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Alle-Jan van der Veen (Member, IEEE) and Arogyaswami Paulraj (Fellow, IEEE)

Abstract— Iterative constant modulus algorithms such as Godard and
CMA have been used to blindly separate a superposition of co-channel con-
stant modulus (CM) signals impinging on an antenna array. These algo-
rithms have certain deficiencies in the context of convergence to local min-
ima and the retrieval of all individual CM signals that are present in the
channel. In this paper, we show that the underlying constant modulus fac-
torization problem is, in fact, a generalized eigenvalue problem, and may
be solved via a simultaneous diagonalization of a set of matrices. With this
new, analytical approach, it is possible to detect the number of CM signals
present in the channel, and to retrieve all of them exactly, rejecting other,
non-CM signals. Only a modest amount of samples are required. The al-
gorithm is robust in the presence of noise, and is tested on measured data,
collected from an experimental set-up.

I. INTRODUCTION

A. Blind signal separation

An elementary problem in the area of spatial signal processing
is that of blind beamforming. This problem arises e.g. in the fol-
lowing wireless communications scenario, illustrated in figure 1.
Consider a number of sources (“users”) at distinct locations, all
broadcasting signals at the same frequency and at the same time.
The signals are received by a central platform containing an ar-
ray of antennas. By linearly combining the antenna outputs, the
objective is to separate the signals and to “copy” each of them
without interference from the other signals. The task of the blind
beamformer is to compute the proper weight vectors wi from the
measured data only, without detailed knowledge of the signals
and the channel.

Mathematically, the situation is described by the simple and
well-known data model

X � AS � (1)

where the matrix X : m × n is a collection of n snapshots from
each of the m antennas, A : m × d is the array response matrix,
and S : d × n is the signal matrix, with d rows si (i � 1 � · · · � d)
corresponding to each of the d source signals. This model is a
reasonably accurate description for stationary propagation envi-
ronments in which the multipath has only a short delay spread
(as compared to the inverse of the signal bandwidths), so that no
equalization is required. The beamforming problem may thus be
formulated as a structured matrix factorization problem: given
X, find factors A and S satisfying certain structural properties.
Once A is known, the weight vectors wi for signal copy are given
by the rows of W , where W � A† is the pseudo-inverse of A.

Although we will be concerned with blind beamforming, it is
useful to note that quite similar structured factorization problems
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Fig. 1. Elementary blind beamforming scenario

arise in the context of blind equalization of a single source ob-
served through an unknown time-dispersive channel. The two
scenarios might even be combined into a blind multi-user sep-
aration problem in the presence of long delay multipath. Such
problems are often separable into an equalization and a separa-
tion (beamforming) step (viz. e.g. [2]), so that a generic solution
to the blind beamforming problem is also relevant in the com-
bined scenario.

One mainstream of approaches for computing the structured
factorization has focused on properties of the A-matrix. In par-
ticular, the columns of the A-matrix are (not always correctly)
assumed to be vectors on the array manifold, each associated
to a certain direction-of-arrival (DOA). The identification of the
DOAs necessitates the use of calibrated antenna arrays (for the
MUSIC algorithm [3]) or special array geometries (for the ES-
PRIT algorithm [4]), and puts serious limitations on the propaga-
tion environment as well: since in principle the direction of each
multipath ray is estimated, the total number of dominant rays
has to be less than the number of antennas. Moreover, rays can-
not have identical delays, and diffuse multipath is not allowed.
For short-delay or diffuse multipath, it might be more accurate to
model each column of A as the sum of two (or many) vectors on
the array manifold, but then the estimation of all corresponding
directions is computationally very intensive, if possible at all.

A second class of approaches, more promising in the pres-
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ence of unstructured multipath and useful in the context of
blind equalization as well, exploits structural properties of the
S-matrix that should hold and be reconstructed by the factoriza-
tion. One widely used property is the constant modulus of many
communication signals (e.g. FM and PM in the analog domain,
and FSK, PSK, 4-QAM for digital signals). A related but dis-
tinct property is the finite alphabet of digital signals. The idea
of modulus restoral has its roots in the work of Sato [5], Go-
dard [6], and Treichler, Agee, and Larimore [7,8], all for the pur-
pose of blind equalization; the algorithms are known as CMAs.
They are usually implemented as stochastic gradient-descent op-
timizers of a modulus-error cost function, and are in that form
quite similar to decision-directed adaptive filters or Bussgang al-
gorithms for finite-alphabet restoral (the literature is abundant;
viz. [9]). The application of the CMA to blind beamforming is
straightforward and was first considered in [10, 11]; a combined
spatio-temporal CMA was proposed in [12]. Blind beamform-
ing based solely on the finite alphabet structure is developed in
[13]. Other properties of S that might be used are the spectral
self-coherence of communication signals, leading to the SCORE
class of blind beamforming algorithms [14], and several statisti-
cal properties: e.g. the assumed independence of the sources al-
lows to separate non-Gaussian signals based on their high-order
cross-correlations [15–18].

In the context of blind equalization of digital signals, finally,
the cyclostationarity of such signals may be exploited by the use
of multiple antennas [19], or by sampling faster than the symbol
rate and using fractionally spaced equalizers (FSE). The spatial
or temporal oversampling of cyclostationary signals leads to a
data matrix factorization X � HS in which both the channel ma-
trix H and the signal matrix S have a Hankel or Toeplitz structure.
This structure by itself is already strong enough to determine the
factorization, as is demonstrated in the innovative approach by
Tong, Xu and Kailath [20], but perhaps more clearly visible in
consecutive work [21, 22]. It may also very effectively be com-
bined with the properties of S into a single scheme, such as FSE
with CMA [23, 24], or FSE with finite alphabets [2, 25]. The
latter papers consider the more ambitious joint separation and
equalization of multiple digital signals, but the same should be
possible with FSE-CMA as well. As mentioned before, in these
applications the equalization and beamforming stages are sepa-
rable, and a reliable solution to the elementary blind beamform-
ing problem is crucial.

In this paper, we will limit ourselves to blind beamforming
of constant-modulus (CM) signals, assuming no other properties
of the signals except their independence. This blind CM beam-
forming problem was introduced in [10,11], and solved using the
CMA [7], but in a restricted form: only the reception of a sin-
gle signal-of-interest among other interfering signals was con-
sidered. It was observed that the algorithm can lock onto one of
the interfering signals rather than the desired signal. In later pa-
pers, this misbehavior was used to set up a multi-stage CMA, in
which the intention is to capture all incident CM signals [10,26,
27]. The output of a first CMA stage results in the detection of
the first CM signal. By an orthogonal projection, or an LMS-
implementation of it, this signal is subtracted from the data ma-
trix, and the resulting filtered data is fed to a second CMA stage
in order to detect a possible second CM signal. However, for

short data sequences, the signals are not yet orthogonal to each
other, and the projection leads to a misadjustment in the second
and subsequent stages, thus limiting its performance. To miti-
gate this effect, the forced orthogonality of the signals may be
relaxed [28–30] by only making sure that they are “sufficiently”
independent of each other. In these schemes, a number of CMAs
are running in parallel, all started from distinct initializations.
Orthogonality is tested and weakly restored at the end of an up-
date block of n samples.

Although the latter approach has been successfully demon-
strated in an on-line outdoor experiment [31], it provides only
a heuristic solution to the underlying, very tough problem: how
can gradient descent techniques be used to converge reliably to
all minima of the cost function. Indeed, how do we know the
number of minima to look for in the first place? When only a fi-
nite block of data is available, it is very likely that there are local
minima of the sample cost function as well, not corresponding
to any of the source signals. Depending on the initialization of
the gradient descent optimization, the CMAs do converge some-
times to these solutions. In this respect, it should be noted that
global convergence of the CMA has only been proven for infinite
sets of data (or in the averaged sense) [32], and only for scenarios
that admit a perfect solution.1 Finally, convergence of the CMAs
may be slow and irregular, especially for weak sources and short
data sets.

B. Contributions

In this paper, we introduce a new approach to the constant
modulus factorization problem. We show that the problem is es-
sentially a generalized eigenvalue problem and can be solved an-
alytically, by a deterministic algorithm and using only a finite set
of data (n samples of m antennas). In particular,

– For d ≤ m sources, and without noise, n
�

d2 samples are suf-
ficient to compute A and S exactly, via a certain eigenvalue
problem.

– For n � d2, it is possible to detect the number of CM signals
present in X. This implies that not all sources have to gen-
erate CM signals, although the algorithm only recovers the
CM sources.

– With X distorted by additive noise, a generalization of the al-
gorithm is robust in finding S, even when n is quite small.
This is demonstrated with experimental data.

The algorithm is derived by setting up the equations for the
weight vector w such that wX is a CM signal (section II). This
gives n quadratic equations in the entries of w, which can be lin-
earized when written in terms of the Kronecker product w⊗w, a
vector with d2 entries (w is the complex conjugate of w). If n �
d2, then the dimensionality of the solution space of this linear
system of equations indicates how many CM signals are present
in X. Most solution vectors of the linear system do not have the
Kronecker structure w⊗w; the core of the CM problem is to find

1This is not so much an issue in blind beamforming where the usual assumption
is that the number of sources is at most equal to the number of sensors, but has
caused much confusion in the blind equalization of FIR channels by FIR equal-
izers, viz. [33]. Current insight is that a fractionally sampled equalizer allows a
perfect solution and thus assures asymptotic global convergence [24].
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those that do. It is shown in section III how this problem can be
transformed into a generalization of an eigenvalue problem: the
simultaneous diagonalization of a number of matrices. Without
noise, this problem has an essentially unique solution which can
be found using standard linear algebra tools. With noise added
to X, there is in general no exact diagonal solution, and we have
to find an approximate simultaneous diagonalization. This is a
challenging, non-standard linear algebra problem, for which we
propose an algorithm that exhibits quadratic convergence in sim-
ulations (section IV). In section V, the algorithm is applied both
to computer generated data and to measured data sets, with very
good results.

