditions that guarantee this identi-
fiability are not completely known. For n → ∞, it is sufficient to have A full column rank
and S generated by statistically independent signals: in this case the CM cost function has
unique global minima corresponding to separating beamformers [44]. By counting the num-
ber of equations and unknowns (a not completely convincing argument), it is motivated in
[50] that identifiability is expected for n ≥ 2d and sufficiently exciting signals. The ACMA
requires m ≥ d and n ≥ d2. Finally, for BPSK signals (and other discrete alphabets), it was
established in [42] that the factorization is essentially unique once all constellation vectors
have been received.on±'±'h dEhj�'�Rg��ª����d3g>dEhj�'�

Overbar (¯) denotes complex conjugation, T is the matrix transpose,
∗ the matrix complex conjugate transpose, † the matrix pseudo-inverse (Moore-Penrose in-
verse). 0 and 1 are vectors for which all entries are equal to 0 and 1, respectively.

⊗ is the Kronecker product, · is the Khatri-Rao product, which is a column-wise Kro-
necker product:

A ⊗ B - ¸¹º a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

»`¼½ x
A · B - w

a1 ⊗ b1 a2 ⊗ b2 · · · y s
vec + A , indicates a stacking of the columns of a matrix A into a vector. Notable properties
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are:
vec + ABC , - + CT ⊗ A , vec + B ,+ A ⊗ B ,E+ C ⊗ D ,¾- AC ⊗ BD
vec + ab∗ , - b̄ ⊗ a s

For a d ×d Hermitian matrix Y , an alternative vectorization that leads to a real-valued result
is provided by the vech + · , operator, defined as

y ¿)- vech + Y , ⇔ y ¿ t i−1 v d u j -ÁÀÂ Ã yii x i - j
real + yi j ,"Ä 2 x i Å j
imag + y ji ,FÄ 2 x i � j

i x j - 1 x · · · x d s (5.2.3)

This vectorization follows from vec + Y , by combining entries yi j and y ji - yi j to produce
the real and imaginary part of yi j. The definition is such that { vech + Y , { - { vec + Y , { for any
Hermitian Y , and hence there exists a unitary matrix J such that vech + Y ,�- Jvec + Y , .Æ	 ¬�"!&Ç È¥!¬�3%W(Z��ÉÊ¤¬�&#ËÌ(* P�¥ P�¨�" ¥%' ¥(�Í© P�"¦
Before we look at blind beamforming algorithms, it is good to recall what beamforming
solutions we would prefer if either A or S is known. In the noisefree case, we have a data
model X - AS, and we would like a beamformer W such that W∗X - S. If A is known, then
we set

W∗ - A† x S - W∗X

whereas if S is known, for example because of a training segment, then we take

W∗ - SX† x A -�+ W∗ , † s
In both cases, we obtain a beamformer which exactly cancels all interference, i.e., W∗A - I.

In the presence of additive noise, we have X̃ - AS ° N. Two types of linear least-squares
(LS) miminization problems can now be considered: either based on minimizing the mod-
eling error,

min
A z S { X̃ − AS { 2

F s.t. conditions on (A x S) x (5.2.4)

or based on minimizing the output error,

min
W z S { W∗X̃ − S { 2

F s.t. conditions on (W x S) s (5.2.5)

The conditions on A or W and S are those posed by the blind identification problem at hand.
In the CM case, we have the condition that all |Si j | - 1.

The minimization problems are straightforward to solve if either A or S is known. In the
first formulation, if S is known,

Â - argmin
A { X̃ − AS { 2

F - X̃S† (5.2.6)
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Asymptotically for zero mean noise independent of the sources, this gives Â → A: we con-
verge to the true A-matrix. For a known A, the estimate of S follows from

Ŝ - argmin
S { X̃ − AS { 2

F - A†X (5.2.7)

with corresponding beamformer W -_+ A† , ∗. This is also known as the zero-forcing (ZF)
beamformer, because W∗A - I: all interfering sources are cancelled. The ZF beamformer
maximizes the Signal-to-Interference power Ratio (SIR) at the output.

The second optimization problem minimizes the difference of the output signals to S:

W∗ - argmin
W { W∗X̃ − S { 2

F - SX̃† s (5.2.8)

Note that X̃† - X̃∗ + X̃X̃∗ , −1, so that

W∗ - 1
n SX̃∗ + 1

n X̃X̃∗ , −1 - R̃∗
xsR̃

−1
x
s

R̃x : - 1
n X̃X̃∗ is the sample data covariance matrix, and R̃xs : - 1

n + X̃S∗ , converges to A. Hence
asymptotically

W → R̃−1
x A

which is recognized as the Linear Minimum Mean Square Error (LMMSE) or Wiener re-
ceiver. This beamformer is known to maximize the Signal-to-Interference-plus-NoiseRatio
(SINR) at the output. Since it does not cancel all interference, W∗A Î- I, the output source
estimates are not unbiased. However, it produces estimates of S with minimal deviation,
which is often more relevant.Ï<�j�W��ÐªÑFh d6e fYg>d3hji)eÒknmporq

From the preceding equations, it is straightforward to derive
other block-iterative CMAs. Indeed, given either an initial estimate A t 0 v or W t 0 v , we can
follow the fixed-point iterations corresponding to (5.2.6), (5.2.7) and (5.2.8)

¸º S t k v ¿ - A t k v †X̃
S t k u 1 v - P|Y} + S t k v ¿ ,
A t k u 1 v - X̃S t k u 1 v † or ¸º S t k v ¿ - W t k v ∗X̃

S t k u 1 v - P |�} + S t k v ¿ ,
W t k u 1 v ∗ - S t k u 1 v X̃†

(5.2.9)

Given sufficiently accurate initial points, the former algorithm will converge to the ZF solu-
tion. The latter algorithm should converge to the Wiener solution, and is an extension of the
alternating projection algorithm in (5.1.3). Computationally, it is more attractive than the
former iteration, because X̃ has to be inverted only once. However, the algorithm has the
problem that it does not guarantee that the rows of S will be independent: it is possible that
we will find the same signal several times. This is a general problem with the formulation
min { W∗X̃ − S { F.ËÔÓ&(��ª P�&(Z�¥ÉÕ¤¬�P#Ò�"¤H�IÖ×�" ¥#�$&%'�)(*!��
In the noise-free case with less sources than sensors, X - AS is rank deficient: its rank is
d (the number of signals) rather than m (the number of sensors). As a consequence, once
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we have found a beamformer w such that w∗X - s, one of the source signals, then we can
add any vector w0 such that w∗

0X - 0 to w, and obtain the same output. The beamforming
solutions are not unique.

The desired beamforming solutions are all in the column span of A. Indeed, any compo-
nent orthogonal to this span will not contribute at the output. The most easy way to ensure
that our solutions will be in this span is by performing a dimension-reducing prefiltering.
Let F be any m×d matrix such that span + F ,0- span + A , . Then all beamforming matrices W
in the column span of A are given by

W - FT

where T is a d × d matrix, nonsingular if the beamformers are linearly independent. The
prefiltered data matrix is X : - F∗X. We will use the underscore ( ) to denote prefiltered
variables. Thus, the prefiltered noisy data matrix is

X̃ : - F∗X̃

with structure
X̃ - AS ° N x where A : - F∗A x N : - F∗N s

X̃ has only d channels, and is such that W∗X̃ - T∗X. Thus, the columns of T are d-
dimensional beamformers on the prefiltered data X̃, and for any choice of T the columns
of the effective beamformer W are all in the column span of A, as desired.

To describe the column span of A, introduce the “economy-size” singular value decom-
position of A,

A - UAΣAVA

where we take UA : m × d with orthonormal columns, ΣA : d × d diagonal containing the
nonzero singular values of A, and VA : d × d unitary. Also let U⊥

A be the orthonormal com-
plement of UA. The columns of UA are an orthonormal basis of the column span of A. The
point is that even if A is unknown, UA can be estimated from the data, as described below.

We assume that the noise is spatially white, with covariance matrix σ2I. Let R̃x - 1
n X̃X̃∗

be the noisy sample data covariance matrix, with eigenvalue decomposition

R̃x - UΣ2U∗ s (5.2.10)

Here, U is m×m unitary, and Σ is m×m diagonal. Let us collect the d largest eigenvalues into
a diagonal matrix Σ̂2, and collect the corresponding d eigenvectors into Û. Asymptotically,1

R̃x satisfies R̃x

s- AA∗ ° σ2I, with eigenvalue decomposition

R̃x

s- UAΣ2
AU∗

A ° σ2I - UA + Σ2
A ° σ2I , U∗

A ° σ2U⊥
A U⊥∗

A
s (5.2.11)

It follows that ÛΣ̂2Û∗
s- UA + Σ2

A ° σ2I , U∗
A, so that Û is an asymptotically unbiased estimate

of UA.
Even if we choose F to have the column span of Û, there is freedom left. It will follow

later in section 5.5 that a natural choice will be to combine the dimension reduction with a
1We use ØÙ to denote asymptotic equality.
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Figure 5.3. Blind beamforming prefiltering structure

whitening of the data covariance matrix, i.e., such that R̃x : - 1
n X̃X̃

∗
becomes unity: R̃x - I.

