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An Analytical Constant Modulus Algorithm
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Abstract— Iterative constant modulus algorithms such as Godard and
CMA have been used to blindly separ ate a super position of co-channel con-
stant modulus (CM) signals impinging on an antenna array. These algo-
rithms have certain deficienciesin the context of conver genceto local min-
ima and the retrieval of all individual CM signals that are present in the
channel. In this paper, we show that the underlying constant modulus fac-
torization problem is, in fact, a generalized eigenvalue problem, and may
be solved via a simultaneous diagonalization of a set of matrices. With this
new, analytical approach, it is possible to detect the number of CM signals
present in the channel, and to retrieve all of them exactly, re ecting other,
non-CM signals. Only a modest amount of samples are required. The al-
gorithm isrobust in the presence of noise, and istested on measured data,
collected from an experimental set-up.

I. INTRODUCTION
A. Blind signal separation

An elementary problemintheareaof spatial signal processing
isthat of blind beamforming. This problem arisese.g. in thefol-
lowing wirelesscommunicationsscenario, illustrated in figure 1.
Consider a number of sources (“users’) at distinct locations, all
broadcasting signals at the same frequency and at the sametime.
The signals are received by a central platform containing an ar-
ray of antennas. By linearly combining the antenna outputs, the
objective is to separate the signals and to “copy” each of them
without interference from the other signals. Thetask of theblind
beamformer isto compute the proper weight vectorsw; from the
measured data only, without detailed knowledge of the signals
and the channel.

Mathematically, the situation is described by the simple and
well-known data model

X = AS, 1)

where the matrix X : mxn is a collection of n snapshots from
each of the m antennas, A : mxd is the array response matrix,
and S: d xn isthe signal matrix, withd rowss (i = 1,---,d)
corresponding to each of the d source signals. This model is a
reasonably accurate description for stationary propagation envi-
ronments in which the multipath has only a short delay spread
(as compared to theinverse of the signal bandwidths), so that no
equalizationisrequired. The beamforming problem may thusbe
formulated as a structured matrix factorization problem: given
X, find factors A and S satisfying certain structural properties.
Once Aisknown, theweight vectorsw; for signal copy aregiven
by the rows of W, whereW = A is the pseudo-inverse of A.
Although we will be concerned with blind beamforming, itis
useful to notethat quite similar structured factorization problems
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Fig. 1. Elementary blind beamforming scenario

arise in the context of blind equalization of a single source ob-
served through an unknown time-dispersive channel. The two
scenarios might even be combined into a blind multi-user sep-
aration problem in the presence of long delay multipath. Such
problems are often separable into an equalization and a separa-
tion (beamforming) step (viz. e.g. [2]), so that a generic solution
to the blind beamforming problem is aso relevant in the com-
bined scenario.

One mainstream of approaches for computing the structured
factorization has focused on properties of the A-matrix. In par-
ticular, the columns of the A-matrix are (not always correctly)
assumed to be vectors on the array manifold, each associated
to a certain direction-of-arrival (DOA). The identification of the
DOAs necessitates the use of calibrated antenna arrays (for the
MUSIC algorithm [3]) or specia array geometries (for the ES-
PRIT agorithm[4]), and puts seriouslimitations on the propaga-
tion environment aswell: sincein principlethedirection of each
multipath ray is estimated, the total number of dominant rays
has to be less than the number of antennas. Moreover, rays can-
not have identical delays, and diffuse multipath is not allowed.
For short-delay or diffuse multipath, it might be more accurateto
model each column of A asthe sum of two (or many) vectorson
the array manifold, but then the estimation of all corresponding
directionsis computationally very intensive, if possible at all.