It is not the first time that a Kronecker approach has been
proposed to solve the CM problem, viz. e.g. [34–36]. How-
ever, these authors operate in the equalization context and try to
find only one structured solution w ⊗ w to the linear system, ig-
noring the fact that there might be more such solutions (in the
equalization context, this occurs if the equalizer length is too
long). Interestingly enough, an entirely similar simultaneous
diagonalization problem did turn up in fourth-order cumulant-
based techniques for blind separation of multiple non-Gaussian
signals [15–18]. With hindsight, one might perhaps say that CM
signals are deterministic counterparts of non-Gaussian signals,
but only as far as the fourth-order cumulant is concerned. At this
point, we are only aware that there must be connections, but the
details remain to be sorted out.

C. Notation

Lower case bold (as in w) denotes either a row or a column
vector. Its i-th entry is sometimes denoted as � w � i. wT is the
transpose, w is the complex conjugate, and w∗ is the complex
conjugate transpose. ⊗ is the Kronecker product. For matrices,
A† denotes the Moore-Penrose pseudo-inverse, row � A � denotes
the row span (co-range) of A.

II. PROBLEM FORMULATION AND
TRANSFORMATION

A. Problem statement; uniqueness

In this section, we discuss the actual problem that will be
solved. Starting from the data model X � AS in (1), we first note
that without loss of generality, the constant modulus of all signals
may be modeled to be equal to 1: any other value of the ampli-
tude of one of the signals is absorbed in the A-matrix by a proper
scaling of corresponding columns of A and rows of S. Hence,
the problem we consider is, for a given data matrix X, to find a
factorization

X � AS � with A � S full rank � |Si j| � 1 � (2)

A slightly more general way to formulate the problem is ob-
tained by premultiplying (2) with W � A†, where A† denotes the
pseudo-inverse of A:

Problem P1 (CM factorization problem) For a given data
matrix X : m × n of rank d, find δ and W : δ × m, such that

WX � S � |Si j | � 1 �
where S is of full rank and δ ≤ d is as large as possible.

In this formulation, X is a linear combination of d signals, but
only δ ≤ d of them are of CM type. Only the CM signals will be
reconstructed by the beamformer.

The formulations X � AS and WX � S are equivalent only
if the factorization X � AS is essentially unique, meaning that
the only CM signals that can be constructed by the beamformer
are the signals that were originally sent, and not some spurious
“ghost” signals. Trivial transformations such as the choice of or-
dering of the rows of S and the complex phases of the entries of
the first column of S cannot be avoided but lead to an admissi-
ble form of non-uniqueness. Save for these transformations, and
under conditions that A, S are full rank and the sources generat-
ing S are “sufficiently independent” and have “sufficient phase
richness”, uniqueness is guaranteed with probability 1 once n is
“large enough”. This is well known for δ � d, n → ∞, and analog
CM signals (viz. e.g., [7] for equalization, [37] for beamform-
ing). One may have concerns on the “sufficient phase richness”
of digital CM signals with small constellations, but in fact even
BPSK signals give unique factorizations [13]. However, a sharp-
ening of the n → ∞ condition is possible.

Lemma 1: Suppose that X : m × n has rank d and that the fac-
torization {X � AS � |Si j | � 1} is unique for n → ∞. Then the fac-
torization is in general already unique for n ≥ 2d.

Proof: See Appendix B. �
The algorithm which we derive in this paper requires n � d2,

which is still quite reasonable for small values of d (say d � 10).

B. The Gerchberg-Saxton algorithm

Denote by row � X � the subspace spanned by the rows of X (the
co-range of X), and define the set of CM signals as�
	 � {S �� |Si j| � 1 � all i � j } �
Problem P1 asks for all row vectors w (the rows of W) such that
wX � s is a CM signal, for linearly independent signals s. Hence
we have the following lemma:

Lemma 2: Problem P1 is precisely equivalent to finding all
linearly independent signals s that satisfy� A � s ∈ row � X ���� B � s ∈

�
	 �
From this formulation, it is straightforward to devise an al-

gorithm based on alternating projections: start with a (random)
choice of s in the row span of X, and alternatingly project it onto�
	

and back onto the row span of X. The set
�
	

is not a linear
subspace, so that the the projection onto

�
	
is non-linear:

P ���� y � ��� � y � 1

| � y � 1|
� · · · � � y � n

| � y � n| � �
i.e., every entry of the vector is radially projected onto the com-
plex unit circle. It is customary to estimate weight vectors w
rather than signals, in which case the alternating projection al-
gorithm is expressed as the iteration

w � i � 1 � ��� P�� � w � i � X ��� X† � (3)

(Note that s � i � � w � i � X, and that ·X†X is a projection onto the row
span of X.)
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It is interesting to note that this is a well-established algorithm
in the field

�
of optics for solving the phase-retrieval problem,

where it is known as the Gerchberg-Saxton algorithm (GSA)
[38]. The connection of the phase-retrieval problem with the
CM problem was made only recently [37]. Essentially the same
algorithm was derived from the CMA by Agee [39], called the
LSCMA, and claimed to have faster convergence than the stan-
dard CMA. It is also closely related to the OCMA variant by
Gooch and Lundell [11], who replaced the LMS-type updating
of the CMA by an RLS-update. One difference of the GSA and
LSCMA with other CMA methods is that they are block meth-
ods: they iterate on X, rather than update vectors xk. Hence,
they typically require less data (smaller n), although of course the
standard iterative CMA could reuse old data as well. Conversely,
the GSA/LSCMA methods could be used on data matrices of in-
creasing sizes, by introducing updating versions for the pseudo-
inverse, which leads to the OCMA. The disadvantage of using
these iterative algorithms on small finite data sets is that global
convergence properties are lost: spurious local minima could be
introduced. It is not known how large the block-size has to be
before the asymptotic global convergence results are applicable.

C. Equivalent problem statement

However, our intent is to compute an exact solution to the
problem in lemma 2 via analysis, and not via alternating projec-
tions. Recall that we are searching for all vectors s that are in
the row span row � X � and also have the CM property. The first
property has so far been captured as requiring s � wX, but it is
more convenient to take linear combinations of a minimal (ortho-
normal) basis for the row span of X. This avoids problems with
non-uniqueness of w when d � m, and makes sure that different
linear combinations lead to different signals.

Thus let X � UΣV : U ∈ |C m×m � Σ ∈ ||R m×n � V ∈ |C n×n be a sin-
gular value decomposition of X [40]: U and V are unitary matri-
ces containing the singular vectors, and Σ is a real diagonal ma-
trix with non-negative entries: the singular values. Suppose that
there are d sources, so that the rank of X is equal to d. Only d
singular values are non-zero, and we collect the corresponding
right singular vectors of V in a matrix V̂ ∈ |C d×n. The rows of
V̂ form an orthonormal basis of the row span of X, and we can
rewrite condition � A � in lemma 2 as� A � : s ∈ row � X � ⇔ s � wV̂ � V̂ : d × n �
Here, the weight vector w is not precisely the same as before: it is
now acting on the orthogonal basis vectors of row � X � , rather than
directly on X. This reduces the number of parameters to estimate
from m to d, and ensures that linearly independent w result in lin-
early independent s. A second advantage of an orthogonal basis
is that the corresponding matrix W (acting on V̂ instead of X) has
a condition number that tends to 1 as n grows: for uncorrelated
signals and large n, S � n becomes an isometry and W �
� n, as a
mapping of one isometry into another, becomes unitary. When
using X instead of V̂ , W would have a bad condition number if
signals come from close directions.2

2The idea to switch to an orthogonal basis and force W � � n to be close to uni-
tary can be used to enhance convergence to independent solutions in iterative
CMA algorithms as well. Similar to Pro-ESPRIT [41], such an approach could
be called a Procrustes-CMA.

To rewrite condition � A � : s ∈
�
	

, put V̂ �"! v1 · · · vn # , where
vi ∈ |C d is the i-th column in V̂ . Then� A � : s �$! � s � 1 · · · � s � n # ∈

�
	
⇔ ! | � s � 1|2 · · · | � s � n|2 # �%! 1 · · · 1 #
⇔ &'( ')

wv1v∗
1w∗ � 1

...
wvnv∗

nw∗ � 1

If we define Pk
� vkv∗

k ∈ |C d×d, for k � 1 � · · · � n, then the above
derivation has shown that problem P1 is precisely equivalent to
finding all linearly independent vectors w such that

wPkw∗ � 1 � k � 1 � · · · � n � (4)

which calls for the simultaneous solution of n quadratic equa-
tions into the entries of w, or the intersection of n ellipsoids. To
find all solutions, the approach is to expand these equations in
the entries of w, which leads to Kronecker products.

For matrices Y ∈ |C d×d and vectors y ∈ |C d2
, denote

vec � Y � : �
*+++++, Y11

Y12...
Y21...
Ydd

-/.....0 � (5)

vec−1 � y � : � *+++, � y � 1 � y � 2 · · · � y � d� y � d � 1 � y � d � 2 · · · � y � 2d
...

. . .
...� y � d2−d � 1 · · · � y � d2

-/...0 � (6)

If we set

y � vec � w∗w � �
*+++++++, � w � 1 � w � ∗

1� w � 1 � w � ∗
2...� w � 1 � w � ∗
d� w � 2 � w � ∗
1...� w � d � w � ∗
d

- .......0 � : w ⊗ w ∈ |C d2×1

pk
� vec � Pk � T �$! � Pk � 11 � Pk � 12 · · · � Pk � dd # �

then the quadratic expression wPkw∗ is “linearized” as

wPkw∗ � pky � (7)

Collect the n condition vectors pk in one matrix P of size n × d2:

P � *,
p1...
pn

-0 � *, ! v1 ⊗ v1 # T...! vn ⊗ vn # T -0 � (8)

Lemma 3: Problem P1 is precisely equivalent to finding all
linearly independent vectors y satisfying

Py � *,
1
...
1

-0 (9)

y � w ⊗ w (10)
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For each solution w, the corresponding CM signal is given by
s � wV̂ .