This is achieved if we define F as
F - ÛΣ̂−1 s (5.2.12)

If the noise is colored with covariance matrix σ2Rn, where we know Rn but perhaps not the
noise power σ2, then we first whiten the noise by computing R−1 Û 2

n X̃, and continue as in the
white noise case. The resulting prewhitening/dimension reducing filter is

F - R−1 Û 2
n ÛΣ̂−1 s

The structure of the resulting beamformer is shown in figure 5.3. Incidentally, note that
the fact that with finite samples the column span of F only approximates that of A does not
introduce a bias: as long as A - F∗A has full rank d it can be inverted by some T∗, and a
perfect zero-forcing beamformer still exists.

Sometimes slightly different prefilters are used. In some blind source separating algo-
rithms which try to estimate A, the SVD of A is introduced as A - UAΣAVA, and it is remarked
that the factors UA and ΣA can be estimated from the eigendecomposion of the data covari-
ance matrix, since asymptotically (5.2.11) holds: UA

s- Û and ΣA

s-Ü+ Σ̂2 − σ2I , 1 Û 2. For this
it is also necessary to have an estimate of the noise power, but if d Å m it can be estimated
from the smallest eigenvalues of R̃x. If we thus take the prefiltered data matrix to be

X̃ - F∗X̃ x F - Û + Σ̂2 − σ2I , −1 Û 2 (5.2.13)

then asymptotically X̃
s- VAS ° N, and the search for A can be restricted to the search for a

unitary matrix VA. For finite data, this asymptotic result is not yet valid, and the restriction
leads to a bias.���CÝ §¨ P�6(�Í©¤��)(*!��×!PÞß� Ó& áàãâãäÕàå $���¡*(Z�¥ 
We derive the basic ACMA algorithm for the noiseless case. The objective is to find all
independent beamforming vectors w that reconstruct a signal with a constant modulus, i.e.,

w∗X - s x such that |sk |2 - 1 + k - 1 x · · · x n , s
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Let xk be the k-th column of X. By substitution, we find

w∗ + xkx∗
k , w - 1 x k - 1 x · · · x n s (5.3.1)

Thus, there are n equations, and each equation is quadratic in the entries of w. This is not
an easy problem, but it becomes more manageable if we write the unknowns on one side.
This is possible using properties of Kronecker products, in particular

w∗ + xkx∗
k , w -Ü+ x̄k ⊗ xk , ∗ + w̄ ⊗ w ,

Thus define

P : - w
X̄ · X y ∗ - ¸¹º + x̄1 ⊗ x1 , ∗

...+ x̄n ⊗ xn , ∗
»`¼½

(P : n × d2). Then (5.3.1) is equivalent to finding all w that satisfy

Py - 1 x y - w̄ ⊗ w s
We have converted the problem into a linear system of equations, subject to a quadratic con-
straint. The linear system is overdetermined once n ≥ d2, and we will assume that this is the
case.

In general outline, the ACMA technique solves this problem by the following steps:

1. First solve the linear system Py - 1. Note that there are several independent solutions
to the linear system. Indeed, if we have d sources, then there exist at least d solutions
w̄i ⊗ wi (i - 1 x · · · x d), one for each source. But also a linear combination of these
solutions

y - λ1 + w̄1 ⊗ w1 , ° · · · ° λd + w̄d ⊗ wd ,
(scaled such that ∑λi - 1) will solve Py - 1. Thus, if we select an arbitrary basis
{y1 x · · · x yd} of independent solutions of the linear system Py - 1, we cannot expect
to have found the desired structured solutions w̄i ⊗wi, but rather unknown linear com-
binations of these.

2. Decouple: find a structured basis {w̄1 ⊗ w1 x · · · x w̄d ⊗ wd} that spans the same linear
subspace as {y1 x · · · x yd}. Since

w̄i ⊗ wi - vec + wiw∗
i ,

we can associate to each structured basis vector a rank-1 hermitian matrix. Our prob-
lem is thus to split a given subspace into its “rank-1 components”.

To solve this problem, note that in the same way we can associate to each yi a d × d
matrixYi such that vec + Yi ,'- yi. Since each yi is in the span of the rank-1 components,
each Yi is an unknown linear combination of the rank-1 matrices:ÀëÂ ëÃ Y1 - λ11w1w∗

1 ° · · · ° λ1dwdw∗
d

...
Yd - λd1w1w∗

1 ° · · · ° λddwdw∗
d

⇔ ÀëÂ ëÃ Y1 - WΛ1W∗

...
Yd - WΛdW∗

(5.3.2)
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where Λi - diag

w
λi1 x · · · x λid y and W - w

w1 x · · · x wd y .
This problem is known as a joint diagonalization problem (by congruence), since all
Yi can be diagonalized into the Λi by the same matrix W . It is a generalization of the
standard eigenvalue decomposition problem, and can be solved. For example, if Y2

is invertible, then
Y1Y−1

2 - W + Λ1Λ−1
2 , W−1

and if the eigenvalues are distinct, we can find W and hence all beamformers in one
shot as the eigenvectors of Y1Y−1

2 . Numerically, it is better to consider all Yi and to
avoid inversions. Details and algorithms are in section 5.10.

3. In considering the yi as a basis of a linear subspace (unconstrained), we have lost the
correct scaling of the wi. Rather than constraining the Λi, this is more easily fixed by
scaling each solution such that the average output power

1
n

n

∑
k ì 1

| + si , k |2 - 1
n

n

∑
k ì 1

w∗
i xkx∗

kwi - w∗
i í 1

n

n

∑
k ì 1

xkx∗
k î wi (5.3.3)

is equal to 1.

A crucial aspect of the above technique is that the basis {yi} should not contain other
components than the desired {w̄i ⊗ wi}, otherwise we cannot pose the problem as a joint
diagonalization. For this, it is essential that there are precisely d linearly independent so-
lutions to Py - 1 and no additional spurious solutions. The situation is analyzed in section
5.4. As is shown in that section, two cases where the number of solutions will be too large
are

– If X is rank deficient, e.g., because the number of sensors is larger than the number of
sources. This is simply treated by a prewhitening combined with a dimension reduction,
as we discussed in section 5.2.

– Additional rank-2 components occur for pairs of BPSK-type signals. This situation has
to be ruled out. However, if all signals are known to be of this type, the algorithm can
be modified (section 5.8).

Next, we go into some more details on various aspects of this algorithm.ï !I¡8Í�(Z��ÉÕ� Ó¥ á¡*(Z�& ©¤¥��¦)ð0¦ª�ª ¬¢
We will now show how a basis of solutions for Py - 1 can be constructed. The purpose
of this is also to introduce some notation to be used in later sections. Let Q be any unitary
matrix such that Q1 - Ä n ñ 10 ò . Then apply Q to

w
1 P y :

Q
w
1 P y�- : Ä n � 1 p∗

0 G � x (5.3.4)

(In practice, we would compute a QR factorization of
w
1 P y .) Then

Py - 1 ⇔ Q
w
1 P y � −1

y � - 0 ⇔ ó p∗y - 1
Gy - 0
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Given data X̃ and noise covariance Rn, compute beamformers W and output
S - W∗X̃:

1. SVD: R−1 Û 2
n X̃ - : UΣV∗

Prewhitening/dimension reduction: X̃ : - Σ̂−1Û∗R−1 Û 2
n X̃

Construct P with rows vech + x̃kx̃∗
k , T

QR fact.: Q
w
1 P y - : Ä n � 1 p∗

0 G �
SVD of G, set {y ¿i} to the smallest d right singular vectors.

2. Yi - vech−1y ¿i + i - 1 x · · · x d ,
Find T to jointly diagonalize Yi as Yi - TΛiT∗ + i - 1 x · · · x d ,

3. Scale each column of T to norm 1.

Set W - R−1 Û 2
n ÛΣ̂−1T and S - T∗X̃

Figure 5.4. Summary of ACMA

Thus, the problem of finding all solutions to Py - 1 is effectively replaced by the second
equation which says that {yi} is a basis for the null space of the matrix G. It can be conve-
niently found from an SVD of G. The first equation fixes a scaling for each yi.

