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AsymptoticPropertiesof theAlgebraicConstant
ModulusAlgorithm

Alle-Janvan derVeen,� Member, IEEE

Abstract—
�

The
�

algebraic constant modulus algorithm (ACMA)
is a noniterative blind source separation algorithm. It computes
jointly
�

beamforming vectors for all constant modulus sources as
the
�

solution of a joint diagonalization problem. In this paper, we
analyze� its asymptotic properties and show that (unlike CMA) it
con� verges to the Wiener beamformer when the number of samples
or� the signal-to-noise ratio (SNR) goes to infinity. We also sketch its
connection� to the related JADE algorithm and derive a version of
ACMA that converges to a zero-forcing beamformer. This gives im-
pr� oved performance in applications that use the estimated mixing
matrix,	 such as in direction finding.

IndexTerms—Array signal processing, blind beamforming, con-
stant modulus algorithm, simultaneous diagonalization.
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ODUCTION

CONST
�

ANT modulus algorithms (CMAs) enjoy wide-
spread
 popularityasmethodsfor blind sourceseparation

and� equalizationof communicationsignals.First derived as
LMS-type
�

adaptive equalizersby Godard[8] andTreichleret�

al.� [24], [25], CMAs arestraightforwardto implement,robust,
and� computationallyof modestcomplexity. Quite soon, the
algorithms� were also applied to blind beamforming(spatial
source
 separation),which gave rise to the similar constant
modulusarray [21]. An extensive literatureexists, but it will
not� be cited here;instead,we refer to the specialissueof the
P
�

R
�

OCEEDINGSOF THE IEEE,



October1998,and, in particular,
[10], [26], andreferencestherein.

Despite
�

itseffectivenessandapparentsimplicity, adaptiveim-
plementations� of the CMA comealong with several compli-
cating� factorsthathave never really beensolved.In particular,
con� vergencecanbeslow (orderhundredsof samples)atanun-
predictable� speeddependingon initialization,andthestepsize
may� have to be tunedto avoid stability problems.For thepur-
pose� of blind sourceseparation,an additionalcomplicationis
that
�

only asinglesourceis foundata time.To recover theother
signals
 successivelyor in parallel,theprevioussolutionshaveto
be
�

removed from thedata,or independenceconstraintsmustbe
introduced,with additionalcomplicationsfor the convergence
[11], [14]–[16], [21], [23].

Thealgebraicconstantmodulusalgorithm(ACMA) was in-
troduced
�

in [29] asanalgebraicmethodfor computingthecom-
plete� collectionof beamformersin oneshot,asthesolutionof a
generalized� eigenvalueproblem.Only asmallbatchof samples
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is
�

needed(ordernumberof sourcessquared),andthenumberof
constant� modulussignalscanbedetectedaswell. Convergence
is notanissue.It hasbeensuccessfullyappliedto realdatain a
v� arietyof scenariosfor up to six sourcessimultaneously[29].

The
 

potential performanceof the CMA receiver, i.e., the
minima� of themoduluserrorcostfunctionto whichtheadaptive
CMA
!

tries to converge, has beenstudied in detail recently
in
�

a seriesof papersby Tong, Johnson,and others[7], [9],
[18], [32], [33]. Thesepapersprovide quantitative evidence
for the observation alreadymadeby Godardthat the minima
of" the constantmoduluscost function areoften very nearthe
(nonblind)
#

Wiener receivers or linear minimum meansquare
error$ (LMMSE) receivers.

Althoughverypromising,theperformanceof ACMA hasnot
been
�

studiedsofar, exceptempiricallyandwith seeminglycon-
tradicting
�

conclusions[17], [22]. In thispaper, wemakeastartat
a� theoreticalanalysisby investigatingtheasymptoticproperties
of" ACMA. Themainresultis thatwith Gaussiannoise,ACMA
con� vergese� xactly to

�
the Wienersolutionwhenthe numberof

samples
 or thesignal-to-noiseratio (SNR)goesto infinity.
The
 

analysisis basedon a reformulationof ACMA as a
fourth-order statistics method. As such, it can be directly
deri
%

ved from theCMA costfunctionby replacingthenonlinear
optimization" by two steps:a linear one in which a subspace
is found, followed by a nonlinearoptimization restrictedto
this
�

subspace.This reformulationshows thatACMA is closely
related& to the JADE algorithm by Cardosoand Souloumiac
[4], which is a well-known blind beamforming algorithm
for separatingindependentnon-Gaussiansources.We sketch
the
�

relationsbetweenthe two algorithms.This complements
the
�

known relations betweenJADE and the larger class of
algebraic� fourth-order cumulant-basedseparationtechniques
based
�

on contrastsor cumulantmatching[5], [6], [12], [19],
[20], [30], [31], [34]; see [2] and [3] for an overview. An
inspiring start to this analysiswas found in [20] and [30], in
which' relationsbetweenseveralfourth-ordersourceseparation
algorithms� are investigated, including CMA and JADE. In
these
�

papers,thealgorithmsareplacedin acommonframework
of" least squaresmatchingof fourth-ordercumulants,where
the
�

beamformerafter a prewhiteningstepis constrainedto be
unitary( . Theessentialrole playedby this prewhiteningstep(in
fact, the prewhitening suggestedin [20] is inaccurate)is not
noted� in [20] and[30] . Indeed,it will be shown herethat the
precise� choiceof theprewhiteningis crucialfor theasymptotic
con� vergenceof ACMA to theWienerreceiver andof JADE to
a� zero-forcingreceiver.

W
)

iener receivers are attractive becausethey maximize the
output" signal-to-interference-plus-noiseratio(SINR).However,
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for someapplicationssuchasdirectionfinding, a zero-forcing
beamformer
�

is preferredbecauseits inverseprovidesan unbi-
ased� estimateof the mixing matrix from which the directions
can� beestimated.For thiscase,weconstructaslightly modified
v� ersionof ACMA that asymptoticallyin the numberof sam-
ples� convergesto a point closeto thezero-forcingsolution.All
algorithms� (CMA, ACMA, ZF-ACMA, andJADE) aresubse-
quently+ testedin simulationsandcomparedwith theWienerand
zero-forcing, receivers.