Proof: To prove that this problem is equivalent to solving
equation (4), and hence problem P1, it remains to show that a
set of solutions {wk ⊗ wk}δ

1 is linearly independent if and only
if the corresponding set {wk}δ

1 is linearly independent. This is
straightforward; see Appendix B. �

The linear system of equations (9) is overdetermined for n
�

d2. Nonetheless, if there is more than one CM signal present in
X, there has to be more than one solution y to the linear system,
and because they are linearly independent, P has to be singular.
Hence, the set of independent solutions y to the linear system is
not unique: any vector in the kernel of P can be added to any so-
lution y. The second condition (10) restricts the solution space to
vectors y that have a certain structure: they must be expressible
as a Kronecker product of a vector with its complex conjugate.
Note that it is not sufficient to compute solutions y to the sys-
tem of equations and hope that they have the required structure
y � w ⊗ w.

In general, the solution space to (9) can be written as an affine
space of the form y � y0 1 α1y1 1 · · · 1 α 2 y 2 , where y0 is a par-
ticular solution to (9), and y1 � · · · � y 2 is a basis of the kernel of P.
We find it more convenient to work with a fully linear solution
space, which is obtained via a linear transformation, as follows.
Let Q be any n × n unitary matrix such that

Q

*,
1
...
1

-0 � *+,
n1 3 2

0
...
0

- .0 �
Simple choices for Q suffice; e.g., Q could be a Householder
transformation [40],

Q � I − 2
qq∗

q∗q
� q � *+,

1
1
...
1

-/.0 −

*+,
n1 3 2

0
...
0

-/.0 � (11)

or Q could be a DFT (discrete Fourier transform) matrix. Apply
Q to P:

QP � : � p̂1

P̂ � � p̂1 : 1 × d2

P̂ : � n − 1 � × d2 �
With these definitions, we have

Py � *,
1
...
1

-0 ⇔ 4 � i � p̂1y � n1 3 2� ii � P̂y � 0 � (12)

We will show that the first condition can always be satisfied by
scaling a non-trivial solution to the second equation. This then
leads to the following equivalent problem statement:

Lemma 4: The CM problem P1 is precisely equivalent to the

following problem. Let X be a given matrix. With P̂ ∈ |C � n−1 � ×d2

and V̂ constructed from X, find all linearly independent non-zero
solutions y that satisfy

P̂y � 0
y � w ⊗ w � (13)

For each solution w, scaled such that 5 w 5 � n1 3 2, the vector
s � wV̂ is a CM signal contained in X.

Proof: See Appendix B. �
Suppose that the dimension of the kernel of P̂ is equal to some

number δ̂ (we will argue in section III-A below that in general δ̂
is, indeed, equal to the number of CM signals). Let {y1 � · · · � yδ̂}
be a basis for this kernel. It can be computed via a QR factoriza-
tion, or, with more numerical accuracy, from an SVD of P̂. In the
latter case, {yk}δ

1 are the right singular vectors corresponding to
the δ singular values of P̂ that are zero. With a basis of the kernel,
any solution y to P̂y � 0 can be written as y � α1y1 1 · · · 1 αδ̂yδ̂,
for arbitrary coefficients αi ∈ |C . The condition that y � w ⊗ w
as well is more conveniently expressed as Y � w∗w, where Y �
vec−1 � y � . Likewise, denote by Yk

� vec−1 � yk � , k � 1 � · · · � δ̂, the
corresponding d × d matrices constructed from the chosen basis
of ker � P̂ � . Since

α1y1 1 · · · 1 αδ̂yδ̂
� w ⊗ w

⇔ α1Y1 1 · · · 1 αδ̂Yδ̂
� w∗w

it is seen that, in essence, we have to find scalar linear combina-
tions of a set of matrices (a generalized matrix pencil for more
than two matrices) such that the result is a rank 1 hermitian ma-
trix, hence factorizable as w∗w. Linearly independent solutions
w correspond to linearly independent y, and in turn to linearly in-
dependent parameter vectors ! α1 · · · αδ̂ # . Hence, we may rewrite
the conditions (13) in terms of the Yk, which gives a new problem
statement that is entirely equivalent to the original CM problem.

Problem P2 (Equivalent CM problem) Let X be the given
matrix, from which the set of d × d matrices {Y1 � · · · � Yδ̂} are
derived as discussed above. The CM problem P1 is precisely
equivalent to the following problem: determine all independent
non-zero parameter vectors ! α1 · · · αδ̂ # such that

α1Y1 1 · · · 1 αδ̂Yδ̂
� w∗w � (14)

For each solution w, scaled to 5 w 5 � n1 3 2, the vector s � wV̂ is
a CM signal contained in X.

Finding all solutions to (14) is thus the core of the CM prob-
lem. In the next section, we show that (14) is, in fact, a general-
ized eigenvalue problem.

Remark

The given definition for the vec-operation in (5)–(6) does not
make use of the fact that we only apply it to hermitian matrices
w∗w and Pk. Other choices that do make use of this are possi-
ble; e.g., we could define vec � w∗w � to be a real vector containing
Re �6� w � i � w � ∗

j � , Im �6� w � i � w � ∗
j � instead of the redundant � w � i � w � ∗

j

and � w � j � w � ∗
i . This transformation to real vectors leads to an

equivalent but numerically and computationally favorable vari-
ant of the procedure and is detailed in Appendix A. The result
is that, with this alternate definition, P and P̂ are transformed to
real matrices, and that the basis matrices Yk constructed from the
kernel of P̂ are hermitian by construction. The coefficients αk to
be computed may then be restricted to reals as well.

III. EXACT SOLUTION TO PROBLEM P2

In this section, we will show that problem P2 admits an exact
solution, which can be computed using standard linear algebra
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techniques. We still operate under the assumption that there ex-
ists a solution, and that the solution is essentially unique. For
computability, we will now also require that n

�
d2.

A. Estimation of the number of CM signals

We first show that there is a relation between δ, the number of
CM signals that are present in X, and δ̂, the dimension of the ker-
nel of P̂. With δ independent constant modulus signals, there are
δ linearly independent solutions w to the CM factorization prob-
lem, corresponding to δ linearly independent vectors y � w ⊗ w
in the kernel of P̂. Hence, it is necessary that dimker P̂ ≥ δ. Since
P̂ : � n − 1 � × d2, we also have dimker P̂ ≥ d2 − � n − 1 � . To be
able to detect δ from dimker P̂, we have to require that, at least,
n ≥ d2 1 1.

Proposition 5: Let δ be the number of CM signals in X, and
suppose n � d2. Then dimker P̂ ≥ δ. Generically, dimker P̂ � δ.

Proof: See Appendix B. �
In the proof it is shown that the occurrence of the non-generic

case where δ̂ � δ is independent of the propagation environment
and can only happen if there are specific phase relations between
the signals. Explicit examples can be constructed for the case of
two CM signals s1, s2: a rank deficiency occurs if and only if
there are constants α � c ∈ |C such that for each sample point k,� s1 � k � s2 � k 1 α � s2 � k � s1 � k

� c �
Writing � s2 � k

� � s1 � k exp jφk, where φk is the phase difference
between the two signals, this reduces to

e− jφk 1 αe jφk � c � (15)

For every choice of constants α � c, there are at most two values
for φk such that the equation holds. Hence, a degeneracy can oc-
cur only for BPSK-type (two state) signals sampled at the sym-
bol rate. E.g. for BPSK, φk ∈ {0 � π}, so that there are constants
(α � −1, c � 0) for which (15) holds for all k. A problem also
occurs for MSK signals, which are ±1 for even k and ± j for odd
k. These degeneracies go away when the signals are fractionally
sampled, because φk then also assumes intermediate values.

B. Computation of W

We will assume from now on that dimker P̂ � δ is equal to the
number of CM signals in X. The CM problem is solved once we
have found all δ independent parameter vectors ! α1 � · · · � αδ # that
make the generalized matrix pencil (14) rank one and hermitian.
This problem is in essence a generalized eigenvalue problem. In-
deed, if d � δ � 2, then there are two matrices Y1 and Y2, each of
size 2 × 2, and we have to find λ � α2 � α1 such that Y1 1 λY2 has
its rank reduced by one (to become one). For larger δ, there are
more than two matrices, and the rank should be reduced to one
by taking linear combinations of all of them. This can be viewed
as an extension of the generalized eigenvalue problem.

From the opposite perspective, suppose that the solutions of
the CM problem are w1 � · · · � wδ. We already showed that w1 ⊗
w1 � · · · � wδ ⊗wδ is a linearly independent set of vectors; together
they are a basis of the kernel of P̂. Moving to matrices, each of
the matrices Y1 � · · · � Yδ is a different (independent) linear combi-
nation of the “pencil basis” w∗

1w1 � · · · � w∗
δwδ, i.e.,

Y1
� λ11w∗

1w1 1 λ12w∗
2w2 1 · · · 1 λ1δw∗

δwδ
� W∗Λ1W

Y2
� λ21w∗

1w1 1 λ22w∗
2w2 1 · · · 1 λ2δw∗

δwδ
� W∗Λ2W

...
...

Yδ
� λδ1w∗

1w1 1 λδ2w∗
2w2 1 · · · 1 λδδw∗

δwδ
� W∗ΛδW

(16)

where

W � *+,
w1
...

wδ

-/.0 � Λk
� *+,

λk1 0
. . .

0 λkδ

-/.0 � k � 1 � · · · � δ �7�
Hence, by the existence of a solution to the CM problem, there
must be a matrix W whose inverse simultaneously diagonalizes
Y1 � · · · � Yδ. (Its uniqueness is, in fact, proven in [15] for the case
of hermitian matrices Yk.) This makes problem P2 equivalent to
the following problem.

Theorem 6: Suppose n
�

d2 and dimker � P̂ � � δ. Then the
CM factorization problem P1, or P2, is equivalent to a simulta-
neous diagonalization problem: find W : δ × d (full rank δ) such
that

Y1
� W∗Λ1W

Y2
� W∗Λ2W
...