By squaring (5.3.4), we obtain explicit expressions for p and C : - G∗G that will be use-
ful later:

p - 1
n

P∗1 - 1
n ∑ x̄k ⊗ xk

C : - G∗G - 1
n

P∗P − pp∗ (5.3.5)- 1
n ∑ + x̄k ⊗ xk ,E+ x̄k ⊗ xk , ∗ − � 1

n ∑ x̄k ⊗ xk � � 1
n ∑ x̄k ⊗ xk � ∗ s

The former expression shows that (for y - w̄ ⊗ w)

p∗y -�ô 1
n ∑ x̄k ⊗ xk õ ∗

y - w∗ ô 1
n ∑xkx∗

k õ w s
Thus, the condition p∗y - 1 is equal to the condition in (5.3.3) in the last step of the algo-
rithm outline, where the average output power of the beamformer is fixed to 1. The second
step (joint diagonalization) then needs to be concerned only with decoupling an arbitrary
scaled basis of the null space of G, or equivalently that of C - G∗G.ö&e�g��'�>fY�W�\e�q3qah`� ÷

A computational aspect is the following. Note that a hermitian symme-
try is present:

y - w̄ ⊗ w - vec + ww∗ , s
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Thus, w̄ ⊗ w contains a redundancy which can be removed, leading to computational sav-
ings. Instead of the ‘vec + · , ’ operator which stacks the columns of an arbitrary matrix, we
can define a real-valued ‘vech + · , ’ operator acting on hermitian matrices, which essentially
takes the real part of the above-diagonal entries, and the imaginary part of below-diagonal
entries (see the definition in equation (5.2.3)). The definition is such that there exists a data-
independent and unitary matrix J such that vech + Y ,0- Jvec + Y , for any Hermitian matrix Y .
Thus,

vech + ww∗ ,�- J + w̄ ⊗ w , ∈ ||R d2

is real-valued. The equation Py - 1 is now replaced by + PJ∗ ,E+ Jy ,P- 1, where PJ∗ is real
as well: its rows are given by vech + x̃x̃∗ , T . Eventually, we find a real-valued basis {y ¿i},
at which point we can set yi - J∗y ¿i. The corresponding matrices Yi are then hermitian by
construction.oø� ÷'�>f�hjdE�'�

The resulting algorithm is summarized in figure 5.4. In comparison to the out-
line, additional ingredients are the prefiltering, for which an SVD of the data matrix X̃ is
needed, and the real processing (using vech + x̃kx̃∗

k , rather than ¯̃xk ⊗ x̃k). The motivation for
using a prefilter which whitens the data covariance matrix follows from an analysis of the al-
gorithm in the presence of noise, and will be given in section 5.5. The joint diagonalization
step is described in detail in section 5.10.���úù à��¥¤&¡�ð0¦>(*¦û!PÞß� Ó& Ê�¥!H(*¦� 0Þ@�" © ×%ê¤�¦) 
The analysis of ACMA in the noisefree case can be limited to an analysis of the solutions
of Gy - 0. If all solutions are in the subspace spanned by {w̄i ⊗ wi ; i - 1 x · · · x d}, then
the joint diagonalization step is able to separate an arbitrary basis of the null space into its
rank-1 components, and we recover the true beamformers. Rather than looking at the null
space of G, it will be more convenient to look at the null space of C : - G∗G. This is of
course equivalent, but the analysis of the structure of C extends more easily to an asymptotic
analysis in the noisy case, later in section 5.6.

As was derived in (5.3.5),

C - G∗G - 1
n ∑ + x̄k ⊗ xk ,a+ x̄k ⊗ xk , ∗ −

1
n
ñ ∑ x̄k ⊗ xk ò 1

n
ñ ∑ x̄k ⊗ xk ò ∗ s

With xk - Ask, we obtain
C - w

Ā ⊗ A y Cs
w
Ā ⊗ A y ∗

where

Cs : - 1
n ∑ + s̄k ⊗ sk ,a+ s̄k ⊗ sk , ∗ −

1
n
ñ∑ s̄k ⊗ sk ò 1

n
ñ ∑ s̄k ⊗ sk ò ∗ s

C is positive semidefinite, because it is constructed as C - G∗G. Hence, the null space of
C has two components: the null space of

w
Ā ⊗ A y ∗, plus vectors y such that

w
Ā ⊗ A y ∗y is a

vector in the null space of Cs. The purpose of prefiltering with dimension reduction is to
remove the former solutions beforehand, by replacing A by a square full rank matrix A. In
that case also Ā⊗ A is square full rank, with an empty null space. Thus, the interesting part
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is the analysis of the null space of Cs, which is only dependent on the signals, not on their
directions.

For the sake of exposition, we specialize Cs for the case of two CM signals, s1 + k , and
s2 + k , . Define

ρ : - 1
n ∑s1 + k , s̄2 + k ,

q : - 1
n ∑

w
s1 + k ,�y 2 w s̄2 + k ,�y 2 s

Then (suppressing the time index)

Cs - 1
n ∑

k

¸¹¹º s̄1s1

s̄1s2

s̄2s1
s̄2s2

»`¼¼½ w
s1s̄1 s1 s̄2 s2s̄1 s2s̄2 y

−
1
n ∑

k

¸¹¹º s̄1s1

s̄1s2
s̄2s1

s̄2s2

»`¼¼½ ·
1
n ∑

k

w
s1 s̄1 s1s̄2 s2s̄1 s2s̄2 y

- ¸¹¹º 1 ρ ρ̄ 1
ρ̄ 1 q̄ ρ̄
ρ q 1 ρ
1 ρ ρ̄ 1

»`¼¼½ − ¸¹¹º 1ρ̄ρ
1

»`¼¼½ w
1 ρ ρ̄ 1 y

- ¸¹¹º 0 0 0 0
0 a b̄ 0
0 b a 0
0 0 0 0

»`¼¼½ x a : - 1 − |ρ|2
b : - q − ρ2 s (5.4.1)

We immediately see that Cs has null space vectors

¸¹¹º 100
0

»`¼¼½ x ¸¹¹º 000
1

»`¼¼½ s (5.4.2)

These are the desired null space vectors. The remaining 2×2 matrix in the center of (5.4.1)
is hopefully nonsingular. If the sources are independent and circularly symmetric, then
asymptotically (in n) q → 0 and ρ → 0, so that a → 1 and b → 0. Thus, for a sufficiently large
number of samples it is clear that (with probability 1) the matrix is nonsingular. There is a
danger for singularity if there exist specific relations between the two signals. In particular,
if

∀k : s1 + k ,�- ±αs2 + k , + |α| - 1 ,
(where the signs may be different for different k) then ρ - α|ρ|, q - α2, b - α2a, so that the
center matrix is singular. This occurs in the case of two BPSK signals, for which s + k ,0- ±1,
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or two MSK signals, for which s + k ,�- ±1 x s + k ° 1 ,©- ± j, and also if two such signals have
a constant phase offset or the same residual carrier modulation. Note that the phase offset
α can be absorbed in the array matrix A, so that we can assume α - 1. The additional null
space vector in this case is ¸¹¹º 0

1
−1
0

» ¼¼½ s (5.4.3)

The null space of C contains vectors y for which
w
Ā⊗A y ∗y is a vector in the null space of

Cs, i.e., either vector in (5.4.2), and perhaps the vector in (5.4.3). Assuming that A has full
column rank, also Ā⊗A has full column rank. Let W - w

w1 w2 y be a separating beamformer
such that W∗A - I, then w

Ā ⊗ A y ∗ w W̄ ⊗W y>- Ā∗W̄ ⊗ A∗W - I ⊗ I - I

from which we see thatw
Ā ⊗ A y ∗ + w̄1 ⊗ w1 ,¥- ¸¹¹º 100

0

» ¼¼½ x w
Ā ⊗ A y ∗ + w̄2 ⊗ w2 ,�- ¸¹¹º 000

1

» ¼¼½ x
w
Ā ⊗ A y ∗ + w̄1 ⊗ w2 − w̄2 ⊗ w1 ,©- ¸¹¹º 0

1
−1
0

»`¼¼½ s
The solutions to y∗Cy - 0 are thus spanned by a basis of the null space of

w
Ā⊗A y ∗ (removed

by prefiltering with dimension reduction) plus the desired solutions

w̄1 ⊗ w1 x w̄2 ⊗ w2 x
plus, in the case of BPSK-type signals, an additional undesired solution

w̄1 ⊗ w2 − w̄2 ⊗ w1
s

If only the desired solutions are present in the null space of C, then the joint diagonalization
step can find them from an arbitrary basis of this subspace. At this moment, it is not known
how to deal with the undesired solution if it is present. Hence, we have to rule out cases
with two or more BPSK signals and a general CM signal. However, for the case where all
signals are BPSK, we we will propose a modified algorithm later in section 5.8.

The above analysis easily generalizes to more than two signals. A key property, valid for
any number of signals and explicitly used by the algorithm, is the fact that certain columns
(and rows) of Cs are identically zero. This property comes from |sk|2 - 1 alone and follows
by construction for any number of samples. We do not have to wait for asymptotic con-
vergence of the cross terms to zero. Many other blind source separation techniques require
stochastic independence and rely on this. This aspect is the key to the good small-sample
high-SNR performance of ACMA.
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Let us now assume that our observations are noise perturbed: x̃k - xk ° nk + k - 1 x · · · x n , .
Our objective in this section is to rederive the ACMA procedure by starting from the
CMA(2,2) cost function

w - argmin
w

E + |ŝk|2 − 1 , 2 x ŝk - w∗x̃k
s

In a deterministic framework, a corresponding Least Squares problem can be introduced as

w - argmin
w

1
n ∑ + |ŝk|2 − 1 , 2 x ŝk - w∗x̃k

s
We will refer to this problem as the LS-CMA(2,2) problem.

Following the outline at the beginning of this section and using the same factorization
as in (5.3.4), we can make a similar derivation:

1
n ∑ + |ŝk |2 − 1 , 2 - 1

n ∑ ñ + ¯̃xk ⊗ x̃k , ∗ + w̄ ⊗ w , − 1 ò 2- 1
n { P̃y − 1 { 2 + y - w̄ ⊗ w ,- { p̃∗y − 1 { 2 ° { G̃y { 2 s

The next step is to replace the minimization of the first term by a fixed norm constraint on
y. It is well-known that this is possible in the usual situation where there is no structural
constraint on y. The following lemma shows that the structural constraint does not change
this result.