Outline:
-

Section
.

II defines the problem, and Section III
pro� vides a compactpresentationof the original ACMA. We
subsequently
 look at theconnectionto theCMA costfunction
(Section
#

IV), the noise-freeproperties(SectionV), and the
asymptotic� propertiesof the algorithm in noise(SectionVI),
from
/

which it follows that ACMA converges to the Wiener
solution.
 Wealsoderiveaversionof ACMA thatapproximately
con� verges to the zero-forcing solution (Section VII) and
compare� CMA, ACMA, ZF-ACMA, andJADE in simulations
(Section
#

VIII).
Notation:
0

W
)

e adoptthefollowing notation:
Comple
!

x conjugation.
Matrix
1

transpose.
Matrix complex conjugatetranspose.
Matrix pseudo-inverse(Moore–Penroseinverse).
Pre
�

whiteneddata.
V
2

ectorof all 0s.
V
2

ectorof all 1s.
E Mathematicalexpectationoperator.
ve� c Stacking

.
of thecolumnsof into

�
a vector.

Kronecker product.
Khatri–Rao
3

product (column-wise Kronecker
product):�

Notable
4

propertiesare,for matrices and� vectors
of" compatiblesizes

ve� c (1)
#

(2)
#

ve� c ve� c (3)
#

ve� c (4)
#

II.



DAT
5

A M
1

ODEL AND P
�

RELIMIN
�

ARIES

Consider
!

independent sources, transmitting com-
ple� x-valued signals with' constantmoduluswaveforms

in a wirelessscenario.The signalsarereceived
by
�

an array of antennas,� demodulatedto basebandand
sampled
 with period . We stacktheresultingoutputs
into vectors and� collect samples
 in a matrix

. Assumingthat the sourcesare sufficiently nar-
ro& wband in comparisonto the delay spreadof the multipath
channel,� this leadsto thewell-known datamodel

(5)
#

is the arrayresponsematrix. The
ro& ws of contain� thesamplesof the sourcesignals.
Both and� are� unknown, andthe objective is, given , t6 o
find afactorization such
 that . If theproblem
is
�

identifiable,then is
�

recoveredup to theusualindetermina-
cies� of arbitraryscalingsandorderingof its rows.Alternatively,
and� more conveniently, we try to find a beamformingmatrix

of" full row rank such
 that
.

In thepresenceof additive noise,we write ,6
or"

(6)
#

Assumptions:
7

Model
1

assumptionsusedin the analysisare
summarized
 asfollows.

1) ,6 .
2)
8

has
9

full columnrank .
3)
:

The signals are assumedto be random, independent
identically distributed (i.i.d.), zero mean, circularly
symmetric,
 with modulusequalto 1. Notethat this rules
out" BPSK( )

;
sources.

4) The noiseis assumedto be additive white, zero mean,
circularly� symmetric,complex Gaussiandistributedwith
co� variance E

<
and� independentfrom

the
�

sources.
5)
=

Thenoise-freeproblemis consideredessentiallyidentifi-
able.�

Identif
>

iability: W
)

e will assumethat the problemis essen-�

tially? identifiable,6 i.e.,thatfor agivenmatrix of" size ,6
we' can find a factorization (

#
),
;

which is
unique( up to theabove-mentionedphase-and-orderingindeter-
minacies.Despiteextensive researchon CMA, minimal condi-
tions
�

thatguaranteethis identifiability for finite are� notcom-
pletely� known, nor will they be studiedin this paper. ACMA
requires& and� sufficiently exciting signals.By counting
the
�

numberof equationsandunknowns(a not completelycon-
vincing� argument),it was motivatedin [29] that identifiability
is
�

expectedin generalalreadyfor and� sufficiently ex-
citing� signals.

Wiener and Zero-Forcing Beamformers: W
)

e will compare
the
�

outcome of ACMA to two beamformersthat assume
kno
@

wn sourcedata ,6 namely, the Wiener beamformerand
the
�

zero-forcingbeamformer. In a deterministiccontext, the
W
)

iener beamformerbasedon sampledata is derived as the
solution
 to theLMMSE problem

(7)
#

As
A

,6 theWienerbeamformerconvergesto

(8)
#
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Likewise,thezero-forcingbeamformerbasedonsampledatais
simply
 a left-inverseof a least-squaresestimateof or"

,6 where

(9)
#

As ,6 we have that and� that the zero-forcing
beamformer
�

convergesto

(10)
#

III. DERIVATION OF THE ACMA

A. Algorithm Outline

W
)

e summarizethederivationof thebasicACMA algorithm
for thenoiselesscase(seealso[29]). Theobjective is to find all
independent
�

beamformingvectors that
�

reconstructa signal
with' a constantmodulus,i.e.,

such
 that

Let be
�

the th
�

columnof . By substitution,we find

(11)
#

Note
4

that . Wecanstackthe
rows of" thedatainto amatrix (size

#

).
;

Then,(11) is equivalentto findingall that
�

satisfy

This is a linearsystemof equations,subjectto a quadraticcon-
straint.
 Thelinearsystemis overdeterminedonce ,6 and
we' will assumethat this is thecase.

In



generaloutline,theACMA techniquesolvesthis problem
using( the following steps.