Yδ
� W∗ΛδW

� Λ1 � · · · � Λδ ∈ |C d×d � diagonal3 �
In general, Y1 and Y2 are d × d matrices of rank δ, and not

less than δ. In this case, a generalized eigenvalue decomposition
of just Y1 and Y2 will already determine W : there exist matrices
M � N (invertible) such that

M∗Y1N � Λ1
M∗Y2N � Λ2

where Λ1 � Λ2 are diagonal matrices, size d × d, each with δ non-
zero entries. Reducing these matrices to δ × δ diagonal matrices
with non-zero entries on the diagonal, and trimming M and N
likewise to full rank δ×d matrices, we obtain the decomposition

M̂∗Y1N̂ � Λ̂1

M̂∗Y2N̂ � Λ̂2 �
M̂ and N̂ are unique up to equal permutations of their columns
and (possibly different) right diagonal invertible factors. This
uniqueness implies that, after a suitable diagonal scaling, we can
arrange it such that M̂ � N̂ � W†, or W � N̂†, with each row of
W having norm n1 3 2.

For the case where Y1 and Y2 are not of rank δ, it is possible
that they do not fully determine W , so that the other Yk also have
to be taken into account. It is obvious that it is possible to obtain
W also in this case, but we omit the details of this more general
procedure at this point. Numerically, it is better to take all Yk into
account in all cases, and this is of course preferable in the pres-
ence of noise as well. Such an algorithm is described in the next
section.

Hence, we have shown at this point that in absence of noise,
the CM problem is in fact a generalized eigenvalue problem and
can be solved explicitly.

3If we make sure that the Yk are hermitian by our choice of the vec-operation,
then the Λk are real.
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IV. THE CM PROBLEM WITH ADDITIVE NOISE

A. Equivalent optimization problem

With noise added to the data,

X � AS 1 N �
an exact decomposition of X as X � AS is no longer possible.
To recover the CM signals, we first define a (squared) distance
function of signals to the set of CM signals,

dist � s � �
	 � � n

∑
k 8 1

� | � s � k |2 − 1 � 2 � (17)

In terms of this distance, the problem can be posed as finding δ
independent signals s that are minimizers of

min{dist � s � �
	 � | s ∈ row 9:� X � } � (18)

where row 9 � X � is the estimated row span of S, which we will take
to be the principal row span of X as determined using an SVD.
Thus let X � UΣV as before, and let d be the number of singu-
lar values of X that are significantly larger than zero. The detec-
tion of d from the singular values is relatively straightforward
if the noise power and the statistical distribution of the noise is
known, but notoriously non-trivial otherwise (cf. [42] and ref-
erences therein; we do not go into details here). The rows of V
corresponding to these singular values form an orthogonal basis
of the principal row span of X, and are collected in the matrix
V̂ . The matrix P and P̂ can be constructed from V̂ as in section
II-C. The following proposition is a result of expressing the cost
function in equation (18) in terms of P̂ and w.

Proposition 7: The CM problem with noise (equation (18)) is
solved by finding the set of all linearly independent minimizers
y of

ε2
y : � min

y
5 P̂y 5 2 � (19)

subject to y � w ⊗ w, 5 w 5 � n1 3 2. For each such y, the corre-
sponding signal s is s � � cw � V̂ , where the corrective scaling c is
given by c2 � n ��� n 1 ε2

y � .
Proof: See Appendix B. �

The correction of w by c is close to 1 and of no importance in
practice, as it will only scale the amplitude of the corresponding
signal s.

Minimizing (19) with the given conditions on y undoubtedly
requires some iterative method, but the route set out by the solu-
tion of the noiseless case will provide accurate initial points for
such a method. Thus, we first compute a basis of orthogonal vec-
tors yk that solve (19) without structural constraint: as before,
these follow from an SVD of P̂ as the right singular vectors corre-
sponding to the smallest δ̂ singular values (the numerical kernel
of P̂). The number of CM signals is estimated from the number
of singular values that are “significantly smaller” than the others;
a suitable threshold level is given in (30) later in this paper. The
next step is to unstack the vectors yk into corresponding matri-
ces Yk

� vec−1 � yk � , and subsequently impose the required Kro-
necker structure onto these matrices: linear combinations of the
Yk should result in matrices that are close to rank-1 hermitian ma-
trices of the form w∗w, i.e.,

α1Y1 1 · · · 1 αδYδ
� Y ; w∗w � (20)

Again, it is not clear how to solve such a problem exactly. In the
noise-free case, the solution was given by a simultaneous diag-
onalization of δ matrices Y1 � · · · � Yδ, but it could be found from
only two of them. We now extend the simultaneous diagonal-
ization approach to the noisy case, this time taking all available
Yk into account.

B. Simultaneous diagonalization as a super-generalized Schur
problem

Assume, for the moment, that there is no noise added to X. As
we have seen in theorem 6, the matrix W ∈ |C δ×d that we try to
find is full rank and such that

Y1
� W∗Λ1W

Y2
� W∗Λ2W
...

Yδ
� W∗ΛδW � � Λ1 � · · · � Λδ ∈ |C δ×δ � diagonal � (21)

With noise, we can try to find M � W† to simultaneously make
M∗Y1M � · · · � M∗YδM as much diagonal as possible. Because M is
not unitary, the fact that it has to have full rank is hard to quantify,
and it makes sense to rewrite this δ-generalized eigenvalue prob-
lem as a δ-generalized Schur decomposition. We first explain the
procedure for the noise-free case. Bring in a QR factorization of
W∗ and an RQ decomposition of W :

W∗ � Q∗R 9<� W � R 9 9 Z∗

where Q, Z are unitary d ×d matrices, and R 9 ∈ |C d×δ, R 9 9 ∈ |C δ×d

are upper triangular. The factorizations are of course related, but
we will ignore this for the moment. If δ � d, then we can arrange
that only the leading δ × δ blocks of R 9 and R 9 9 are non-zero (and
non-singular). Substitution into (21) leads to

QY1Z � R1
QY2Z � R2...
QYδZ � Rδ

� R1 � · · · � Rδ ∈ |C d×d � upper triang. � (22)

with
R1

� R 9 Λ1R 9 9
R2

� R 9 Λ2R 9 9
...

Rδ
� R 9 ΛδR 9 9 � (23)

Only the top-left δ × δ block of each Rk is non-zero. In addition,
each of these blocks is non-singular. Hence, there exists Q � Z
such that QYkZ is upper triangular, for k � 1 � · · · � δ, which is a
generalized Schur decomposition, but for δ matrices rather than
two. With this decomposition, it is seen that a parameter vector! α1 · · · αδ # satisfies (20) only if

α1R1 1 · · · 1 αδRδ is rank 1. (24)

With the model of R1 � · · · � Rδ in (23), we obtain that, equivalently,

α1Λ1 1 · · · 1 αδΛδ is rank 1.

Since all the Λk are diagonal, the αk are straightforward to com-
pute: only one entry of the diagonal matrix α1Λ1 1 · · · 1 αδΛδ
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can be non-zero. Setting this entry equal to one, all possible para-
meter vectors ! α1 · · · αδ # follow by constructing a matrix whose
columns consist of the diagonal entries of the Λk,

Λ � *+, � Λ1 � 11 · · · � Λ1 � δδ
...

...� Λδ � 11 · · · � Λδ � δδ

-/.0 �
The rows of Λ−1 are the independent vectors ! α1 · · · αδ # . A
straightforward generalization shows that we do not need to
compute the factorization (23), as the parameters can be com-
puted directly from the main diagonals of Rk without knowing
the Λk:

Proposition 8: For given Y1 � · · · � Yδ, assume the decomposi-
tion (22) and the existence of decomposition (23). All indepen-
dent parameter vectors ! α1 · · · αδ # such that Y : � α1Y1 1 · · · 1
αδYδ has rank 1 are given by the rows of A:

A � R−1 � R � *+, � R1 � 11 · · · � R1 � δδ
...

...� Rδ � 11 · · · � Rδ � δδ

-/.0 �
Proof: Because the Rk are upper triangular, a necessary

condition for (24) to hold is that the resulting matrix has a main
diagonal with at most one non-zero entry. But, in view of the
existence of factorization (23) with R 9 , R 9 9 having non-singular
main diagonals, it cannot happen that the main diagonal of the
result is all zero. �

Note that proposition 8 by itself does not ensure that Y is her-
mitian, unless e.g., all Yi’s are hermitian and all Ri’s are real. This
feature is a side effect: the set of δ independent solutions Y is in
our case unique, and it suffices to enforce the rank-1 property.

Factoring each of the δ rank-1 matrices that is obtained in this
way gives δ independent vectors w, which form the rows of the
matrixW that we were looking for in equation (21). Hence, in the
noise-free case, the computation of a “super-generalized” Schur
decomposition, i.e., two unitary matrices Q � Z, gives the solution
to the simultaneous diagonalization problem. Although it seems
at first sight that we have doubled the number of parameters to es-
timate (two matrices Q � Z, rather than one matrix W), this is not
true: the fact that the matrices are unitary makes that the total
number of parameters to estimate is precisely the same. How-
ever, the constraint that Q, Z be unitary is a desirable condition,
whereas the fact that W must have full rank is difficult to handle.

We now return to the case where the data matrix X is distorted
by noise. In this case, there is no unitary Q, Z which simultane-
ously makes all matrices Yk exactly upper triangular. However,
we can try to find Q, Z to make these matrices as much upper
triangular as possible, by minimizing the Frobenius norm of the
residual lower triangular entries. One approach for doing this is
described in section IV-C below. It is an extension to more than
two matrices of the usual QZ iteration for computing the gener-
alized Schur decomposition of two matrices. There are several
other approaches for solving simultaneous diagonalization prob-
lems as well, as discussed in that subsection.

With Q � Z and hence R1 � · · · � Rδ obtained this way, we can com-
pute all independent parameter vectors ! α1 · · · αδ # as in proposi-
tion 8. Each parameter vector gives a matrixY , approximately of

the form Y ; w∗w, and each w can be estimated as the singular
vector corresponding to the largest singular value of each Y . It
remains to scale w to ensure that 5 w 5 � n1 3 2.

The above scheme provides an approximate solution to the
problem in theorem 7, i.e., the CM factorization problem with
additive noise. The algorithm is summarized in figure 2; we call
it the ACMA. It is not clear in what sense the solution approxi-
mates the optimal solution; however, it finds the exact solution if
there is no noise, and simulations give very accurate results for
moderate noise levels or large n. For high noise levels, closely
spaced signals, or small n, the vectors w that are obtained by
the above procedure can be used as initial starting points in a
Gerchberg-Saxton iteration, which effectively searches for the
minima of (18). Since these starting points are accurate, a few
iterations suffice, and independent signals are almost always ob-
tained, except in severely ill-conditioned cases. Examples of the
application of the algorithm to simulated and measured data are
given in section V.