Lemma 1: Let

x1 - argmin
x ì w̄⊗w

+ a∗x − β , 2 ° { Ax { 2 x and x2 - argmin
x � w̄ ⊗ w
a∗x � β

{ Ax { 2 s
Then x1 is proportional to x2.

PROOF Define β1 - a∗x1. We can add the condition that a∗x - β1 to the first optimization
problem without changing the outcome:

x1 - argmin
x � w̄ ⊗ w
a∗x � β1

+ a∗x − β , 2 ° { Ax { 2

- argmin
x � w̄ ⊗ w
a∗x � β1

+ β1 − β , 2 ° { Ax { 2 - argmin
x � w̄ ⊗ w
a∗x � β1

{ Ax { 2 s
Scaling β1 will scale the solution x1 accordingly, and does not affect the fact that it has a
Kronecker structure. Hence

x1
β
β1

- argmin
x � w̄ ⊗ w
a∗x � β

{ Ax { 2 - x2
s
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If we apply the lemma, it follows that the solution to the LS-CMA(2,2) problem is (up

to a scaling) given by
w - argmin

y � w̄ ⊗ w
p̃∗y � 1

{ G̃y { 2 s
The condition p̃∗y - 1 leads in a natural way to the choice of a prewhitening filter F as given
in (5.2.12), viz.

x̃ - F∗x̃ x w - Ft x where F - ÛΣ̂−1 s
Indeed, we derived before that

p̃∗y - ô 1
n ∑ ¯̃x ⊗ x̃õ ∗ + w̄ ⊗ w ,©- w∗R̃xw s

If we change variables by prewhitening with dimension reduction, x̃ - Σ̂−1Û∗x̃ and w -
ÛΣ̂−1t, then R̃x - I and

w∗R̃xw - t∗t s
Moreover, { y { 2 - y∗y -_+ t̄ ⊗ t , ∗ + t̄ ⊗ t ,H- t̄∗ t̄ ⊗ t∗t - { t̄ { 2 ⊗ { t { 2 - { t { 4. It thus follows
that the linear constraint on y can be replaced by a more pleasant unit-norm constraint on y
in the whitened domain:

LS-CMA(2,2) ⇔ w - argmin
y � w̄ ⊗ w
w∗R̃xw � 1

{ G̃y { 2 or t - argmin
y � t̄ ⊗ t�
y
� � 1

{ G̃y { 2 s (5.5.1)

The first minimization problem is equivalent to the LS-CMA(2,2) problem up to a scaling
which is not important. The second minimization problem is almost equal to the first, except
that the whitening also involves a dimension reduction: this will force w - ÛΣ̂−1t to lie in
the dominant column span of X̃.

At this point, ACMA and LS-CMA(2,2) will diverge in two distinct but closely related
directions.

– LS-CMA(2,2) has to numerically optimize the first minimization problem in (5.5.1), and
find d independent solutions. If we ignore the effect of the dimension reduction, the so-
lutions will be unit-norm vectors y that have the required Kronecker structure and min-
imize { G̃y { 2. We expect that these solutions are close to the approximate nullspace of
G̃. Indeed, under noise-free conditions, they are precisely a basis of this null space.

– ACMA is making a twist on this problem: instead of solving for the true minimum, it
first finds a basis for the the d-dimensional approximate nullspace of G̃, then looks for
unit-norm vectors in this subspace that best fit the required structure.

We thus see that ACMA and LS-CMA(2,2) are closely related provided we whiten the data
using the noisy data covariance matrix R̃x. The motivation for following the ACMA ap-
proach is that it is easier to solve for all d solutions (using joint diagonalization), whereas
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the difference is likely to be not very large. Moreover, as we will show in section 5.6, the
ACMA solution converges to the Wiener (LMMSE) solution, whereas CMA(2,2) is known
to be unequal (but close) to the Wiener solution [57].����� àã¦)ð&¢Ü®¥�ª!P�)(ú%��¬ ¬Ó¥¤©Í�(*!H�
An analysis of the asymptotic behavior of ACMA in noise will reveal the close connections
of this method with other blind source separation methods based on fourth-order moments.

In the noiseless case, we have derived in (5.3.5)

C : - G∗G - 1
n ∑ + x̄k ⊗ xk ,E+ x̄k ⊗ xk , ∗ −

1
n
ñ ∑ x̄k ⊗ xk ò 1

n
ñ ∑ x̄k ⊗ xk ò ∗ s (5.6.1)

In the presence of noise, x̃k - Ask ° nk, assume that we compute in the same way

C̃ : - G̃∗G̃ - 1
n ∑ + ¯̃xk ⊗ x̃k ,E+ ¯̃xk ⊗ x̃k , ∗ −

1
n
ñ∑ ¯̃xk ⊗ x̃k ò 1

n
ñ∑ ¯̃xk ⊗ x̃k ò ∗

(5.6.2)

where G̃ is based on the noisy data. We analyze the contribution of the noise in this expres-
sion, assuming that it is zero mean, circularly symmetric, independent of the sources, and
with finite covariance Rn - E + nn∗ , and fourth-order moments.âß$H¢¯$P¡�¤¬���ª¦
The asymptotic analysis is best done via the introduction of fourth-order cumulants. For a
zero-mean vector-signal x + k , with components xi + k , , define the tensor with entries

κ j z l
i z k : - cum + xi x x̄ j x xk x x̄l ,

: - E + xix̄ jxkx̄l , − E + xix̄ j , E + xk x̄l , − E + xix̄l , E + xkx̄ j , − E + xixk , E + x̄ j x̄l ,
where i x j x k x l - 1 x · · · x m and m is the dimension of x. We will assume circularly symmetric
sources (hence non-BPSK), so that the last term vanishes. If we collect the entries κ j z l

i z k into

a matrix Kx with entries Ki u jm z l u km - κ j z l
i z k , then

Kx - E
w + x̄ ⊗ x ,a+ x̄ ⊗ x , ∗ y − E

w
x̄⊗ x y E w x̄⊗ x ,�y ∗ − E

w
xx∗ y T ⊗ E

w
xx∗ y

Note that E
w
xx∗ y�- Rx, E

w
x̄ ⊗ x y>- vec + Rx , . Comparing to (5.6.1), it is seen that, asymptot-

ically,
C

s- Kx ° RT
x ⊗ Rx x C̃

s- K̃x ° R̃T
x ⊗ R̃x

s
Cumulants are used because they have several well-known nice properties:

– Multilinearity: xk - Ask implies

Kx - w
Ā ⊗ A y Ks

w
Ā ⊗ A y ∗ s
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– Additivity: Independent sources have additive cumulants in their sum. This has two im-

portant implications. If x̃k - xk ° nk, where n is independent additive noise, then

K̃x - Kx ° Kn
s (5.6.3)

Let sk - w
s1 + k , · · · sd + k ,�y T consist of independent signals and write sk - ∑si + k , ei, where

ei is the i-th unit coordinate vector. Let us also define the “auto-cumulants”

κi - cum + si x s̄i x si x s̄i ,
Then additivity implies

Ks - d

∑
i ì 1

κi
w
ei ⊗ ei y w ei ⊗ ei y T

In particular, Ks is a diagonal with only d nonzero entries κi.

– Gaussian sources have zero cumulants and hence disappear in (5.6.3): Kn - 0. Constant-
modulus sources have auto-cumulant κi - −1.
For our model x̃k - Ask ° nk, assuming independent circularly symmetric CM signals
and independent Gaussian noise, this results in

K̃x - w
Ā ⊗ A y Ks

w
Ā ⊗ A y ∗ ° Kn- w

Ā · A yL+ −I , w Ā · A y ∗ (5.6.4)

Note that in this asymptotic situation, the noise does not enter the equation.

Using these properties we can derive that, without noise, the CMA(2,2) or ACMA cri-
terion matrix becomes asymptotically (using Rx

s- AA∗)

C
s- Kx ° RT

x ⊗ Rxs- w
Ā ⊗ A y Ks

w
Ā ⊗ A y ∗ ° ĀĀ∗ ⊗ AA∗- w

Ā ⊗ A yL+ Ks ° I , w Ā ⊗ A y ∗ - w
Ā ⊗ A y Cs

w
Ā ⊗ A y ∗ s (5.6.5)

Note that Cs - Ks ° I is diagonal, with zero entries at the location of the source autocumu-
lants, and ‘1’ entries elsewhere on the diagonal. Like in the finite sample case, the null space
of Cs is given by {ei ⊗ ei}, and hence the null space of C by {w̄i ⊗ wi}, plus of course the
null space of

w
Ā ⊗ A y ∗.