1) First, Solve the Linear System . Note that there
are� at least independentsolutionsto the linearsystem,
namely� , (

#
).
;

In addition,however, a
linearcombinationof thesesolutions

(scaled
#

suchthat )
;

will alsosolve .
To find a basisof solutions,let be

�
any unitaryma-

trix
�

suchthat ,6 for example,foundby com-
puting� a QR factorizationof . Apply to

�

and� partition theresultas

(12)
#

Then

(13)
#

The condition is momentarilydroppedsince
it
�

canalwaysbe satisfied by a scalingof [cf. step3)
belo
�

w]. All solutionsto thecondition are� found
fromabasis of" thenull spaceof thematrix ,6 which
is
�

convenientlyobtainedfrom anSVD of . Generically
(after
#

prefiltering, seebelow), thereareprecisely solu-


tions.
�

2) Decouple: Find a basis of"

structured
 vectorsthat spanthe samelinearsubspaceas
. This canbeformulatedasa subspacefit-

ting
�

problem

where' ,6 and is a full-rank
matrix that relatesthe two basesof the subspace.Alter-
natively, we canformulatethis asa joint diagonalization
problem� since

where' is the th
�

columnof ,6 diag
%

is the
diagonal
%

matrix constructedfrom this vector, and is
the
�

matrixobtainedbyunstacking such
 thatvec
; we havealsoused(4). Thelatterequationshows that

all� can� be diagonalizedby the samematrix . The
resultingjoint diagonalizationproblemis a generaliza-
tion
�

of the standardeigenvalue decompositionproblem
and� canbesolved[29]. An overview andcomparisonof
techniques
�

for this is foundin [12].
3)
:

In Step1), we implementedthe condition bu
�

t
dropped
%

thescalingcondition and,� thus,lostthe
correct� scalingof the . Ratherthanconstraining or"

the
�

,6 this is moreeasilyfixed by scalingeachsolution
such
 that theaverageoutputpower

(14)
#

is equalto 1.
In



thenoise-freecaseandwith ,6 thisalgorithmproduces
the
�

exactseparatingbeamformer .
By squaring(12),we obtainexplicit expressionsfor and� a

matrix� that
�

will beusefullater:

(15)
#
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Theformerexpressionshows that

ve� c ve� c

where' is thesamplecovariancematrixof thedata.Thus(for
)
;

(16)
#

and� we seethat thecondition in
�

(13) is implemented
by
�

step3) of the algorithmoutline, wherethe averageoutput
po� wer of eachbeamformeris fixed to 1.

Thesignificanceof is two fold. First, its null spaceis ev-
idently
�

the sameasthat of ; hence,we canobtainthe basis
from aneigenvaluedecompositionof . Numerically, this

is
�

notadvisable,but an analysisof thisnull spaceis mucheasier
done
%

for since
 it hasfixed sizeandconvergesto a matrix
as� . Second,asa closerinspectionof equation(15)
sho
 ws, hasanimportantinterpretationasbeingtheco-B

varianceC matrix of the sample data covariance (and
#

is
�

a
sample
 estimateof ).

;

B. Whitening and Rank Reduction

A crucialaspectof theabovetechniqueis thatthebasis
should
 not containothercomponentsthan the desired

; otherwise,we cannotposethe problemas a joint diag-
onalization." For this, it is essentialthat thereare precisely
linearly independentsolutionsto and� no additional
spurious
 solutions.However, additionalsolutionsexist if is

�

rankdeficient,e.g.,becausethenumberof sensorsis largerthan
the
�

numberof sources( tall).
�

This is simply treatedby a pre-
filtering operationthat reducesthenumberof rows of from

to
�

,6 as we discusshere.
The underscore( )

;
is usedto denoteprefiltered variables.

Thus,
 

let ,6 where . Then

where'

has
9

only channels,� and is
�

square.Theblind beam-
formingproblemis now replacedby findingaseparatingbeam-
forming matrix with' columns ,6 actingon (see

#

Fig.
D

1).After has
9

beenfound,thebeamformingmatrixonthe
original" datawill be .

Assumethat the noiseis white i.i.d. with covariancematrix
. Wecanchoose such
 thattheresultingdatamatrix

is white, as follows. Let be
�

the noisy
sample
 datacovariancematrix,with eigenvaluedecomposition

(17)
#

Here,
E

is
�

unitary( , and is
�

diagonal
%

( con-�

tains
�

thesingularvaluesof ).
;

The largesteigenvalues
are� collectedinto adiagonalmatrix and� thecorresponding
eigen$ vectorsinto (the

#
y spanthe“signal subspace”).In this

notation,define as�

(18)
#

Fig. 1. Blind beamformingprefiltering structure.

Fig.
F

2. Summaryof ACMA.

This prewhitening is suchthat is unity:
,6 andit alsoreducesthedimensionof from

/
ro& wsto

rows.After prewhitening,wecancontinuewith thealgorithm,
as� outlinedbefore.

The
 

resultingalgorithmis summarizedin Fig. 2. In compar-
isonwith theoutline,anadditionalingredientis theprefiltering,
for which an SVD of the datamatrix is needed.The pre-
filtering is primarily usedto reducethedimension.Theprefer-
ence$ for a prefilter thatwhitensG the

�
datacovariancematrix fol-

lowsfrom ananalysisof thealgorithmin thepresenceof noise,
as� donein thenext sections.

IV



. FORMULATION AS AN O
�

PTIMIZA
H

TION P
�

R
�

OBLEM

The ACMA procedureoutlinedin the previous sectionwas
deri
%

ved for thenoiselesscase.With noise,thesamealgorithmis
used( unchanged,but obviously, theresultingbeamformerswill
be
�

noise-perturbedaswell. The analysisof their propertiesis
facilitatedif we write theseasthesolutionsof anoptimization
problem.� This will alsopointout thecorrespondenceto CMA.

The
 

CMA costfunctionis usuallydefinedas[24]

E (19)
#

Gi
I

ven a finite batchof data
%

samples,we cannotsolve (19).
Therefore,we posea correspondingleastsquaresproblem

(20)
#
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W
)

e refer to this as the CMA(2,2) problem in this paper;its
solution
 coincideswith that of (19) as . Introducing

and� usingthefactorizationin (12),wederive that

Let
�

be
�

the(structured)minimizerof this expression,andde-
f
/
ine . Equation(16)showsit is theoutputpowerof the

beamformer
�

correspondingto ,6 andhence, . Regarding
as� someknown fixed constant,we canadda conditionthat

to
�

the optimizationproblemwithout changingthe
outcome:"

Since
.

is real andpositive, replacing by
�

1 will only scale
the
�

solution to
�

and� doesnot affect thefactthatit has
a� Kronecker structure.The scaledcondition in turn
motivatesin a naturalway the choiceof a prewhiteningfilter

,6 as givenin (18). Indeed,we derived in (16) that
. If wechangevariablesto and�

,6 then ,6 and

Moreover, . It thusfollows
that
�

. Hence,upto ascalingthatis not
important,
�

1 the
�

CMA(2,2) optimizationproblemis equivalent
to
�

solving

(21)
#

and� setting .
At this point, ACMA andCMA(2,2) diverge in two distinct

b
�
ut closelyrelateddirections.