C. Super-generalized Schur decomposition

In this subsection, we describe a possible approach to the
super-generalized Schur decomposition problem: for given ma-
trices Y1 � · · · � Yδ, find Q � Z (unitary) such that

QY1Z � R1
...

QYδZ � Rδ

(25)

where R1 � · · · � Rδ are as much upper triangular as possible. Our
approach is to modify the standard QZ iteration method used for
computing the Schur decomposition of two matrices so that it
works for more than two matrices. There are several ways to do
this. We will present a variant that treats all matrices Y1 � · · ·Yδ
equally.

The QZ iteration for computing the Schur decomposition of
two matrices [40] starts with setting Q � 0 � � I, Z � 0 � � I. At the
k-th iteration step, a unitary matrix Q � k � is computed such that
Q � k � � Y1Z � k−1 � � is upper triangular, and a unitary matrix Z � k � is
computed to make � Q � k � Y2 � Z � k � upper triangular. As an exten-
sion to more than two matrices, we propose the following two
step iteration. Denote by 5 · 5 LF the Frobenius norm of the
strictly lower triangular part of a matrix.

[Extended QZ iteration]4

Q � 0 � � I � Z � 0 � � I
for k � 1 � 2 � · · ·

a. Find Q � k � (unitary) to minimize5 Q � k � � Y1Z � k−1 � �=5 2
LF 1 · · · 1 5 Q � k � � YδZ � k−1 � �>5 2

LF �
b. find Z � k � (unitary) to minimize5?� Q � k � Y1 � Z � k � 5 2

LF 1 · · · 1 5?� Q � k � Yδ � Z � k � �>5 2
LF �

(26)
Each of the two steps in the iteration poses a least squares prob-
lem with an exact solution, which might however be hard to find.
The customary idea in such situations is to find an approximate
solution to each of the steps, and rely on the outer iteration to
provide convergence.

4A different suitable initialization follows from a Schur decomposition of just
Y1 and Y2.
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Given a matrix X � AS 1 N ∈ |C m×n. An estimate of S ∈
�
	

is obtained as follows:
1. Estimate row � X � :

a. Compute SVD(X): X � : UΣV
b. Estimate d � rank � X � from Σ: the number of signals
c. V̂ � first d rows of V

2. Estimate ker � P̂ � , which summarizes all CM conditions:
a. Construct P̂ : � n − 1 � × d2 from V̂ :

V̂ � : ! v1 · · · vn #
P : �$! vec � v1v∗

1 � · · · vec � vnv∗
n � # T� p̂1

P̂ � : � QP � with Q as in (11)

b. Compute SVD(P̂): P̂ � : UpΣpV∗
p

c. Estimate δ � dimker � P̂ � from Σp: the number of CM signals
d. ! y1 · · · yδ # : � last δ columns of Vp

3. Solve the simultaneous diagonalization problem (21):
a. Y1

� vec−1 � y1 �@� · · · � Yδ
� vec−1 � yδ �

b. Find Q � Z to make R1 : � QY1Z � · · · � Rδ : � QYδZ approximately upper (section IV-C)
c. From R1 � · · · � Rδ, compute all vectors ! αk1 · · · αkδ # � k � 1 � · · · � δ

s.t. Ŷk : � αk1Y1 1 · · · 1 αkδYδ is approximately rank 1 (proposition 8)
4. Recover the signals: for each Ŷk:

a. Compute wk such that Ŷk ; : w∗
kwk

b. scale wk such that 5 wk 5 � n1 3 2

c. sk : � wkV̂
(d. perform a few Gerchberg-Saxton iterations, as in equation (3))

The vectors s1 � · · · � sδ are the rows of S.

Fig. 2. The ACMA (analytic CM factorization algorithm). The vectoring operations in steps 2a and 3a may be replaced by hermitian vectoring operations (see
Appendix A).

To describe the approximate solution to step a (or b, which is
similar), suppose that, at the k-th stage, we have matrices R1 : �
Q � k−1 � Y1Z � k−1 � � · · · � Rδ : � Q � k−1 � YδZ � k−1 � , not yet upper triangular,
and we have to find a unitary matrix Q that minimizes the below-
diagonal norm of QR1 � · · · � QRδ. Recall that for a single matrix
R1, a QR factorization gives the solution, and is obtained as a
product of Householder rotations H1 � · · · � Hd−1, where a single Hi

maps the below-diagonal entries of the i-th column of the matrix
to zero. This approach may be mimicked for the simultaneous
triangularization of a set of matrices, although we can only try
to make the below-diagonal entries small. Thus, Q in step a is
obtained as the product of d −1 more elementary unitary matrices

Q � � Id−2 0
0 Hd−1 � · · · � 1 0

0 H2 � H1 �
The first factor, H1, is designed to simultaneously minimize the
below-diagonal norms of only the first column of each of the ma-
trices R1 �6�A�A� � Rδ. Similarly, Hk is used to minimize the below-
diagonal norm of all the k-th columns. Denote by � R1 � 1 the first
column of R1, and similarly for the other Rk’s, then

H1
! � R1 � 1 · · · � Rδ � 1 # �B� ∗ · · · ∗

E �
where ! ∗ · · ·∗ # is the first row of the result, and E contains the re-
maining rows. The objective is to find H1 such that 5 E 5 F is min-
imized. The solution is not unique, but a possible H1 follows di-

rectly from an SVD:! � R1 � 1 · · · � Rδ � 1 # � : UΣV∗ ⇒ H1
� U∗ �

Indeed, for this choice of H1, we have 5 E 5 2
F
� σ2

2 1 · · ·σ2
δ, which

is as small as we can hope for.
After H1 has been computed and applied to R1 � · · · � Rδ, we

have obtained new matrices R 91 � · · · � R 9δ, with the below-diagonal
norm of the first columns minimized. The next factor, H2, is used
to minimize the below-diagonal norm of the second columns of
these matrices. As H2 is unitary and does not affect the first rows
of R 91 � · · · � R 9δ, this will not change the below-diagonal norm of
the first columns. In fact, H2 can be found in precisely the same
way as H1 by looking at the reduced problem where we act on
R 91 � · · · � R 9δ with their first rows and columns removed. The ma-
trices H3 � · · · � Hd−1 follow in turn.

The reason that this does not necessarily provide the optimal
solution to the LS problem of step a is that H1 only looks at the
first columns of the matrices Rk, and might introduce potentially
large entries in the below-diagonal part of subsequent columns.
It is not even guaranteed that the below-diagonal norm is lower
than before. Note that this is nothing new: the same happens in
the original QZ iteration for two matrices, and nonetheless it con-
verges (except perhaps for strongly nonnormal problems).

The resulting QZ iteration (26) is observed in simulations to
converge fast, usually quadratically in 3–5 iterations. At this
point, there is no proof of convergence. Hints for a possible proof
might be provided by convergence proofs for the standard QZ it-
eration. Because the inner loop consist of SVDs, the scheme is
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only practical if d is small, which is certainly the case for the cur-
rently envisioned applications.

Remark

While this paper was in review, we learned about other ap-
proaches to the super-generalized Schur decomposition, and to
simultaneous diagonalization problems in general. These prob-
lems are not entirely new to the SP community: in the context
of blind beamforming of non-Gaussian signals, analysis of the
fourth-order cumulants of the data matrix has led to problems of
the form (21), viz. [18, 43], as well as related problems of the
form Q∗XiQ � Λi, i � 1 � · · · � d with the Xi hermitian, Q unitary
and all Λi close to diagonal, viz. [17]. The fact that Q is unitary
instead of just non-singular is a consequence of the statistical ex-
pectation operator: with infinite data, our W would be unitary as
well (cf. footnote 2). In [18, 43], a whitening transformation de-
rived from the data covariance matrix immediately reduces the
problem to Q∗XiQ � Λi as well.

Overviews of several such problems are given in [44,45]. The
algorithms in [44] are of Jacobi-type, and intended for solving
Q∗XiQ � Λi and some structured variants. A similar Jacobi al-
gorithm is proposed in [17]. Such Jacobi iterations are readily
set up for the generalized Schur decomposition (25) as well, al-
though one has to be careful about “outer” and “inner” rotations
to ensure convergence; cf. [46]. The (real-valued) QZ problem
is considered in [45], and solved using isospectral flows, which
results in a steepest gradient-type algorithm. For the diagonal-
ization problem (21) with positive definite matrices Yi, the “non-
orthogonal FG � ” algorithm of [47] may be used. The orthogo-
nal variant of this algorithm is a generalization of the cyclic Ja-
cobi algorithm. Note that in our application, the Yi, even if they
are constructed to be hermitian, are not necessarily positive, al-
though we may try to find linear combinations that are positive.
The approach in [18,43] is to find one such positive combination,
then try to glean W from a Cholesky decomposition (or Schur
decomposition, after a whitening transformation) of this single
matrix. Numerically, this is likely to be suboptimal, because in
the end only two matrices determine the decomposition. So far,
none of the above approaches has proven convergence, but re-
ported experimental results are invariably positive.