With noise, the CMA(2,2) or ACMA criterion matrix becomes asymptotically (R̃x

s-
Rx ° Rn)

C̃
s- K̃x ° R̃T

x ⊗ R̃xs- Kx ° + Rx ° Rn , T ⊗ + Rx ° Rn , ° Kn- Kx ° RT
x ⊗ Rx ° RT

x ⊗ Rn ° RT
n ⊗ Rx ° Kn ° RT

n ⊗ Rn- C ° E ° Cn (5.6.6)

where C is given in (5.6.5) and

E : - RT
x ⊗ Rn ° RT

n ⊗ Rx x Cn : - Kn ° RT
n ⊗ Rn

s
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Thus, the noise contributes a second-order and a fourth-order term to the ACMA criterion
matrix, even if it would be Gaussian. If we do not correct for it and proceed as in the noise-
free case, this will result in a certain bias at the output of the beamformer. As we show next,
this bias is precisely such that ACMA converges to the Wiener solution.àã¦)ð&¢Ü®¥�ª!P�)(ú%£¤¬�¥¤P¡�ð0¦�(*¦ !PÞ�àãâãäà
In the analysis of ACMA, we also have to take the effect of the initial prewhitening step
into account. Recall that this step is X̃ - F∗X̃ - AS ° N, where F - ÛΣ̂−1 so that R̃x -
F∗R̃xF - I. In the whitened domain, we search for d-dimensional beamformers t, the overall
beamformers are then given by w - Ft.

If we redo the derivation in (5.6.6), but in a different direction and assuming Gaussian
noise (Kn - 0), we obtain that asymptotically

C̃ -þ+ F ⊗ F , ∗C̃ + F ⊗ F ,s-þ+ F ⊗ F , ∗Kx + F ⊗ F , ° I ⊗ I- w
Ā ⊗ A y Ks

w
Ā ⊗ Ay ∗ ° I- w

Ā · AyY+ −I , w Ā · A y ∗ ° I s (5.6.7)

Inserting this in the CMA(2,2) cost function, equation (5.5.1), it follows that both ACMA
and CMA(2,2) look at the optimization problem

argmin
y ì t̄⊗t z � y �Dì 1

y∗C̃y
s- argmin

y ì t̄⊗t z � y �Dì 1
y∗ � w Ā · AyY+ −I , w Ā · Ay ∗ ° I 	 y- argmax

y ì t̄⊗t z � y �Dì 1
y∗ � w Ā · Ay w Ā · Ay ∗ 	 y s (5.6.8)

CMA(2,2) continues to optimize this problem. As we motivate below, the result is in general
not the desired vectors of the form āi ⊗ ai. ACMA is taking a slightly different approach at
this point: it does not optimize (5.6.8), but solves the unstructured problem first. Indeed,
it looks for an unconstrained d-dimensional basis {yi} of the approximate null space of G̃,
equivalently the null space of C̃, or d independent unit-norm vectors y that minimize y∗C̃y.
With the factorization in (5.6.7), we see that these are the d dominant eigenvectors of

w
Ā ·

A y w Ā · A y ∗. Since this is a rank-d matrix, we have that the d dominant eigenvectors together
span the same subspace as the column span of

w
Ā · Ay , hence

span{y1 x · · · x yd}
s- span

w
Ā · A y	- span{ā1 ⊗ a1 x · · · x ād ⊗ ad} s

As a second step, it will use the joint diagonalization to replace the unstructured basis by
one that has the required Kronecker product structure, i.e., look for d independent vectors
of the form t̄ ⊗ t within this column span. From the above equation, we see that the unique
solution is

t̄i ⊗ ti - āi ⊗ ai x i - 1 x · · · x d
(up to a scaling to make ti have unit norm) and thus

ti - ai x i - 1 x · · · x d s
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The beamformer on the whitened problem is equal to the whitened direction vector (a
matched spatial filter). If we go back to the resulting beamformer on the original (un-
whitened) data matrix X, we find

ti - ai - F∗ai ⇒ wi - Fti - FF∗ai - R̃−1
x ai x + i - 1 x · · · x d , (5.6.9)

since F - ÛΣ̂−1, R̃x - UΣ2U∗
s- ÛΣ̂2Û ° σ2Û⊥Û⊥∗, and Û⊥∗ai

s- 0. We have just shown
that ACMA is asymptotically equal to the Wiener receiver (or LMMSE beamformer). In
general, this is a very attractive property.

Does this two-step procedure solve the CMA(2,2) optimization problem (5.6.8)? This
is not likely, since in this asymptotic case ACMA finds its structured solutions only inside
the subspace spanned by the columns of

w
Ā · Ay . A solution to CMA(2,2) is expected to be

close to a dominant eigenvector of
w
Ā · A y w Ā · A y ∗, but it is not restricted to be inside the sub-

space. Thus, if the eigenvectors are not equal to {āi ⊗ ai}, the CMA(2,2) optimal solution
might be different. This happens if the columns of A are not orthogonal. But there are only
two situations where the columns of A are precisely orthogonal: if there is no noise, or (as-
suming white Gaussian noise) if the columns of the unwhitened A are orthogonal. This is
a rather special case, approximately true if the sources are well separated and the number
of sensors is large. Thus, CMA(2,2) does in general not lead to the Wiener solution. This
result matches that in the equalization context [21], see also chapter 8 in volume 1.â !��H�¥ ¥%²�)(*!��á�ª!�
¥à�§�
A widely used algorithm for the blind separation of independent non-Gaussian sources in
Gaussian noise is JADE (“Joint Approximate Diagonalization of Eigen-matrices”) [11]. It
is based on the construction of the fourth-order cumulant matrix K̃x in equation (5.6.4), but
uses the alternative prefiltering strategy as in (5.2.13), i.e., F - Û + Σ̂2 − σ2I , −1 Û 2 where Û
and Σ̂ are estimated from the eigenvalue decomposition of R̃x. The prefiltering leads to X̃ -
F∗X̃ - AS ° N, where A - F∗A. This choice is motivated by the fact that, asymptotically,
F converges to F

s- UAΣ−1
A (based on the SVD A - UAΣAVA), and thus

A
s- Σ−1

A U∗
AA - VA

is a unitary matrix. Asymptotically, the fourth-order cumulant matrix is given by

K̃
x

s- w
Ā · AyL+ −I , w Ā · Ay ∗ s

JADE computes a basis of the dominant column span of this matrix, which in this asymptotic
situation spans the same subspace as

{ā
i
⊗ a

i
; i - 1 x · · · x d}

Like ACMA, it then performs a joint diagonalization to identify the vectors a
i
. After cor-

recting for the prefiltering, we find

T - A - VA ⇒ W - FT - UAΣ−1
A VA - A†∗ s
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Hence, this strategy leads asymptotically to the zero-forcing beamformer, as well as the true
A-matrix.

Apart from different prefiltering, the asymptotic equations of JADE and ACMA look
rather similar. JADE searches for eigenvectors corresponding to nonzero eigenvalues given
by the nonzero entries of Ks, here equal to −1, whereas ACMA looks for the null space
vecors generated by the zero entries of Ks ° I. The result is the same.

However, the finite-sample properties are quite different. In the absence of noise, the
null space information of C̃ in ACMA is exact by construction, and hence the algorithm
produces the exact separating beamformers. The dominant column span of K̃ used in JADE
is not exact since the signal sources do not decorrelate exactly in finite samples: Ks is a full
matrix. Thus, keeping the number of samples fixed, the SNR-asymptotic performance of
JADE saturates.

In the proposed implementation in [11], JADE explicitly uses the fact that (with the
Σ−1

A U∗
A-prefiltering), A - VA and hence unitary. It thus forces the joint diagonalization to

produce a unitary matrix. A finite-sample problem is that R̃x does not reveal yet the true UA

and ΣA, and the restriction might make the results less accurate. This problem was noted in
[9], where optimal combinations of second and fourth order statistics are presented.

In summary, we can say that JADE and ACMA are quite similar, but differ in the fol-
lowing points:

– Prefiltering scheme, so that ACMA converges to a Wiener solution and JADE to a zero-
forcing beamformer,

– JADE explicitly relies on stochastic independence of sources, whereas ACMA explic-
itly relies on the CM property. This leads to different finite sample behavior.

To finish this section, we mention that the problem considered by JADE and the related
ICA [13] may be formulated as a least squares problem

min
V z Ks { K̃

x
−
w
V̄ · V y Ks

w
V̄ · V y ∗ { 2

F (5.6.10)

where V - VA is unitary, and Ks is a diagonal matrix containing the (unknown) source cu-
mulants. JADE gives an approximate but algebraically computable solution to this problem
[56]. The true solution to the minimization problem is considered in [55]; it is shown to be
equivalent to the ICA criterion, with somewhat better performance than JADE but compu-
tationally less attractive. An algorithm for solving (5.6.10) was proposed in [39].����� Ë  �(�É�Ó¥�ª �#àãâãäÕà
We have seen before, in (5.6.6), that asymptotically

C̃
s- C ° E ° Cn x where E : - RT

x ⊗ Rn ° RT
n ⊗ Rx x Cn : - Kn ° RT

n ⊗ Rn
s

Thus C̃ is in expectation equal to the noise-free C, plus a second-order and fourth-order con-
tribution E and Cn due to noise. E and Cn represent bias terms that cause ACMA to converge
to the Wiener solution. If an unbiased estimate of A is desired (e.g., for direction estimation),
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then the bias has to be removed. Although the Wiener beamformer can easily be mapped
to a zero-forcing beamformer (by multiplication by R̃x), the finite-sample properties of this
are not so good. Here we look at an alternative, based on correcting C̃.