— CMA(2,2) numerically optimizes the minimization
problem� in (21)andfind independentsolutions.The
solutions
 will be unit-norm vectors that

�
have the

required& Kronecker structureand minimize .
W
)

ith noise, the solutionswill not exactly be in the
approximate� nullspaceof since
 this spacewill not
admit� theKronecker structure.

— ACMA is making a twist on this problem. Instead
of" solving for the true minimum, it first finds an

1aswell ashefactthat(if JLKNM ) theprewhiteningalsoinvolvesadimension
reduction:O This will force PRQTSU VW X to

Y
lie in thedominantcolumnspan

of Z . We ignorethis effect here.

orthonormal" basis for the -dimen-
sional
 approximatenullspaceof (or

#
)
;

whose' solutionis thesetof leastdominanteigenvec-
tors
�

of . It then looks for unit-normvectorsin this
subspace
 thatbestfit therequiredstructure
by
�

considering

W
)

ethusseethatACMA andCMA(2,2)arecloselyrelated,pro-
vided� wewhitenthedatausingthenoisydatacovariancematrix

. Aswewill show inSectionVI, thetwo-stepapproachtaken
by
�

ACMA makesit converge to the Wienersolutionin (8) as
,6 whereasCMA(2,2) is known to beclosebut generally

unequal( to theWienersolution[9], [32].

V.
2

AN
�

ALYSIS OF THE N
4

OISE-FREE
� C
!

ASE
5

Theanalysisof ACMA in the noisefreecasecanbe limited
to
�

an analysisof the solutionsof ,6 where
is asdefined in (15), andfor future distinction,the “0” in
is
�

introducedto indicatethat thereis no noise.If thesolutions
span
 the samesubspaceasspannedby ;

,6 thenthejoint diagonalizationstepis ableto separate
an� arbitrarybasisof thenull spaceinto its rank-1components,
and� we recover thetruebeamformers.

W
)

ith ,6 we obtainfrom (15) that

(22)
#

where'

(23)
#

is positive semidefinite becauseit is constructedas
. Hence,the null spaceof hastwo components:the

null� spaceof plus� vectors such
 that is
�

a
v� ectorin thenull spaceof . Thepurposeof prefiltering with
dimension
%

reductionis to remove the formersolutionsbefore-
hand
9

by working with ,6 where
is a squarefull-rank matrix. In thatcase, is alsosquare
full rank,with anemptynull space.Thus,theinterestingpartis
the
�

analysisof thenull spaceof ,6 whichis only dependenton
the
�

signalsandnot on their mixing.
For thesake of exposition,we specialize for thecaseof

tw
�

o CM signals and� . Define
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Then(suppressingthetime index)

(24)
#

W
)

e immediatelyseethat has
9

null spacevectors

(25)
#

Thesearethedesirednull spacevectors.Theremaining
submatrix
 in thecenterof (24) is hopefullynonsingular. If the
sources
 areindependentandcircularlysymmetric,thenasymp-
totically
�

(in )
;

and� so
 that and� .
Thus,
 

for a sufficiently largenumberof samples,it is clearthat
the
�

submatrixis nonsingularwith probability1. Singularityoc-
curs� almostsurelyonly with BPSK-typesignals(for which
)
;

[29], andfor this case,a modified algorithmcalledRACMA
has
9

to beusedto avoid theadditionalsolutions[27].
Thenull spaceof contains� vectors for which

is a vector in the null spaceof ,6 i.e., eithervector in (25).
Assuming
A

that has
9

full columnrank, also� hasfull
column� rank.Let be

�
a separatingbeamformer

such
 that ; then

from which we seethat

Thesolutionsto are� thusspannedby abasisof the
null� spaceof (remo

#
vedby prefilteringwith dimension

reduction)pluslinearcombinationsof thedesiredsolutions

If



only the desiredsolutionsare presentin the null spaceof
,6 thenthe joint diagonalizationstepcanfind themfrom an

arbitrary� basisof this subspace.
The
 

above analysiseasilygeneralizesto morethantwo sig-
nals.A key propertythatis valid for any numberof signalsand
e$ xplicitly usedby thealgorithmis thefactthatcertaincolumns
(and
#

rows)of are� identicallyzero.Thispropertycomesfrom
alone� andfollows by

[
construction for

/
any numberof

samples.
 Wedonothave to wait for asymptoticconvergenceof
the
�

crosstermstozero.Many otherblindsourceseparationtech-
niques� requirestochasticindependenceandrely on this. This
aspect� is thekey to thegoodsmall-sampleperformancethatcan
be
�

achieved with constantmodulussignals.

VI.
2

ASYMPTOTIC BEHAVIOR OF ACMA WITH
\ N

4
OISE

An analysisof the asymptoticbehavior of ACMA in noise
will' revealthecloseconnectionsof thismethodwith otherblind
source
 separationmethodsbasedonfourth-ordermoments.As-
sume
 thatwe compute in thesameway as in (15).As

,6 con� vergesto

E

E E (26)
#

W
)

e will first analyzethe structureof in
�

termsof the data
model .