D. Computational complexity

We briefly investigate the computational complexity of the
proposed algorithm (figure 2). The ACMA consists of mainly
three computational steps: an SVD of X (size m × n), an SVD of
P̂ (size n−1×d2), and a simultaneous diagonalization of δ matri-
ces Yi of size d × d. The second SVD is the most expensive and
has order n � d2 � 2 operations. Since we require n � m2, and m ≥ d,
the complexity of this step is at least CD� d6 � . In comparison, the
first SVD has CD� m2n � ≥ CE� d4 � operations, and the complexity
of the simultaneous diagonalization step is also CD� d4 � . This im-
plies that d cannot be very large and that the algorithm is too
complex for equalization purposes (where sometimes d

� 100 is
taken).5 Since only subspaces are needed but not the individual

5As mentioned before, the CM equalization problem satisfies the same model,
but has different properties: the data matrix has a Hankel structure, and, in prin-
ciple, it suffices to find only one solution. In this case, a combination with
other (intersection-type) algorithms that make use of this structure is probably

singular vectors, the SVDs may be replaced by any other princi-
pal subspace estimator, such as provided by the Schur subspace
estimation (SSE) method [48], the URV updating [49], the PAST
method [50], the FSD [51], or the FST [52]. The latter three al-
gorithms can also exploit the fact that only d kernel vectors out
of d2 singular vectors are needed, which gives rise to significant
savings. In addition, all above-mentioned methods allow for ef-
ficient updating of the subspaces for increasing n, so that the
ACMA algorithm may be transformed from a block-algorithm
into an adaptive algorithm. (Interesting complications arise be-
cause the two SVDs operate in conjunction. A more detailed
analysis of the possibilities is beyond the scope of the present pa-
per.)

To illustrate the computational requirements in a more quanti-
tative manner, we consider a replacement of the SVD by the SSE.
Without updating, one implementation of the SSE (the “SSE-2”
[53]) has a complexity of about m2n complex multiplications and
2m2n complex rotations (for a matrix of size n × m). Assuming
no special purpose rotation processors, we set 1 complex rotation
equal to 4 complex multiplications, and 1 complex multiplica-
tion equal to 4 real floating point operations (flop). In that case
the SSE of X takes 36m2n real flop, and (since P̂ can be trans-
formed to a real matrix) the SSE of P̂ takes 9 � d2 � 2n real flop, so
that the complexity of ACMA is

ACMA : 9d4n 1 36m2n real flop � (27)

In comparison, the complexity of the Gerchberg-Saxton algo-
rithm (GSA) (3) is mainly determined by a loop containing two
complex matrix multiplications,W ·X and S ·X† (whereW : d ×m,
X : m × n, S : d × n), not taking additional soft orthogonaliza-
tion steps or restarts into account. Each of the multiplications
has a complexity of dmn complex operations. About 10 iter-
ations of the inner loop are usually sufficient, although occa-
sionally many more are needed. In addition, the computation of
X† � X∗ � XX∗ � −1 calls for about 2m2n complex multiplications
(ignoring the inversion), or 8m2n real flop. Altogether, the com-
plexity of GSA is approximately

GSA (CMA) : 4 ·10 ·2dmn 1 8m2n � 80dmn 1 8m2n real flop �
(28)

The standard CMA may be viewed as an updating version of the
GSA, where instead of iterating on the same data, new data is
continuously introduced. It is not likely to converge faster than
GSA, viz. [37], so that it has at least the complexity of (28). Ta-
ble I gives a listing of (27) and (28) for a range of values of m
and d, in kflop per snapshot (i.e., n � 1). It is seen that for up
to 6 sources the complexity of the ACMA is comparable to the
GSA.

V. EXPERIMENTAL EVALUATION

To assess the performance of the algorithm, we have applied
it to a number of test matrices, based both on computer gener-
ated data and on real data collected from an experimental set-
up. The results are quite convincing. For example, the algo-
rithm could find weight vectors to separate a superposition of
four CM signals using 4 sensors and only 17 data samples, in

preferable.
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TABLE I

APPROXIMATE COMPUTATIONAL COMPLEXITY OF BLIND ALGORITHMS (KFLOP PER SNAPSHOT)

ACMA (kflop/n)
m � 4 6 8 10

d � 2 0 � 7 1 � 4 2 � 4 3 � 7
4 2 � 9 3 � 6 4 � 6 5 � 9
6 13 � 0 14 � 0 15 � 3
8 39 � 2 40 � 5

10 93 � 6
GSA (kflop/n)
m � 4 6 8 10

d � 2 0 � 8 1 � 2 1 � 8 2 � 4
4 1 � 4 2 � 2 3 � 1 4 � 0
6 3 � 2 4 � 4 5 � 6
8 5 � 6 7 � 2

10 8 � 8
well-conditioned cases even if each signal has a signal to back-
ground noise ratio of 5 dB.

A. Computer generated data

We first study the performance of the algorithm on computer
generated data. The set-up of this experiment is kept extremely
simple on purpose. We simulate a uniform linear array of m � 4
isotropic sensors, spaced λ � 2 apart, where λ is the wavelength
of the carrier frequency of the signals.6 The resulting main lobe
has a beam width of approximately 26 F . There are d � 4 signals
present, with angles of arrival θ1

� 0 F , varying θ2 (θ2
� 30 F ,

5 F ), θ3
� 60 F , θ4

� −20 F . The number of CM signals among
the four signals is varied from δ � 4 to δ � 2. The number of
samples that are used is varied, too, and taken to be n � 100, 26,
and 17. The CM signals that are generated are sequences of unit-
modulus numbers with uniformly distributed random phase. The
other (non-CM) signals are normally distributed random com-
plex numbers, with zero mean and unit variance. The signals are
scaled according to their relative SNRs.

In the first experiment, we consider the noiseless case. Fig-
ure 3 � a � shows plots of the singular values of P̂, for θ2

� 30 F ,
and with d � δ � 4 CM signals. In figure 3(b), only the first two
signals are CM, the other two are Gaussian. In figure 3(c), the
number of CM signals is again equal to 4, but θ2 is taken to be
5 F . It is seen that the number of zero singular values is precisely
equal to the number of CM signals, as predicted by proposition
5. Changing the number of CM signals or moving the angles-
of-arrival closer does not influence the distribution of the other
singular values by much. In particular, the level of the smallest
non-zero singular value stays roughly constant. The distribution
of the non-zero singular values does change with n: they tend
to be located along slanted lines. For larger n, the graph flat-
tens which facilitates detection. As there is no noise in the ex-
ample so far, the CM signals can be retrieved without errors. To
give an idea of the convergence speed of the extended QZ iter-
ation, we list the total below-diagonal norm of the matrices Rk
in (25) after each iteration, for an instance of case � a � , n � 17:
0 � 3 � 9 · 10−6 � 4 · 10−12 � 5 · 10−18.

In the next series of experiments, the same set-up is used, but
now we add normally distributed independent white noise to all
samples. The SNR of each signal with respect to the noise level
is set to 15 dB per antenna element. We first take all signals to be

6This information is not used in any way by the algorithm, and any other array
geometry would have been suitable as well.

CM, and θ2
� 30 F . The singular value plot of P̂ is shown in figure

4(a). The previously zero singular values are now raised by some
amount, but there still is a gap between the small and the larger
ones. To evaluate how close the analytically computed weight
vectors w1 � · · · � w4 are to the optimal solution of the problem (the
minimizers of the distance function in (18)), these weight vec-
tors are used as initial points in the Gerchberg-Saxton iteration
(GSA), viz. equation (3). Figure 4(b) shows the computed aver-
age modulus error of wX,G

1
n

n

∑
i 8 1

� | � wX � i | − 1 � 2 H 1 3 2

(29)

after each iteration step (solid line), for the case n � 17. We have
chosen this “1-2” norm rather than the “2-2” norm in (17) be-
cause it has a nicer physical interpretation (as the standard devi-
ation of the modulus of signals), and because the convergence of
the GSA is usually monotonic in this norm, but not in (17). It is
seen that the post-processing hardly changes the computed wk,
which is reflected by the horizontal lines: they are almost equal
to the optimal values. For n � 26 (not shown), the lines are per-
fectly straight. Although not clearly visible in 4 � b � , all four sig-
nals are resolved; because the signals have the same amplitude,
the modulus error lines tend to overlap. The independence of
the retrieved signals was checked by computing their covariance.
The value of the modulus error is commensurate with the noise
level and number of antennas: SNR = 15 dB translates to an ex-
pected modulus error of 0 � 063 in situations without co-channel
interference.

Also shown in figure
4(b) is the performance of the Gerchberg-Saxton algorithm when
started with random initial weight vectors (dashed lines), which
would be the usual approach to the CM problem. It is seen that
not always all signals are retrieved, that the convergence can be
extremely slow, and that the algorithm sometimes converges to
sub-optimal stationary values. We mention that for larger n (say
n � 100), the local minima are usually not attractive, but recov-
ering all independent signals remains an issue (solved to some
extent by “soft-orthogonalization”, as mentioned in the introduc-
tion, but this was not implemented in these simulations).

Essentially the same remarks can be made for the case where
two out of four signals are CM signals (figure 5), and when the
signal power of one or all of the signals is reduced to 5 dB (fig-
ures 6 and 7). The effect of a reduced signal power (or increased
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Fig. 3. Singular values of P̂: no noise, θ2 I 30 J , for n I 100 K 26 K 17. L a M 4 CM signals, L b M 2 CM signals. L c M Similar as L a M , but with θ2 I 5 J .
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Fig. 9. Experimental set-up, with 4 FM transmitters (s1 K · · · K s4) and an antenna
array consisting of 6 receivers

noise level) is seen in the singular values of P̂ as an increase in
the small singular values, which will limit the detection at some
point. The average modulus error of a 5dB signal is expected to
be 0 � 20, which matches with the figures.

The angular spacing between the first two signals can be re-
duced to 10 F without problems. When the spacing is further re-
duced to 5 F (figure 8), the detection of the two closely spaced CM
signals becomes problematic, and for n � 26, GSA postprocess-
ing failed to keep two of the signals independent. The reason is
that, because of the close angles of arrival, the condition num-
ber of the A-matrix is increased (from 2.3 to 11.9), which, at this
noise level, is sufficient to close the gap between the large and
small singular values for any n. This is confirmed by theoretical
predictions of the gap size (section V-C). Nonetheless, n � 100
was sufficient in simulations to separate the signals even without
additional GSA iterations: the loss of gap prevents detection of
the number of CM signals, but not necessarily their separation.