Let us assume that we know the noise covariance Rn. We cannot know E since it depends
on noise-free data, but we can construct

Ẽ : - + 1
n ∑ x̃x̃∗ , T ⊗ Rn ° RT

n ⊗ + 1
n ∑ x̃x̃∗ , - R̃T

x ⊗ Rn ° RT
n ⊗ R̃x

s (5.7.1)

Asymptotically,
Ẽ

s- RT
x ⊗ Rn ° RT

n ⊗ Rx ° 2RT
n ⊗ Rn

so that
C̃ − Ẽ − + Kn − RT

n ⊗ Rn , s- C

is an asymptotically unbiased estimate of C. If the noise is Gaussian, then Kn - 0. If also
we can assume that { Rn { 2

F � { Rx { 2
F , i.e., the SNR is sufficiently large, then we can ignore

RT
n ⊗ Rn compared to Ẽ as well, and use C̃− Ẽ to estimate C.

Let us now assume that we know the noise covariance only up to a scalar, i.e., suppose
that E + nn∗ ,ê- σ2Rn where σ is unknown. Computing Ẽ as in (5.7.1), it follows that we have
available the data matrices C̃ and Ẽ, satisfying the approximate model (ignoring 4-th order
terms)

C̃ � C ° σ2Ẽ s
Since C is rank deficient with a kernel of dimension d, we can estimate σ2 as the (average
of the) smallest d eigenvalues of the matrix pencil + C̃ x Ẽ , , corresponding to the eigenvalue
equation + C̃ − λẼ , y - 0 s
An estimate of the basis {yi} of the kernel of C is given by the corresponding eigenvectors.

Alternatively, recalling the factorization C̃ - G̃∗G̃, we can use B : - Ẽ1 Û 2 to prewhiten
the data G̃: + C̃ − λẼ , y - 0 ⇔ B + B−1C̃B−1 − λI , By - 0

⇔ + G̃ ¿ ∗G̃ ¿ − λI , y ¿ - 0 x
where

G̃ ¿ : - G̃B−1

y ¿ : - By s
Thus we compute {y ¿i} as the d least significant right singular vectors of G̃B−1, and then set
yi - B−1y ¿i. At this point, we can continue with the joint diagonalization and recover the
beamforming matrix W . Asymptotically in n and SNR, we obtain W

s- A†∗.
The algorithm is called Weighted-ACMA (WACMA). As in ACMA, a dimension-

reducing prefiltering F is necessary. If we take the same prewhitening prefilter as in ACMA,
then after whitening, R̃x - I and Rn - Σ̂−2. Thus, Ẽ - I ⊗ Σ̂−2 ° Σ̂−2 ⊗ I is diagonal, and is
easily factored: B - E1 Û 2 is diagonal. The resulting algorithm is summarized in figure 5.5.
Simulations comparing ACMA, WACMA and JADE appear in section 5.9.
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Given data X̃ and noise covariance Rn, compute beamformer W

1. SVD: R−1 Û 2
n X̃ - : UΣV

Prewhitening/dimension reduction: X̃ : - Σ̂−1Û∗R−1 Û 2
n X̃

Construct P with rows vech + x̃kx̃∗
k , T

QR fact.: Q
w
1 P y - : Ä n � 1 p∗

0 G �
E : - I ⊗ Σ̂−2 ° Σ̂−2 ⊗ I
SVD: {y ¿i} - ker + GE−1 Û 2 ,
yi - E−1 Û 2y ¿i + i - 1 x · · · x d ,
Yi - vech−1yi + i - 1 x · · · x d ,

2. Continue as in the usual ACMA, step 2 (figure 5.4)

Figure 5.5. Weighted ACMA����� �l(Z�¥¤¥�"ðÜ¦�!�$H�6%ê ¯¦) P®¥¤¥�6¤©�)(*!��
The blind binary souce separation problem is to find a factorization X - AS where Si j ∈
{±1}. It is thus a specialization of our previous model, where in addition S is real-valued.
The latter property allows us to write

X - AS ⇔ � real + X ,
imag + X , � - � real + A ,

imag + A , � S ⇔ XR - ARS x
with XR ∈ ||R 2m×n and AR ∈ ||R 2m×d . This forces S to be real, and at the same time, AR is
usually much better conditioned than A, thus improving its robustness to noise. The problem
is to find all independent vectors wR ∈ ||R 2M such that wT

RXR - s has entries sk ∈ {±1}.
The alphabet condition is written as

sk ∈ {±1} ⇔ + sk − 1 ,a+ sk ° 1 ,0- 0 ⇔ s2
k - 1 (5.8.1)

(with possible extensions to other constellations). Denoting the k-th column of XR by xk,
substitution of wT

Rxk - sk into (5.8.1) leads to

wT xkxT
k w - 1 x k - 1 x · · · x n s

⇔
w
xk ⊗ xk y T wwR ⊗ wR yþ- 1 s (5.8.2)

If we now continue as in ACMA, we arrive at the problem Py - 1, where P - XR · XR and
y - wR ⊗ wR. However, this vector y has many duplicate entries: it corresponds to a ma-
trix Y - wwT which is real symmetric. In the same way, it follows that the corresponding
columns of P are repeated. This will give rise to additional undesired null space solutions,
causing the joint diagonalization step to fail.
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It is in the present situation rather straightforward to remove the duplicate entries. De-

fine, for a d × d real symmetric matrix Y - w
yi j y , a scaled stacking of the lower triangular

part of the columns:

vecr + Y , : - w
y11 y21 Ä 2 · · · yd1 Ä 2 y22 y32 Ä 2 · · · yd z d−1 Ä 2 ydd y T ∈ ||R d t d u 1 v�Û 2 s

Corresponding to this linear operation, there exists an orthogonal matrix JR of size d + d °
1 ,�� 2 × d2 and with a simple structure such that

JR + wR ⊗ wR ,�- vecr + wRwT
R ,

Since JT
R JR - I, we can write (5.8.2) asw

xk ⊗ xk y T wwR ⊗ wR y	- w
xk ⊗ xk y T JT

R · JR
w
wR ⊗ wR y	- 1 k - 1 x · · · x n s (5.8.3)

After collecting all rows
w
xk ⊗xk y T JT

R - w
vecr + xkxT

k y T into a matrix PR, the problem reduces
to finding all independent vectors yR satisfying

PRyR - 1 x yR - JR + wR ⊗ wR ,
We can now follow the same procedure as in ACMA, construct GR from PR, and find a d-
dimensional basis { + yR , i} of its null space. The structural property yR - JR + wR ⊗ wR , im-
plies JT

R yR - wR ⊗ wR. We can thus write Yi - vecr−1 + yR , i - vec−1 + JT
R yR , , which gives

wwT - α1Y1 ° · · · ° αδYδ
s (5.8.4)

The rest is the same as in ACMA, except that all matrices are real. The algorithm is called
RACMA [46].� da� e f g�� ÷²� f�h da�'�ßq

Other algorithms to solve the binary source separation problem (or
separation of sources with more extended alphabets) are ILSE and ILSP [43], which are
similar to the first algorithm in (5.2.9), ILSF [52] and DWILSP [37], which are related to
the second algorithm in (5.2.9) and (5.1.3), respectively. As with other alternating projec-
tions algorithms, the main concern with these algorithms is their initialization and lack of
global convergence. Depending on the initialization, the algorithms can converge to a local
minimum, and restarts are needed if not all independent signals are found. A maximum-
likelihood technique based on the EM algorithm was proposed in [6], and another one later
in [24]. These are iterative algorithms that require an accurate initialization such as provided
by RACMA or JADE.

Several people noted that the factorization problem X - AS is essentially a clustering
problem: in the absence of noise, X can contain only 2d distinct vectors. To estimate A, it
suffices to determine a suitable assignment of these vectors (or cluster centers) to constella-
tion vectors, i.e., the columns of S, taking symmetry into account [3], [4], [25]. With noise,
however, the segmentation and hence the estimation of the cluster centers can be difficult
and limits the performance of such algorithms.

Simulations comparing several of these algorithms to RACMA have appeared in [46].
As an application of this algorithm, we mention the blind separation and equalization of
GSM signals [51].
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Some performance results are shown in figures 5.6 and 5.7. In this simulation, we took a
ULA( λ

2 , consisting of m - 4 antennas, and d - 3 equal-power constant-modulus sources
with directions −10 �@x 0 �bx 20 � respectively. We compare the performance of ACMA, W-
ACMA and JADE.

In figure 5.6, we vary the number of samples n and the Signal to Noise Ratio (SNR). The
performance measure is the residual signal to interference ratio (SIR), which indicates how
well the computed beamforming matrix W is an inverse of A. The reference performance is
that of a zero-forcing (ZF) beamformer based on sample data (Ŵ - Â†∗, Â - X̃S†, assum-
ing known S). Figure 5.7 shows the same but for the Signal to Interference and Noise ratio
(SINR). Here, the reference performance is that of a Wiener receiver based on sample data
(Ŵ - SX̃† with known S).

Figure 5.6 (right column) shows that the SIR performance of JADE saturates for finite n
because it relies on the convergence of fourth-order statistics, whereas (left column) the SIR
performance of ACMA saturates for finite SNR, because it converges to the Wiener solution
and hence it is biased. It is seen that the whitening in W-ACMA removes this saturation
so that it can converge to a few dB below the ZF solution. Figure 5.7 shows that ACMA
converges asymptotically (in n) to the Wiener solution.