A.
7

Cumulants

The
 

asymptoticanalysisrequiresthe introductionof fourth-
order" cumulants.For azero-meanstochasticvector with' com-
ponents� ,6 define thefourth-ordercumulants

cum�

E
<

E
<

E
<

E E E E

where' ,6 and is
�

the dimensionof . We
assume� circularlysymmetricsources(hencenon-BPSK)sothat
the
�

last termvanishes.If we collect the into a matrix

with' entries ,6 then

E E E

E E

Note
4

thatE , E6 ve� c . Comparedwith
(26),
#

it is seenthat

(27)
#

Cumulants
!

have several well-known nice properties,suchas
multilinearity, addivity, andthefact thatGaussiansignalshave
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zerocumulants.For our model ,6 define
,6 where is

�
the th
�

unit coordinatevector. Letusalso
def
%

ine theauto-cumulants

cum�

Assumingindependentsignals,additivity implies

Circularly
!

symmetricCM signalshaveautocumulants .
Further
D

assumingindependentGaussiannoise( ),
;

we
obtain"

(28)
#

Using
]

theseproperties,we can derive that withoutG noise (or
#

),
;

theCMA(2,2) or ACMA criterionmatrix
con� vergesasymptoticallyin to

�

(29)
#

Note
4

that is diagonal,with zeroentriesat the
locationof thesourceautocumulants,and“1” entrieselsewhere
on" the diagonal.Like in the finite samplecase,the null space
of" is

�
given by ,6 andhence,thenull spaceof by

�

,6 plus thenull spaceof (this
#

is removed
by
�

prefiltering).
With noise (or

#
),
;

con� vergesasymptoti-
cally� in to

�

where' is
�

given in (29), and

(30)
#

Thus,the noisecontributesa second-orderanda fourth-order
term
�

to theACMA criterionmatrix ,6 even if thenoisehaszero
fourth-ordercumulants.If we do not correctfor it andproceed
as� in thenoise-freecase,this will resultin a certainbiasat the
output" of thebeamformer. Asweshow next, thisbiasisprecisely
such
 thatACMA convergesto theWienersolution.

B.
^

Asymptotic Analysis of ACMA

In



theanalysisof ACMA, we alsohave to take theeffect of
the
�

initial prewhiteningstepinto account.Recallthat this step
is such
 that . Introducingthis

into theexpressionfor in (27) andusing(28),weobtainthat
asymptotically� ,6 con� vergesto

(31)
#

Consequently
!

, the CMA(2,2) cost function (21) becomesas

(32)
#

Unlik
]

e CMA(2,2), ACMA doesnot optimize(32) directly but
solv
 estheunstructuredproblemfirst. Indeed,it looksfor anun-
constrained� -dimensionalbasis of" thenull spaceof or" ,
equi$ valently, dominant

%
eigenvectorsof . Since

this
�

is arank- matrix,� wehavethatthe dominant
%

eigenvectors
together
�

spanthesamesubspaceasthecolumnspanof ;
hence,
9

asymptotically( )
;

span


span
 span


As a secondstep,the joint diagonalizationprocedureis used
to
�

replacethe unstructuredbasisby one that hasthe required
Kronecker productstructure,i.e., independentvectorsof the
form within' this columnspan.Fromtheabove equation,
we' seethat the uniquesolutionis (up

#
to a

scaling
 to make ha
9

ve unit norm),andthus

Hence,thebeamformeronthewhitenedproblemis equalto the
whitened' direction vector (a matchedspatialfilter). If we go
back
�

to theresultingbeamformeron theoriginal (unwhitened)
data
%

matrix ,6 we find (for )
;

(33)
#

since
 ,6
,6 and . We have just shown that as

,6 the beamformersprovided by ACMA converge to
the
�

Wiener receivers (8). In general,this is a very attractive
property� .

Does
�

this two-stepproceduresolve theCMA(2,2) optimiza-
tion
�

problem(32)?This is not likely sincein this asymptotic
case,� ACMA finds its structuredsolutions only inside the
subspace
 spannedby the columnsof . A solution to
CMA(2,2)
!

is expectedto becloseto a dominanteigenvectorof
,6 but it is not restrictedto be insidethesub-

space.
 Thus,if theeigenvectorsarenot equalto ,6 the
CMA(2,2)
!

optimal solution might be different.This happens
if thecolumnsof are� not orthogonal,but thereareonly two
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situations
 where the columnsof are� preciselyorthogonal:
if
�

there is no noise, or (assumingwhite Gaussiannoise) if
the
�

columnsof the unwhitened are� orthogonal.This is a
ratherspecialcase,approximatelytrue if the sourcesarewell
separated,
 andthenumberof sensorsis large.Thus,CMA(2,2)
does
%

in generalnot lead to the Wiener solution. This result
matchesthat in the equalizationcontext [9]. Obviously, if the
noiseis small,thenthediscrepancy will besmallaswell.

C. Connection to JADE

J
_
ADE [4] is a widely usedalgorithmfor theblind separation

of" independentnon-Gaussiansourcesin whiteGaussiannoise.It
is basedontheconstructionof thefourth-ordercumulantmatrix

in (28)but usesadifferentprefilteringstrategy, namely,
,6 where and� are� estimatedfrom the

eigen$ valuedecompositionof . Theprefiltering leadsto
,6 where . This choiceis motivated

by
�

the fact that as ,6 con� vergesto ,6
where' and� are� minimal-sizefactorsof theSVD of

,6 andthus

which' is a unitary matrix. Asymptotically, the samplefourth-
order" cumulantmatrix con� vergesto

J
_
ADE computesa basisof the dominantcolumnspanof ,6

which' in theasymptoticsituationspansthesamesubspaceas

Lik
�

eACMA, it thenperformsajoint diagonalizationto identify
the
�

vectors . After correctingfor theprefiltering, we find

Hence,this strategy leadsasymptoticallyto the zero-forcing
beamformer
�

[cf. (10)], aswell asthetrue -matrix.
Apart
A

from different prefiltering, the asymptoticequations
of" JADE and ACMA look rathersimilar. JADE searchesfor
eigen$ vectorscorrespondingto nonzeroeigenvaluesgiven by the
nonzero� entriesof ,6 which, here,areequalto ,6 whereas
ACMA looks for the null spacevectorsgeneratedby the zero
entries$ of . Theresultis thesame.