A second class of approaches, more promising in the pres-



ence of unstructured multipath and useful in the context of
blind equalization as well, exploits structural properties of the
Smatrix that should hold and be reconstructed by the factoriza-
tion. One widely used property isthe constant modulus of many
communication signals (e.g. FM and PM in the analog domain,
and FSK, PSK, 4-QAM for digital signals). A related but dis-
tinct property is the finite alphabet of digital signals. The idea
of modulus restoral has its roots in the work of Sato [5], Go-
dard [6], and Treichler, Agee, and Larimore[7,8], al for the pur-
pose of blind equalization; the algorithms are known as CMAs.
They are usually implemented as stochasti ¢ gradient-descent op-
timizers of a modulus-error cost function, and are in that form
quite similar to decision-directed adaptivefiltersor Bussgang al-
gorithms for finite-alphabet restoral (the literature is abundant;
viz. [9]). The application of the CMA to blind beamforming is
straightforward and was first considered in [10, 11]; a combined
spatio-temporal CMA was proposed in [12]. Blind beamform-
ing based solely on the finite alphabet structure is developed in
[13]. Other properties of Sthat might be used are the spectral
self-coherence of communication signals, leading to the SCORE
class of blind beamforming algorithms[14], and several statisti-
cal properties: e.g. the assumed independence of the sources al-
lows to separate non-Gaussian signal s based on their high-order
cross-correlations [15-18].

In the context of blind equalization of digital signals, finally,
the cyclostationarity of such signals may be exploited by the use
of multiple antennas[19], or by sampling faster than the symbol
rate and using fractionally spaced equalizers (FSE). The spatial
or temporal oversampling of cyclostationary signals leads to a
data matrix factorization X = HSin which both the channel ma-
trix H and the signal matrix ShaveaHankel or Toeplitz structure.
Thisstructure by itself isaready strong enough to determinethe
factorization, as is demonstrated in the innovative approach by
Tong, Xu and Kailath [20], but perhaps more clearly visible in
consecutive work [21, 22]. It may also very effectively be com-
bined with the properties of Sinto a single scheme, such as FSE
with CMA [23, 24], or FSE with finite alphabets [2, 25]. The
latter papers consider the more ambitious joint separation and
equalization of multiple digital signals, but the same should be
possible with FSE-CMA aswell. As mentioned before, in these
applications the equalization and beamforming stages are sepa-
rable, and areliable solution to the elementary blind beamform-
ing problem s crucial.

In this paper, we will limit ourselves to blind beamforming
of constant-modulus (CM) signal s, assuming no other properties
of the signals except their independence. Thisblind CM beam-
forming problemwasintroducedin[10,11], and solved using the
CMA [7], but in a restricted form: only the reception of a sin-
gle signal-of-interest among other interfering signals was con-
sidered. It was observed that the algorithm can lock onto one of
the interfering signals rather than the desired signal. Inlater pa-
pers, this misbehavior was used to set up amulti-stage CMA, in
which theintentionisto capture all incident CM signals[10, 26,
27]. The output of afirst CMA stage results in the detection of
the first CM signal. By an orthogonal projection, or an LMS-
implementation of it, thissignal is subtracted from the data ma-
trix, and the resulting filtered datais fed to a second CMA stage
in order to detect a possible second CM signal. However, for
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short data sequences, the signals are not yet orthogonal to each
other, and the projection leads to a misadjustment in the second
and subsequent stages, thus limiting its performance. To miti-
gate this effect, the forced orthogonality of the signals may be
relaxed [28-30] by only making sure that they are “ sufficiently”
independent of each other. In these schemes, anumber of CMAs
are running in parallel, all started from distinct initializations.
Orthogonality is tested and weakly restored at the end of an up-
date block of n samples.

Although the latter approach has been successfully demon-
strated in an on-line outdoor experiment [31], it provides only
a heurigtic solution to the underlying, very tough problem: how
can gradient descent techniques be used to converge reliably to
all minima of the cost function. Indeed, how do we know the
number of minimato look for in thefirst place? When only afi-
nite block of dataisavailable, itisvery likely that there arelocal
minima of the sample cost function as well, not corresponding
to any of the source signals. Depending on the initialization of
the gradient descent optimization, the CMAsdo converge some-
times to these solutions. In this respect, it should be noted that
global convergenceof the CMA hasonly been proven for infinite
setsof data(or inthe averaged sense) [32], and only for scenarios
that admit aperfect solution. Finally, convergenceof the CMAs
may be slow and irregular, especially for weak sourcesand short
data sets.