B. Experiments on measured data

The algorithm was also tested on data collected from an ex-
perimental roof-top antenna array.7 The configuration of the ar-
ray is shown in figure 9. The receiving array consisted of m � 6
isotropic antennas, where antennas x1–x5 formed part of an air-
plane DF array with a baseline of approximately 1.5m, and an-
tenna x6 was a dipole at approximately 1m to the right of the ar-
ray. Located nearby were d � 4 dipole antennas, marked s1–
s4, each broadcasting FM signals at RF carrier frequencies of
902.1 MHz ± 200 Hz (i.e., the individual carrier frequencies
were slightly offset). The signal transmitted by source s1 was
an FM-modulated tone of 1 kHz, signals s2–s4 consisted of FM
modulated speech and music. The received signals were RF-
demodulated, sampled at 37.5 kHz (complex), digitized at 12
bits, and band-limited at 25 kHz. The actual 10 dB bandwidth
of the sources was around 6 kHz. In the first experiment, the
power of each transmitted signal with respect to the ambient
background noise (SNR) was 19.1 dB, 17.6 dB, 17.9 dB, 16.7
dB, respectively. In a second experiment, the power of s2 was
lowered to SNR(s2) = 7.6 dB.

In figure 10, the singular values of X and P̂ are shown. For
n � 100 and n � 50, it is clear that there are four CM signals.
(For the record, we mention that the condition number of A was
later estimated as 5.8.) Denote by d̂ � δ̂ the parameters used by
the ACMA, as opposed to the true values (d � δ � 4). Figure
11 shows the modulus error during subsequent Gerchberg itera-
tions when the ACMA is run with d̂ � δ̂ � 4. For n � 50, the an-
alytically computed values of w are hardly changed; for n � 17,
the Gerchberg iterations improve a bit on the w. With random
initializations, the Gerchberg iterations may converge to at least
two spurious local minima.

Table II lists the estimated signal-to-interference ratios (SIRs)
obtained by the ACMA, both before and after the additional GSA
iterations. The values are based on the rows of the matrix ŴA,
where Ŵ contains the weight vectors as determined by the algo-
rithm for the listed n � d̂ � δ̂, and A is an estimate of the unknown
true A matrix computed using the ACMA on n � 400 samples
and with d̂ � δ̂ � 4. ŴA should be close to the identity matrix
(or a permutation and diagonal scaling thereof). The table shows
the results obtained for various choices of the parameters d̂ and
δ̂ used in the algorithm. It is seen that overestimating d is not re-

7The data was measured and provided by ARGOSystems, Inc., Sunnyvale,
CA, as part of an ongoing research project with Stanford University.
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Fig. 4. 4 CM signals. Each signal has SNR = 15dB, θ2 I 30 J . L a M Singular values of P̂. L b M Convergence of Gerchberg algorithm for analytically computed initial
points, and for random initial points, for n I 17.
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Fig. 5. 4 signals, 2 CM signals. Each signal has SNR = 15dB, θ2 I 30 J .
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Fig. 6. 4 CM signals. Signal 2 has SNR = 5dB, θ2 I 30 J ; the other signals have SNR = 15dB.
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Fig. 7. 4 CM signals. Each signal has SNR = 5dB, θ2 I 30 J .
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Fig. 8. 4 CM signals. Each signal has SNR = 15dB, θ2 I 5 J .
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Fig. 10. Experiment with 4 FM signals and 6 antennas; SNR(s2) = 17.6 dB. L a M singular values of X; L b M singular values of P̂, with d̂ I 4.
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Fig. 11. Gerchberg iterations, for d̂ I 4, δ̂ I 4; SNR(s2) = 17.6 dB. L a M n I 50, L b M n I 17.

ally a problem, provided n is large enough. (The case d̂ � m is of
interest because in that case the SVD of X may be replaced by a
simple QR factorization.) Overestimating δ as well is sometimes
not a problem, but led to a fatal result for n � 50: only two in-
dependent signals were obtained. In general, overestimating δ is
not a good idea because the algorithm tries to compute a change
of basis: from an orthonormal basis of ker � P̂ � to a rank one ba-
sis {w∗

kwk}. If the orthonormal basis is too large, then there is no
suitable transformation to a rank one basis, and all estimates of
w are affected.

In a second experiment, the power of source s2 was lowered to
SNR(s2) = 7.6 dB. As the spacing between s1 and s2 is still only
1 � 5 F , this is a challenging test of the algorithm. (The condition
number of A is now 15.9.) Some results are depicted in figures
12–13. The detection of the other three signals from the singu-

lar values of P̂ remained the same, but the fourth singular value
(apparently corresponding to s2) is raised and now somewhere in
the middle of the gap between the large and small singular val-
ues. The detection that there are four independent signals by in-
spection of the singular values of X is also more difficult now,
even if n � 100. Overestimating d decreases the singular value
gap (resolution) in P̂ if n is small, but the gap remains unchanged
for larger n.

If d and δ are estimated correctly (d̂ � δ̂ � 4), then all signals
are retrieved for n as low as 26 (figure 13). For n � 17, the recov-
ered signals were not sufficiently independent any more. Table
III lists the SIRs for various choices of the parameters. The im-
provement in SIR is about the same as for the first experiment.
Note that if both d and δ are underestimated (as could easily oc-
cur because s2 does not show up very well in the SVD of X), then
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TABLE II

WORST SIR [dB] AFTER SEPARATION, CASE SNR(s2) = 17.6 dB (WORST RECEIVED SIR = −2 P 4 dB/ANTENNA)

d̂ � 4 � δ̂ � 4 d̂ � 5 � δ̂ � 4 d̂ � 6 � δ̂ � 4 d̂ � 5 � δ̂ � 5
ACMA +GSA ACMA +GSA ACMA +GSA ACMA +GSA

n � 100 36.0 34.8 35.4 34.8 35.1 34.8 36.0 34.8
50 27.2 26.8 23.5 26.9 19.5 26.9 (18.9) (36.9)
26 12.6 22.8 6.6 25.1 3.0 25.3
17 8.2 17.2L · M : not all signals were recovered

TABLE III

WORST SIR [dB] AFTER SEPARATION, CASE SNR(s2) = 7.6 dB (WORST RECEIVED SIR = −11 P 5 dB/ANTENNA)

d̂ � 4 � δ̂ � 4 d̂ � 5 � δ̂ � 4 d̂ � 5 � δ̂ � 5 d̂ � 3 � δ̂ � 3
ACMA +GSA ACMA +GSA ACMA +GSA ACMA +GSA

n � 100 24.0 23.1 22.5 23.1 22.4 23.1 (14.1) (34.9)
50 12.2 18.6 9.5 18.5 14.4 18.4 (14.2) (33.2)
26 0.0 2.3 -3.8 9.4 (8.2) (19.6) (12.7) (26.1)
17 (7.0) (9.5) (12.4) (12.8)L · M : not all signals were recovered
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Fig. 12. Experiment with 4 FM signals; SNR(s2) = 7.6 dB. L a M singular values of X; L b M singular values of P̂, with d̂ I 4, and L c M with d̂ I 5.
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Fig. 13. Gerchberg iterations, for d̂ I 4, δ̂ I 4; SNR(s2) = 7.6 dB. L a M n I 50, L b M n I 26.
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s2 is of course lost, but the behavior of the other estimates is ap-
proximately the same.

Note from the tables that the SIR is not always improved by
the additional Gerchberg iterations. The reason is that the GSA is
connected to a different cost function, (29) rather than (17), with
slightly different minima for finite n and SNR. None of these
minima are necessarily coinciding with minimal SIR.

The main conclusion to draw from the experiments carried
out in this section is that in all observed cases the algorithm ob-
tains the optimum of the minimization problem if n is sufficiently
large. For four signals, n � 50–100 is typically large enough,
even under severe conditions. For smaller n, the estimates move
away from their optimal values, but usually, the algorithm still
finds all CM signals if their number has been estimated correctly,
and the optima can be obtained by adding a few iterations of the
Gerchberg-Saxton algorithm as postprocessing. The effect of a
smaller n is mostly felt in a closing of the gap between the larger
and smaller singular values of P̂, which limits the detection of
δ. This is mitigated to some extent by the property that the algo-
rithm is quite robust when d or δ are overestimated.

C. Detection thresholds

What determines the singular values of P̂, and thus the reso-
lution of the algorithm? This is the topic of a separate paper, but
it is relevant to at least summarize some of the results here, as
they explain some properties of the singular value plots quanti-
tatively.

The large singular values of P̂ tend towards 1 �
� n, but for
small values of n, they are not constant yet but distributed along a
line. This distribution is similar to that of the singular values of a
random matrix, which has been investigated in [53,54]. Extrapo-
lating the result in [53], the smallest among the set of d2 −d large
singular values is (with probability better than 0.95) expected to
satisfy

min(large sv) � 1� n
−

d − 1
2

n
� (30)

This matches with the experiments earlier in this section as well.
At the other side of the gap, the δ small singular values of the
numerical kernel should ideally be equal to 0, but with noise they
are increased to

max(small sv) � σ � 2� nm
· cond � A �7� (31)

Here, σ2 is the normalized noise power per sample per antenna:
20 log � 1 � σ � is the SNR of the strongest signal at a single re-
ceiver. The noise is enhanced by a factor � 2 because of the in-
herent squaring of the data. The factor “cond � A � ” is the condi-
tioning of A, and includes two effects. When the array response
is approximately uniform in all directions, cond � A � is just the
square root of the ratio of the power of the strongest signal to
the weakest: this translates σ into the SNR of the weakest signal.
A large (bad) condition number of A may also be due to a close
spacing of two signals, as determined by the resolution limit of
the array. In such cases, a correction by 1 � � 2 is sometimes in or-
der. The above two equations allow to derive the maximal noise
power for which there still can be a gap as

SNR � 3dB − 10logm 1 20logcond � A �7� (32)

(independent of n), and an indication of the minimal number of
samples that is needed in that case,

n
� G

d − 1
2

1 − σ � 2cond � A �6�Q� m
H 2 � (33)

(we still require n � d2, too). They also allow to set automatic
decision thresholds for rank detection in subspace estimators.

VI. CONCLUDING REMARKS

In this paper, we have described an analytic method for solv-
ing the constant modulus problem. The method condenses all
conditions on the weight vectors w into a single matrix P̂, and
finds all independent vectors in the kernel of this matrix that have
a Kronecker product structure. This problem, in turn, is shown to
be a generalized matrix pencil (eigenvalue) problem, which may
be formulated in terms of a super-generalized Schur decomposi-
tion: for given matrices Y1 � · · · � Yδ, find Q � Z (unitary) such that

QY1Z � R1...
QYδZ � Rδ

where R1 � · · · � Rδ are as much upper triangular as possible. We
have proposed a modified QZ iteration which treats all Yk
equally, converges to upper triangular matrices Rk in the absence
of noise, and usually has quadratic convergence in our simula-
tions.