However, the finite-samplepropertiesarequite different.In
the
�

absenceof noise,thenull spaceinformationof in
�

ACMA
is exactby construction,andhence,thealgorithmproducesthe
e$ xact separatingbeamformers.The dominantcolumnspanof

used( in JADE is not exact sincethe signalsourcesdo not
decorrelate
%

exactly in finite samples: is a full matrix.Thus,
keepingthenumberof samplesfixed,theperformanceof JADE
saturates
 asSNR .

Furthermore,
D

in the proposedimplementationin [4], JADE
e$ xplicitly usesthefactthat(with the -prefiltering)

and� is henceunitary. It thusforcesthejoint diagonalization
to
�

produceaunitarymatrix.A finite-sampleproblemis that
does
%

not reveal yet the true and� ,6 and the restriction

Fig. 3. ZF-ACMA.

might make the resultslessaccurate.This problemwas noted
in
�

[1], whereoptimalcombinationsof second-andfourth-order
statistics
 arepresented.

In summary, wecansaythatJADE andACMA arequitesim-
ilar but differ in thefollowing points.

— Theprefiltering schemeACMA, suchthatas ,6
con� vergesto a WienersolutionandJADE to a zero-
forcing beamformer.

— JADE explicitly relieson stochasticindependenceof
sources,
 whereasACMA explicitly relieson the CM
property� . Thisleadsto differentfinite samplebehavior.

— JADE, asin [4], forcestheunitarityof ,6 which leads
to
�

saturationof the performancefor large SNRsand
f
/
inite numberof samples.

VII.
2

ZERO-FORCING ACMA

W
)

e have seenbefore,in (30), that as ,6
,6 where is

�
thenoise-freepart,and and�

represent& noisebiastermsthatcauseACMA to converge to the
W
)

ienersolution . If an unbiasedestimateof is
desired
%

(e.g.,for directionestimation),thenwe cannotsimply
in
�

vert ,6 as is usuallydone.We couldmap to
�

anunbiased
estimate$ of via� premultiplicationby ,6 but thefinite-sample
properties� of this appearnot to bevery good.Here,we look at
an� alternative, basedonestimatingandremovingthenoiseterms
from ,6 to obtainan estimateof . This techniquewas first
presented� in [28].

Let us assumethat we know the noisecovariance . We
cannot� know since
 it dependson noise-freedata,but we can
construct�

(34)
#

When
)

so
 that

is
�

anasymptoticallyunbiasedestimateof . If wecanassume
that
�

,6 i.e., the SNR is sufficiently large,
then
�

wecanignore compared� with and� use
to
�

estimate .
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Fig.
F

4. SINR performanceof ACMA, ZF-ACMA, CMA, andJADE.

Let us now assumethat the noiseis white with covariance
b
�
ut thatthenoisepower is

�
unknown. Redefining

as�

it
�

follows that we have available the datamatrices and� ,6
satisfying
 theapproximatemodel(ignoringfourth-orderterms)

Since
.

is rank deficient with a kernel of dimension , w6 e
can� estimate as� the (averageof the) smallest eigen$ values
of" the matrix pencil ,6 correspondingto the generalized
eigen$ valueequation

An estimateof thebasis of" thekernelof is given by the
corresponding� eigenvectors.At thispoint,wecancontinuewith
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Fig.
F

5. SIR performanceof ACMA, ZF-ACMA, CMA, andJADE, asfunctionof ` andSNR.

the
�

joint diagonalizationandrecover the beamformingmatrix
. Asymptoticallyasboth and� SNR ,6 weobtain

.
The
 

algorithm is called ZF-ACMA.2
a

As
A

in ACMA, a di-
mension-reducingprefiltering is necessary. If we take the
same
 prewhiteningprefilter asin ACMA, thenafterwhitening,

,6 and . Thus,

2It was first presentedasW-ACMA in [28].

is diagonalandconstructedwithoutmuchadditionaleffort. The
resultingalgorithmis summarizedin Fig. 3.

VIII.
2

SIMULATIONS

Some
.

performanceresultsare shown in Figs. 4–6. In the
simulations,
 we took a uniform linear array with
antennas� spacedat half wavelengths,and equal-po$ wer
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constant-modulus� sourceswith directions re-
specti
 vely. Wecomparetheperformanceof ACMA, ZF-ACMA,
J
_
ADE, andCMA.

ACMA as usedhereis the original algorithm as presented
in
�

[29], which is almostasthealgorithmpresentedhere,except
that
�

thejoint diagonalizationis implementedasajoint Schurde-
composition,� with perhapsslightly differentresults.TheCMA
used( for referenceisobtainedasthenumericallydeterminedop-
timum
�

of thedeterministicCMA(2,2) costfunction(20), for
independentbeamformers,usingagradienttechniqueinitialized
by
�

thesampledataWienerreceiver with' known
. Notethatthisisnotapracticalalgorithm;it describesthebest

performance� of CMA for a block of data
%

samplesandmay
not beachieved by theusualsample-adaptivealgorithm.

In



Fig. 4, we vary the numberof samples and� the SNR.
The
 

performancemeasureis theresidualsignal-to-interference-
plus-noise� ratio (SINR) at the outputof the beamformers.We
only" considertheSINR of theworstoutputchannelandfind a
permutation� that

�
maximizesthis. Specifically, the SINR is

def
%

inedhereas

sinr


SINR
.

SINR
.

SINR
.

The referenceperformanceis that of a Wiener receiver based
on" sampledatawith known ,6 i.e., ,6 as in (7).
As seenfrom the left columnof the figure,ACMA converges
asymptotically� (in )

;
to the Wiener beamformer. CMA is

kno
@

wn theoreticallynot to reachthis performance,but it is
seen
 thatfor positive SNR,theperformanceis almostidentical
to
�

that of ACMA. The right column of the figure shows that
the
�

SINR performanceof JADE saturatesasfunction of SNR
(as
#

predicted).CMA, ACMA, andZF-ACMA do not have this
problem.�

Fig.
D

5 shows the signal-to-interferenceratio (SIR) perfor-
mance,� which is definedsimilarly as

sir


SIR
.