Finally, figure 5.8 shows the SIR and SINR for three equal-powered sources with direc-
tions

w
−α x 0 x αy , for varying α. The SNR was 10 dB, and we took n - 200 samples. For large

α, the columns of A become approximately orthogonal, Σ̂ ≈ I, and the difference between
ACMA and WACMA disappears. The performance of JADE is limited by the finite sample
effect.������� 
©!H(Z��� #H(*¤©ÉH!��&¤&¡*( �²¤��)(*!��
In the preceding sections, we have mostly analyzed the first step of the algorithm: up to
the point of finding a basis {yi} of the null space of G̃. We finish the chapter by going into
more details on the second step: how to identify from this basis the structured beamforming
vectors {t̄i ⊗ ti} spanning the same space. The solution is given by a joint diagonalization
of the matrices Yi constructed from yi.ÈH(Z�&#I(Z��É� Ó¥ Ê�"¤H�IÖ²Çb!��¥ ��&¤�¦�(*¦
After we have found a basis {yi} for the (approximate) null space of G̃, we have to find
which basis {t̄i ⊗ ti} spans the same subspace. By rearranging the d2-dimensional vectors
as d × d matrices, as in (5.3.2), we have seen that this problem can be written as

Y1 - TΛ1T∗

Y2 - TΛ2T∗
...

Yd - TΛdT∗ s + Λi diagonal , (5.10.1)

This problem is known as a joint (or simultaneous) diagonalization problem, by congruence.
It is related to generalized eigenvalue problems, which is seen by postmultiplying by Y−1

1
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Figure 5.6. SIR performance of W-ACMA, ACMA and JADE, as function of n and SNR
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Figure 5.7. SINR performance of W-ACMA, ACMA and JADE
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Figure 5.8. SIR and SINR performance for varying angle separation

(assuming it is invertible), so that we obtain YiY−1
1 - T + ΛiΛ−1

1 , T−1. If the eigenvalues of one
such product are unique, then T is unique up to scaling and permutation, and we can solve
the problem. With i � 2, the problem is in general overdetermined, with no exact solution
in the noisy case. Numerically it is better to avoid the inversion and to take all matrices Yi

into account. One approach for this is given below; a literature overview is given at the end
of the section.

Bring in a QR factorization of T∗ and an RQ decomposition of T :

T - QR ¿6x T∗ - R ¿ ¿ Z
where Q, Z are unitary, and R ¿ , R ¿ ¿ are upper triangular and invertible. The factorizations are
of course related, but we will ignore this for the moment. Substitution into (5.10.1) leads to

Q∗Y1Z - R1

Q∗Y2Z - R2...
Q∗YdZ - Rd

(5.10.2)

with R1 x · · · x Rd upper triangular:

R1 - R ¿ Λ1R ¿ ¿
R2 - R ¿ Λ2R ¿ ¿

...
Rd - R ¿ ΛdR ¿ ¿ s (5.10.3)

Hence, there exists Q x Z such that all Q∗YkZ are upper triangular. This is a generalized Schur
decomposition, but for d matrices rather than two.

Suppose that we have found this decomposition, then how do we reconstruct T? From
the fact that {yi} and {t̄i ⊗ ti} are both bases for the same subspace, we can formulate that
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there exist linear combinations of the Yj such that the result is tit∗
i . This implies that there

are complex numbers αi j such that

∑
j

αi jYj - tit∗
i

In particular, the result is rank 1. Introducing the QZ factorizations (5.10.2), it follows that

∑
j

αi jR j x i - 1 x · · · x d
is also rank 1. But since this matrix is upper triangular as well, at most one diagonal entry
of the result can be nonzero. (From the structure of the Ri in (5.10.3) and the invertibility
of R ¿ , R ¿ ¿ , we deduce that precisely one diagonal entry is nonzero.) Thus, it suffices to look
at linear combinations of the diagonals of the R j. Collect these diagonals in a matrix R,

r j : - diag
w
R j yLx R : - w

r1 r2 · · · rd y
and let A be a matrix with entries αi j . Setting for the i-th linear combination the i-th diagonal
entry of the result equal to 1, we find

∑
j

αi jr j - ei x + i - 1 x · · · x d , ⇔ AR - I ⇔ A - R−1 s
Having found the coefficients {αi j}, we can now compute d linear combinations ∑ j αi jYj

(i - 1 x · · · x d) and factor the result as tit∗
i . The ti form the columns of the matrix T . Hence,

in the noise-free case, the computation of a generalized Schur decomposition (5.10.2) gives
the solution to the simultaneous diagonalization problem.

%  P�¥ P�6¤&¡*( �² ¥# ï %©ÓI$H�ß#H �%ê!�¢Ü®H!¬¦�(��)(*!��
Let us now see how we can compute the generalized Schur decomposition problem (5.10.2)
in the presence of noise. Since the problem is overdetermined for d � 2, in general there
will be no Q x Z that will make all R1 x · · · x Rd upper triangular, but we can try to find a best
fit:

minT z {Λk} ∑d
k ì 1 { Yk − TΛkT∗ { 2

F ≈ minQ z Z z {Rk} ∑d
k ì 1 { Yk − QRkZ∗ { 2

F- minQ z Z z {Rk} ∑d
k ì 1 { Q∗YkZ − Rk { 2

F
s

It follows that for any Q x Z the best fit for Rk is equal to the upper triangular part of Q∗YkZ,
so that the modeling error becomes equal to the norm of the strictly lower triangular part.
Thus, we have to make all Q∗YkZ as much upper triangular as possible, or minimize the
strictly lower triangular entries. Our approach is to modify the standard QZ or Jacobi itera-
tion method used for computing the Schur decomposition of two matrices [34], [18] so that
it works for more than two matrices.

The QZ iteration for computing the Schur decomposition of two matrices [18] starts with
setting Q t 0 v - I, Z t 0 v - I. A different suitable initialization follows from a Schur decompo-
sition of just Y1 and Y2. At the n-th iteration step, we compute a unitary matrix Q t n v to jointly
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make all Q t n v ∗ + YkZ t n−1 v , more upper triangular, and then we compute a unitary matrix Z t n v
to make all + Q t n v Yk , Z t n v more upper triangular. Since it might be hard to find Q t n v or Z t n v to
maximize the upper triangularity in each step, it is customary to find only an approximate
solution and rely on the outer iteration to provide convergence.

We now describe ways to compute Q t n v (note that Z t n v is obtained in a dual way). At
this stage, we have matrices

Mk - Q t n−1 v ∗YkZ t n−1 v x k - 1 x · · ·d
not yet upper triangular, and and we have to find an update unitary matrix Q that lowers the
below-diagonal norm of Q∗M1 x · · · x Q∗Md .

Jacobi-type techniques consist of two ingredients: a visiting scheme (“sweep”), in
which all below-diagonal entries + i x j ,Ex i � j are selected in some order, and an update
scheme, where we apply a 2 × 2 Givens rotation acting on rows i and j. The update scheme
can have two policies. If we follow the classical QZ-type Jacobi iteration [14], we mini-
mize the sum of the squared norms of the entries + i x j , after the rotations. The corresponding
rotation is computed from

U∗ � M1 + j x j , M2 + j x j , · · · Md + j x j ,
M1 + i x j , M2 + i x j , · · · Md + i x j , � - � ∗ ∗ · · · ∗

ε1 ε2 · · · εd � (5.10.4)

If we look at an SVD of the 2×d matrix at the left hand side, it is seen that the smallest ∑ε2
k

we can obtain is equal to the smallest singular value squared, and the corresponding rotation
is the U-factor of the SVD. Alternatively, we can compute U from an eigenvalue decompo-
sition of the 2 × 2 matrix obtained from squaring the above. Hence, there is a closed-form
description of the optimal 2 × 2 rotation.

A sweep consists in selecting the pivots + i x j , in column-wise ordering, e.g.,

Mk - ¸¹¹¹¹º × × × × ×
·1 × × × ×
·2 ·5 × × ×
·3 ·6 ·8 × ×
·4 ·7 ·9 ·10 ×

»`¼¼¼¼½
Since the rotations are unitary, it is seen that when we are performing rotations in column
j, the below-diagonal norm of the previous columns do not change. However, the below-
diagonal norm of future columns may increase, but this will be reduced in later rotations.

The above rotation scheme cannot guarantee that the below-diagonal norm will be
smaller at the end of a sweep (though this is very likely). Many authors therefore propose
a scheme in which the effect of a rotation in the + i x j , -plane on the below-diagonal norm is
computed, such that this norm is minimized. This is obtained by looking at (for i � j)

U∗ � M1 + j x j , · · ·M1 + j x i − 1 , · · · Md + j x j , · · ·Md + j x i − 1 ,
M1 + i x j , · · ·M1 + i x i − 1 , · · · Md + i x j , · · ·Md + i x i − 1 , � -�� ∗ · · ·∗ · · · ∗ · · ·∗

ε · · ·ε · · · ε · · ·ε �
The solution is again given (even in closed form) by an SVD in the same way as before.
In exchange for its larger complexity, this scheme has the property that the below-diagonal
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Given d matrices {Yk}, each of size d × d, find T such that T−1YkT−∗ is
approximately diagonal.