The analytic algorithm is definitely more complex to imple-
ment than the usual iterative approaches for blind beamforming
and blind deconvolution of constant modulus signals. However,
it gives fundamental solutions to a number of problems that have
plagued iterative CM algorithms ever since their inception in the
early 1980s. The most important advantages of the analytic ap-
proach are

1. It is less blind: the number of CM signals are detected ex-
plicitly from the close-to-zero singular values of P̂. Not all
signals have to be CM signals.

2. It is deterministic: the minima of the cost functions are
found by analysis, rather than by trying different initial
points in the usual steepest gradient methods. The only pa-
rameters that have to be set are the total number of signals,
and the number of CM signals.

3. It is robust on small data sets and in the presence of noise,
although a few additional iterations of the standard CMA
may be necessary to find the optimal weight vectors.

4. There are detection criteria that predict how many antennas
and samples are needed in given scenarios (cf. section V-C).

The modest requirements on the number of samples is an impor-
tant issue in applications where multipath causes fast fading.

Signals that are not CM signals but have a kurtosis8 smaller
than two, e.g., QAM and other finite alphabet signals, may be
modeled as a CM signal at the RMS amplitude plus a limited
amount of noise corresponding to the variance on this amplitude.
When the equivalent noise power satisfies (32), then the num-
ber of samples n can be chosen large enough to allow detection
of the signal as a CM signal, and thus to recover this signal as

8The kurtosis of a signal x L t M is defined as κ L x M I E|x L t M |4 �<L E|x L t M |2 M 2.
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well. This “abuse” of the CM property to separate independent
non-Gaussian signals is of course already common practice in
blind equalizers and beamformers ever since their invention (viz.
[6, 55]). It might even be argued that the fourth-order cumulant
techniques in [15–17], constructed to separate independent non-
Gaussian signals, do in fact rely on the same property. Further re-
search is needed to bring the many hidden connections into per-
spective.
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APPENDICES

I. VECTORING OF HERMITIAN MATRICES

For hermitian matrices Y , we can redefine the vectoring oper-
ation vec � Y � to take advantage of the symmetry in Y , and end up
with about half the number of parameters. One convenient way
to do so leads to real vectors instead of complex vectors and is
based on the property (for x ∈ |C )� 2 � Re � x �

Im � x � � � 1� 2
� 1 1

− j j � � x
x∗ � �

Hence, a unitary matrix will transform a vector in which both x
and x∗ are present into a vector where these components are real.
Thus define, for hermitian matrices Y ∈ |C d×d, the hermitian vec-
toring operation “vech” as

y � vech � Y � �
*+++++++++,

Y11

Re � Y12 � � 2
Re � Y13 � � 2

...
Im � Y12 � � 2

Y22...
Ydd

-/.........0 �
i.e.,

y � i−1 � d � k
� &( ) Yii � i � k

Re � Yik � � 2 � i � k
Im � Yki � � 2 � i

�
k

i � k � 1 � · · · � d �
There is a unitary matrix (U, say) with a simple structure, map-
ping the result of the original vectoring operation into the new re-
sult: y � Uvec � Y � . The inverse operation is Y � vec−1 � U∗y � � :
vech−1 � y � , which also may be evaluated explicitly.

Besides the fact that vech � · � is a real vector, a second advan-
tage is that the inverse operation vech−1 returns matrices that are
hermitian by construction. Both advantages show up when we
elaborate on our application (equation (7)). Because Pk

� vkv∗
k

is hermitian, p
k

is a real vector. The implication is that the ma-

trix P, constructed from these vectors, is real, as is the matrix P̂.
Hence, the SVD of P̂ is a real SVD, which saves about a factor

of 3 on computations. Because of the unitarity of the transfor-
mation, the singular values of P̂ and P̂ are precisely the same,
but the basis {y

k
} that we select from the kernel of P̂ consists of

real vectors. As a result, the matrices Y1
� vech−1 � y

1
�<� · · · � Yδ

�
vech−1 � yδ � that we form from the basis are hermitian by con-
struction.

II. PROOFS

Proof of lemma 1

Without loss of generality we may take d � m. Our approach
is to determine how many vectors w there can be such that wX
is a CM signal. As derived in section II-C, each column of X
gives a quadratic equation that the entries of w have to satisfy.
We assume that these constraints are independent.

Since w is a complex vector, it consists of 2d parameters. Any
w can be scaled by a unimodular scaling such that its first entry is
real and positive; since this scaling does not affect the constant-
modulus property of wX, it is an unconstrained parameter, so
that the n columns of X only put constraints on the remaining
2d − 1 parameters. On general principles, we expect that when
n � 2d − 1, there is only a discrete set of isolated solutions for
w. Nonetheless, this set might be too large: e.g., when d � 2,
the isolated solutions are determined by the intersection of 3 el-
lipsoids in 3-space, with 0,2 or 4 solutions. Adding one more
constraint (i.e., n � 2d) will place a new condition on the iso-
lated solutions, to which in general only the original CM source
signals and their weight vectors can comply. �
Proof of lemma 3

To prove equivalence, it remains to show that a set of solu-
tions {yk}δ

1 of the form yk
� wk ⊗ wk is linearly independent if

and only if the corresponding set {wk}δ
1 is linearly independent.

Indeed, with Yk
� w∗

kwk and yk
� wk ⊗ wk

� vec � Yk � ,
{yk}δ

1 is a linearly independent set
⇔ � α1y1 1 α2y2 1 · · · 1 αδyδ

� 0 ⇒ αi
� 0 � i � 1 � · · · � δ �

⇔ � α1Y1 1 α2Y2 1 · · · 1 αδYδ
� 0 ⇒ αi

� 0 � i � 1 � · · · � δ �
⇔ rank !Y1 Y2 · · · Yδ # � δ
⇔ rank ! w∗

1 w∗
2 · · · w∗

δ # � δ
⇔ {wk}δ

1 is a linearly independent set � �
Proof of lemma 4

The only issue to show is the equivalence of p̂1y � n1 3 2 to5 w 5 � n1 3 2. This proof consists of two (technical) steps.
1. We first show that p̂1y � n1 3 2 ⇔ tr � Y � � n, where Y �

vec−1y. (tr � · � is the trace operator.) Indeed, let P̂1
�

vec−1 � p̂1 � . We show that P̂1
� n−1 3 2 I. For this, we use the

fact that Q is unitary and P is constructed from V̂ , an isome-
try. p̂1 only depends on the first row of Q. This row must be
equal to n−1 3 2 ! 1· · ·1 # , because all other rows of Q are nec-
essarily orthogonal to this vector. Using the definition of P
gives

n1 3 2P̂1
� v1v∗

1 1 · · · 1 vnv∗
n

� V̂V̂∗ � I �
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Finally, it remains to note that p̂1y � wP̂1w∗ � ww∗n−1 3 2 �
tr � w∗w � n−1 3 2 � tr � Y � n−1 3 2.

2. Furthermore, when y � w ⊗ w, then tr � Y � � tr � w∗w � �5 w 5 2 so that p̂1y � n1 3 2 ⇔ 5 w 5 2 � n. �
Proof of proposition 5

The relation between V̂ and S may be written as V̂ � ÂS, where
the nonsingular d × d matrix Â is derived from the original an-
tenna response matrix. P was defined in terms of V̂ in (8); in a
similar way, we may define a matrix PS in terms of S. This pro-
duces

P � PS · ! ÂT ⊗ Â∗ # � PS
� *, ! s1 ⊗ s1 # T...! sn ⊗ sn # T -0 (34)

The d2 × d2 matrix ! ÂT ⊗ Â∗ # is nonsingular: its singular values
are given by all cross-products of the singular values of Â. Hence
the propagation environment does not influence the dimension of
the kernel of P (or P̂): it will be too large only if there are spe-
cific phase relations between the signals, valid for all points in
time. It is not a trivial task to analyze these relations, except for
the case d � δ � 2, which is done in the main text. For statisti-
cally independent signals with a rich enough phase space (analog
FM or PM signals, or digital CM signals with reasonably large
constellations or sufficient oversampling), the probability is zero
that the rank of the matrix PS is any lower than necessary. This
becomes more so for larger n. �
Proof of proposition 7

We first show that dist � wV̂ � �
	 � � n−1 � n − ww∗ � 2 1 5 P̂ � w ⊗
w �>5 2.

Indeed, take the definition of dist � · � �
	 � in equation (17), and
make the same series of substitutions as in section II-C:

dist � wV̂ � �
	 � � ∑ � |wvk|2 − 1 � 2� ∑ � 1 − wPkw∗ � 2� ∑ � 1 − pky � 2 � y � w ⊗ w∗ �� 5 *,
1
...
1

-0 − Py 5 2� 5 � n1 3 2

0 � − � p̂1

P̂ � y 5 2� n−1 � n − ww∗ � 2 1 5 P̂y 5 2 �
In making the last step, we have used the proof of lemma 4:
n1 3 2 − p̂1y � n−1 3 2 � n − ww∗ � .

Hence, we
have shown that the distance function dist � wV̂ � �
	 � splits into
two terms. The first term n−1 � n − ww∗ � 2 is only a penalty on the
norm of w: 5 w 5 should be close to n1 3 2. A multiplication of w
by some number c will scale both � ww∗ � 2 and 5 P̂ � w ⊗ w �>5 by
c2. This means that the given minimization problem is separable
into the constrained minimization problem for w,

ε2 : � min 5 P̂ � w ⊗ w �>5 2 s.t. ww∗ � n �

which will provide the direction of w, and the computation
of a scalar c to minimize dist � cwV̂ � �
	 � . After solving the
first problem, the optimal value for c is directly determined by
minc n−1 � n − c2n � 2 1 c4ε2, which has the solution

c2 � n
n 1 ε2 � (35)�
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