SIR
.

SIR
.

This
 

indicateshow well thecomputedbeamformingmatrix
is aninverseof ,6 up to an arbitrarypermutation.Thereference
performance� is thatof azero-forcing(ZF) beamformerbasedon
sample
 datawith known ,6 as givenin (9).

It is seenthat the SIR performanceof ACMA saturatesas
function of (for

#
finite SNR) becauseit converges to the

W
)

iener solution, and hence,it is biased.The whitening in
ZF-A
b

CMA removes this saturationsothat it canconverge to a
few decibelsbelow the ZF solution.As for the SINR, the SIR
performance� of JADE saturatesasfunctionof SNR.

If ourobjective is directionof arrival estimation,thenwecan
first estimate using( ACMA or ZF-ACMA, compute

Fig. 6. DOA estimationperformancefor varying c .

,6 andestimatethedirectionsfrom theindividual columns
of" . This techniquewas proposedin [13]. Fig. 6 shows a test
of" this, in a scenariowith threeequalpoweredsourceswith di-
rections ,6 for varying ,6 andanSNRof 10dB.The
graph� shows theroot meansquarederrorof theDOA estimate
of" the first sourceandthe Cramer–Raobound(CRB) for this
model[13]. It is seenthat the estimatefrom ACMA is biased
so
 that its performancesaturatesas ,6 whereastheesti-
mates� from ZF-ACMA andJADE areasymptoticallyerrorfree.
ZF-A
b

CMA hasasmalladvantageover JADE, whichis to beex-
pected� sincemoreinformationon thesourcesis used.

IX. CONCLUDING REMARKS

W
)

ehaveshown thatACMA convergesto theWienersolution
(in
#

samplesor SNR),whereastheminimaof theCMA(2,2)cost
function
/

onlyhavethispropertyif thereisnonoiseor themixing
matrixisorthogonal.However, for positiveSNR,thedifferences
in
�

SINR performanceareratherinsignificant.
Furthermore,we have derived a modification (ZF-ACMA)

which' is closeto the zero-forcingsolution if the noisepower
is small (say SNR better than 10 dB). We have madea per-
formance
/

comparisonwith the relatedJADE algorithm,which
separates
 independentnon-Gaussiansourcesbasedon their
nonzerokurtosis.The conclusionis not unequivocal because
J
_
ADE convergesto a zero-forcingbeamformerasymptotically

in the numberof samplesbut not in SNR. In the simulation
e$ xample,we saw that for samples
 andSNR dB,

%

ZF-ACMA hasthe bestSIR performance,andACMA hasthe
best
�

SINR performance.
In a futuresubmission,we will considerin detail theoretical

e$ xpressionsfor thefinitesampleperformanceof ACMA, in par-
ticular
�

, expressionsthatpredictthecovarianceof and� there-
sulting
 SINR asfunctionof ,6 ,6 and .

REFERENCES

[1] J.-F. Cardoso,S. Bose,andB. Friedlander, “On optimalsourcesepara-
tion
Y

basedon secondandfourth ordercumulants,”in Proc. 8th IEEE
Signal
d

Process. Workshop Stat. Signal Array Process., Corfu, Greece,
1996,pp. 198–201.

[2] J. F. Cardoso,“Blind signal separation:Statisticalprinciples,” Pr
e

oc.
IEEE
f

, vol. 86,pp.2009–2025,Oct.1998.



V
*

AN DER VEEN: ASYMPTOTIC PROPERTIES OF THE ALGEBRAIC CONSTANT MODULUS ALGORITHM 1807

[3] J.F. CardosoandP. Comon,“Independentcomponentanalysis,asurvey
of somealgebraicmethods,”in Pr

e
oc. IEEE ISCAS, 1996,pp.93–96.

[4] J.F. CardosoandA. Souloumiac,“Blind beamformingfor non-Gaussian
signals,”Proc. Inst. Elect. Eng. F, vol. 140,pp.362–370,Dec.1993.

[5] P. Comon,“Independentcomponentanalysis,A new concept?,”Signal
g

Pr
h

ocess., vol. 36,pp.287–314,Apr. 1994.
[6] , “Contrastsfor multichannelblind deconvolution,” IEEE Signal

Pr
h

ocessing Lett., vol. 3, pp.209–211,July 1996.
[7] I. Fijalkow, C. E. Manlove, andC. R. Johnson,“Adaptive fractionally

spacedblindCMA equalization:ExcessMSE,” IEEE Trans. Signal Pro-
cessing, vol. 46,pp.227–231,Jan.1998.

[8] D. N. Godard,“Self-recoveringequalizationandcarriertrackingin two-
dimensionaldatacommunicationsystems,”IEEE Trans. Commun., vol.
COMM-28, pp.1867–1875,Nov. 1980.

[9] M. GuandL. Tong,“Geometricalcharacterizationsof constantmodulus
receivers,”IEEE Trans. Signal Processing, vol. 47,pp.2745–2756,Oct.
1999.

[10] R. Johnson,P. Schniter, T. J. Endres,J. D. Behm,D. R. Brown, andR.
A. Casas,“Blind equalizationusingthe constantmoduluscriterion: A
reO view,” Pr

h
oc. IEEE, vol. 86,pp.1927–1950,Oct.1998.

[11] A. V. Keerthi,A. Mathur,andJ.J.Shynk, “Misadjustmentandtracking
analysisof theconstantmodulusarray,” IEEE Trans. Signal Processing,
vol. 46, pp. 51–58,Jan.1998.

[12] L. De Lathauwer, “Signal processingbasedon multilinear algebra,”
Ph.D.dissertation,KatholiekeUniv. Leuven,Leuven,Belgium,1997.

[13] A. LeshemandA. J. van derVeen,“Direction of arrival estimationfor
constantmodulussignals,”IEEE Trans. Signal Processing, vol. 47,pp.
3125–3129,Nov. 1999.