1. Init: Q t 0 v x Z t 0 v from a Gen. Schur Decomposition of + Y1 x Y2 , .
Set Rk - Q t 0 v ∗YkZ t 0 v (k - 1 x · · · x d)

2. Until convergence:¸¹¹¹¹¹¹¹¹¹¹¹¹¹º

Q-sweep: for j - 1 x · · · x d − 1; for i - j x · · · x d¸º SVD: UΣV∗ : -�� R1 + j x j , R2 + j x j , · · · Rd + j x j ,
R1 + i x j , R2 + i x j , · · · Rd + i x j , �

Apply U∗ to rows j and i of R1 x · · · x Rd

Z-sweep: for j - d x · · · x 2; for i - j − 1 x · · · x 1¸¹¹¹º SVD: UΣV∗ : - ¸¹º R1 + j x j , R1 + i x j ,
...

...
Rd + j x j , Rd + i x j ,

» ¼½
Apply V to columns j and i of R1 x · · · x Rd

3. R : - w
r1 r2 · · · rd y where rk - diag

w
Rk y

A : - R−1, with entries αi j .

4. for j - 1 x · · · x d:

SVD on ∑ j αi jYj, set t j equal to dominant singular vector

T - w
t1 x · · · x td y

Figure 5.9. Joint diagonalization algorithm
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norm cannot increase. Hence, it will converge monotonically to a local minimum. However,
in practice the performance of both schemes is quite similar. Convergence is fast, usually
quadratically within 3–5 iterations if initialized by a Schur decomposition of two matrices.
It should be noted that there are many other possible schemes, e.g., by intertwining the 2×2
Q and Z-rotations or computing them jointly. An experimental performance study made by
DeLathauwer [29] shows that the performance of all schemes is grosso modo the same, with
the monotonic scheme being somewhat more susceptible to local minima.

The overall joint diagonalization algorithm is summarized in figure 5.9.å � Ó¥ P�'&L!H(Z����#H(*¤�ÉH!��¥¤&¡*( �'¤©�)(*!�� ®&�"!(�P¡� ¬¢�¦û¤¬�&#Õ¤&¡8ÉH!H�6(�� ÓH¢£¦
Many blind source separation problems in signal processing, and elsewhere, lead to joint
diagonalization problems. In the literature, we find problems of the form+ a , Ei - TΛiT−1 → QRiQ∗+ b , Ei - TΛiT∗ → QRiZ∗+ c , Ei - AΛiT∗ → QRiZ∗

(5.10.5)

where A and T are square invertible and all Λi are diagonal. Problem (c) occurs in multi-
dimensional ESPRIT-type algorithms [49], [54], [22], and also in multilinear source separa-
tion problems (called PARAFAC, see chapter 6 of this volume) where we have a data model
of the form x - ∑d

1 ai ⊗ li ⊗ ti [41]. Problem (b) is called a Simultaneous Diagonalization
by Congruence problem and results in ACMA and JADE [11], and several other cumulant-
based algorithms for separating non-Gaussian signals as well as second order techniques
for separating sources based on differences in their spectra [5]. Problem (a) is called a Si-
multaneous Diagonalization by Similarity problem, and is in signal processing applications
usually derived from problem + c , by premultiplying with E−1

0 , thus eliminating A.
One solution strategy for problem + c , is to solve it iteratively, using alternating least

squares [7], [41]. In most cases, however, QR-factorizations for T , T∗ and A are introduced,
so that we obtain the modified problems at the right of (5.10.5), in which Q and Z are unitary,
and the Ri are upper triangular. Another possibility is to assume that T in problem + a , or+ b , is unitary, which happens asymptotically if we perform prewhitening. Thus, we arrive
at the following set of Simultaneous Schur Decompositions:+ d , Ei - QΛiQ∗+ e , Ei - QRiQ∗+ f , Ei - QRiZ∗

(5.10.6)

Overviews of several such problems are given in [8], [12], [15]. For this set of problems,
Jacobi-type iterations can be introduced. Problem + d , has received most attention [8], [11],
[5], and 2×2 rotations to minimize off-diagonal norms can be obtained in closed form [10].
Alternatively, the problem can be solved using isospectral flows [12]. Problem + f , has
been studied in the previous subsection, and elsewhere [50], [30], [29], [1], and also ad-
mits closed-form expressions for the 2 × 2 rotations. Finally, problem + e , has been studied,
but no exact closed-form solutions have been reported [23], [1]. However, since this prob-
lem is usually derived from problem (a), which in turn is usually obtained from problem+ c , , it is often possible to consider problem ( f ) instead.
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In this chapter we have described the ACMA: a deterministic block-algorithm for solving
the constant modulus problem. Although more complex, it has major advantages over iter-
ative CMAs, e.g.,

– a modest requirement on the number of samples,

– all beamforming vectors for all sources are found in one shot, as the eigenvectors of a
generalized eigenvalue problem,

– the solutions are found algebraically and reliably, hence no convergence problems as in
iterative CMAs.

We have shown that ACMA converges to the Wiener solution (in samples or SNR), whereas
the minima of the CMA(2,2) cost function only have this property if there is no noise or
the mixing matrix is orthogonal. Furthermore, we have derived a modification, WACMA,
which is close to the zero-forcing solution if the noise power is small (SNR better than 10
dB). We have made a performance comparison to the related JADE algorithm, which sepa-
rates independent non-Gaussian sources based on their non-zero kurtosis. The conclusion is
not unequivocally, because JADE converges to a zero-forcing beamformer asymptotically
in the number of samples, but not in SNR. Applied to constant-modulus sources, ACMA
has almost always better SINR-performance and WACMA has almost always better SIR-
performance.

There are several extensions of this type of algorithm. We described an extension to
binary sources. Similar algorithms have been derived for sources that are either zero or
constant modulus [53], and the separation of binary sources with unknown residual carri-
ers [48]. The algorithm can be used as the second step in several blind FIR-MIMO channel
identification/separation algorithms [32], [52]. Another application is in direction finding
of multiple sources: WACMA can be used to estimate individual array response vectors ai,
from which (in the absence of multipath) the directions can be estimated. The algorithm
and performance bounds have been published in [31]. A recent overview that places many
of these algebraic techniques for blind source separation into context can be found in [47].



� �l� � � 
 � � � * � +

[1] K. Abed-Meraim and Y. Hua, “A least-squares approach to joint Schur decomposition,”
in Proc. IEEE ICASSP, pp. 2541–2544, 1998.

[2] B.G. Agee, “The least-squares CMA: A new technique for rapid correction of constant
modulus signals,” in Proc. IEEE ICASSP, (Tokyo), pp. 953–956, 1986.

[3] K. Anand, G. Mathew, and V.U. Reddy, “Blind separation of multiple co-channel BPSK
signals arriving at an antenna array,” IEEE Signal Proc. Letters, vol. 2, pp. 176–178, Sept.
1995.

[4] K. Anand and V.U. Reddy, “Maximum likelihood estimation of constellation vectors for
blind separation of co-channel BPSK signals and its performance analysis,” IEEE Trans.
Signal Proc., vol. 45, pp. 1736–1741, July 1997.

[5] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source sepa-
ration technique using second-order statistics,” IEEE Trans. Signal Proc., vol. 45, pp. 434–
444, Feb. 1997.

[6] A. Belouchrani and J.-F. Cardoso, “Maximum likelihood source separation for discrete
sources,” in Proc. Eusipco, pp. 768–771, 1994.

[7] R. Bro, N. Sidiropoulos, and G. Giannakis, “A fast least squares algorithm for separat-
ing trilinear mixtures,” in Proc. Workshop on Independent Component Analysis and Blind
Source Separation (ICA99), (Aussois (Fr)), pp. 289–294, Jan. 1999.

[8] A. Bunse-Gerstner, R. Byers, and V. Mehrmann, “Numerical methods for simultaneous
diagonalization,” SIAM J. Matrix Anal. Appl., vol. 4, pp. 927–949, 1993.

[9] J.-F. Cardoso, S. Bose, and B. Friedlander, “On optimal source separation based on sec-
ond and fourt order cumulants,” in Proc. 8th IEEE Signal Proc. Workshop on Stat. Signal
Array Proc., (Corfu (Gr)), pp. 198–201, 1996.

[10] J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous diagonalization,”
SIAM J. Matrix Anal. Appl., vol. 17, no. 1, pp. 161–164, 1996.

36



� 9 4E/ 9 =31@5873SaMFý 37

[11] J.F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE
Proc. F (Radar and Signal Processing), vol. 140, pp. 362–370, Dec. 1993.

[12] M.T. Chu, “A continuous Jacobi-like approach to the simultaneous reduction of real
matrices,” Lin. Alg. Appl., vol. 147, pp. 75–96, 1991.

[13] P. Comon, “Independent component analysis, a new concept?,” Signal Processing,
vol. 36, pp. 287–314, Apr. 1994.

[14] P.J. Eberlein, “On the Schur decomposition of a matrix for parallel computation,” IEEE
Trans. Comp., vol. C-36, pp. 167–174, 1987.

[15] B.D. Flury and B.E. Neuenschwander, “Simultaneous diagonalization algorithms with
applications in multivariate statistics,” in Approximation and Computation (R.V.M. Zahar,
ed.), pp. 179–205, Basel: Birkhäuser, 1995.
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