[14] A. Mathur, A. V. Keerthi,J. J. Shynk, andR. P. Gooch,“Convergence
propertiesi of the multistage constantmodulus array for correlated
sources,”IEEE Trans. Signal Processing, vol. 45, pp. 280–286,Jan.
1997.

[15] T. NguyenandZ. Ding, “Blind CMA beamformingfor narrowbandsig-
nalswith multipatharrivals,” Int. J. Adaptive Contr. Signal Process., vol.
12, pp. 157–172,Mar. 1998.

[16] C. B. PapadiasandA. J. Paulraj, “A constantmodulusalgorithm for
multiusersignalseparationin presenceof delayspreadusingantenna
arrays,”IEEE

j
Signal Processing Lett., vol. 4, pp.178–181,June1997.

[17] C. W. Reedand K. Yao, “Performanceof blind beamformingalgo-
rithms,” in Proc. Ninth IEEE Signal Process. Workshop Stat. Signal
Arr
k

ay Process., 1998,pp.256–259.
[18] P. A. Regalia,“On theequivalencebetweentheGodardandShalvi–We-

instein schemesof blind equalization,”Signal
g

Process., vol. 73, pp.
185–190,Feb. 1999.

[19] S.ShamsunderandG.Giannakis,“Modelingof non-Gaussianarraydata
usingl cumulants:DOA estimationof moresourceswith lesssensors,”
Signal
g

Process., vol. 30,pp.279–297,Feb. 1993.
[20] J.Sheinvald,“On blind beamformingfor multiplenon-Gaussiansignals

andthe constant-modulusalgorithm,” IEEE Trans. Signal Processing,
vol. 46,pp.1878–1885,July 1998.

[21] J.J.Shynk andR. P. Gooch,“The constantmodulusarrayfor cochannel
signalcopy anddirectionfinding,” IEEE Trans. Signal Processing, vol.
44, pp. 652–660,Mar. 1996.

[22] A. L. Swindlehurst,M. J. Goris,andB. Ottersten,“Someexperiments
with arraydatacollectedin actualurbanandsuburbanenvironments,”
in
m

Pr
h

oc. IEEE Workshop Signal Process. Advances Wireless Commun.,
Paris,France,Apr. 1997,pp.301–304.

[23] A. Touzni, I. Fijalkow, M. Larimore,andJ. R. Treichler, “A globally
convergentapproachfor blind MIMO adaptivedeconvolution,” in Pr

h
oc.

IEEE
j

ICASSP, vol. 4, 1998,pp.2385–2388.
[24] J. R. TreichlerandB. G. Agee,“A new approachto multipathcorrec-

tion
Y

of constantmodulussignals,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31,pp.459–471,Apr. 1983.

[25] J.R. TreichlerandM. G. Larimore,“New processingtechniquesbased
onconstantmodulusadaptivealgorithm,”IEEE

j
Trans. Acoust., Speech,

Signal
g

Processing, vol. ASSP-33,pp.420–431,Apr. 1985.
[26] J.R.Treichler, M. G. Larimore,andJ.C.Harp,“Practicalblinddemodu-

latorsfor high-orderQAM signals,”Pr
h

oc. IEEE, vol. 86,pp.1907–1926,
Oct. 1998.

[27] A. J. van der Veen,“Analytical methodfor blind binary signal sepa-
ration,” IEEE Trans. Signal Processing, vol. 45, pp. 1078–1082,Apr.
1997.

[28] , “WeightedACMA,” in Proc. IEEE ICASSP, Phoenix,AZ, Mar.
1999.

[29] A. J. van derVeenandA. Paulraj,“An analyticalconstantmodulusal-
gorithm,” IEEE Trans. Signal Processing, vol. 44,pp.1136–1155,May
1996.

[30] M. Wax andY. Anu, “A least-squaresapproachto blind beamforming,”
IEEE Trans. Signal Processing, vol. 47,pp.231–234,Jan.1999.

[31] M. Wax andJ. Sheinvald, “A least-squaresapproachto joint diagonal-
ization,”
m

IEEE
j

Signal Processing Lett., vol. 4, pp.52–53,Feb. 1997.
[32] H. H. Zeng,L. Tong, andC. R. Johnson,“Relationshipsbetweenthe

constantmodulusandWienerreceivers,” IEEE Trans. Inform. Theory,
vol. 44, pp.1523–1538,July 1998.

[33] , “An analysisof constantmodulusreceivers,” IEEE Trans. Signal
Pr
h

ocessing, vol. 47,pp.2990–2999,Nov. 1999.
[34] J. Zhu, X. R. Cao,andZ. Ding, “An algebraicprinciple for blind sep-

arationof white non-Gaussiansources,”Signal
g

Process., vol. 76, pp.
105–115,1999.

Alle-Jan van der Veen (S’87–M’94) was born in
TheNetherlandsin 1966.He graduated(cumlaude)
from theDepartmentof ElectricalEngineering,Delft
Uni
n

versity of Technology, Delft, The Netherlands,
in
m

1988andreceived the Ph.D.degree(cum laude)
from thesameinstitutein 1993.

Throughout1994,he was a postdoctoralscholar
at StanfordUniversity, Stanford,CA, in the Scien-
tif
Y

ic Computing/ComputationalMathematicsgroup
andin the InformationSystemsLab. At present,he
is anAssociateProfessorwith theSignalProcessing

groupof DIMES, Delft Universityof Technology. His researchinterestsarein
the
Y

generalareaof systemtheoryappliedto signalprocessingand,in particular,
algebraicmethodsfor arraysignalprocessing.

Dr. Van der Veenreceived a 1994anda 1997IEEE SignalProcessingSo-
cietyYoungAuthorpaperaward.Currently, he isan AssociateEditor for IEEE
T
o

RANSA
p

CTIONS ON SIGN
q

AL P
H

R
p

OCESSING, andvice-chairmanof the IEEE SPS
SPCOMTechnicalCommittee.