B. Contributions

In this paper, we introduce a new approach to the constant
modul us factorization problem. We show that the problemises-
sentially ageneralized eigenval ue problem and can be solved an-
alytically, by adeterministic algorithm and using only afinite set
of data (n samples of m antennas). In particular,

— For d < msources, and without noise, n > d? samplesare suf-
ficient to compute A and S exactly, via a certain eigenvalue
problem.

— Forn> d?, itispossibleto detect the number of CM signals
present in X. Thisimplies that not al sources have to gen-
erate CM signals, although the algorithm only recovers the
CM sources.

— With X distorted by additive noise, ageneralization of the al-
gorithm is robust in finding S, even when n is quite small.
Thisis demonstrated with experimental data.

The agorithm is derived by setting up the equations for the
weight vector w such that wX isa CM signal (section Il). This
gives n quadratic equationsin the entries of w, which can belin-
earized when written in terms of the Kronecker product w 0w, a
vector with d? entries (W is the complex conjugate of w). If n >
d?, then the dimensionality of the solution space of this linear
system of equationsindicates how many CM signals are present
in X. Most solution vectors of the linear system do not have the
Kronecker structure w [0W; the core of the CM problemisto find

IThisisnot somuch an issuein blind beamforming wherethe usual assumption
is that the number of sourcesis at most equal to the number of sensors, but has
caused much confusion in the blind equalization of FIR channels by FIR equal-
izers, viz. [33]. Current insight is that a fractionally sampled equalizer allows a
perfect solution and thus assures asymptotic global convergence [24].
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those that do. It isshownin section 111 how this problem can be
transformed into a generalization of an eigenvalue problem: the
simultaneous diagonalization of a number of matrices. Without
noise, this problem has an essentially unique solution which can
be found using standard linear algebratools. With noise added
to X, thereisin general no exact diagonal solution, and we have
to find an approximate simultaneous diagonalization. Thisisa
challenging, non-standard linear algebra problem, for which we
propose an algorithm that exhibits quadratic convergencein sim-
ulations (section IV). In section V, the algorithm is applied both
to computer generated data and to measured data sets, with very
good results.

It is not the first time that a Kronecker approach has been
proposed to solve the CM problem, viz. e.qg. [34-36]. How-
ever, these authors operate in the equalization context and try to
find only one structured solution w (I W to the linear system, ig-
noring the fact that there might be more such solutions (in the
equalization context, this occurs if the equalizer length is too
long). Interestingly enough, an entirely similar simultaneous
diagonalization problem did turn up in fourth-order cumulant-
based techniques for blind separation of multiple non-Gaussian
signals[15-18]. With hindsight, one might perhaps say that CM
signals are deterministic counterparts of non-Gaussian signals,
but only asfar asthefourth-order cumulant isconcerned. At this
point, we are only aware that there must be connections, but the
details remain to be sorted out.

C. Notation

Lower case bold (as in w) denotes either a row or a column
vector. Itsi-th entry is sometimes denoted as (w);. w' is the
transpose, W is the complex conjugate, and wt is the complex
conjugate transpose. [ isthe Kronecker product. For matrices,
AT denotes the Moore-Penrose pseudo-inverse, row(A) denotes
the row span (co-range) of A.

[I. PROBLEM FORMULATION AND
TRANSFORMATION

A. Problem statement; uniqueness

In this section, we discuss the actual problem that will be
solved. Starting from the datamodel X = ASin (1), wefirst note
that without loss of generality, the constant modulusof all signals
may be modeled to be equal to 1: any other value of the ampli-
tude of one of the signalsis absorbed in the A-matrix by a proper
scaling of corresponding columns of A and rows of S. Hence,
the problem we consider is, for a given data matrix X, to find a
factorization

X=AS with A Sfull rank, |S;j|= 1. 2
A dlightly more general way to formulate the problem is ob-
tained by premultiplying (2) withW = AT, where AT denotes the
pseudo-inverse of A:

Problem P1 (CM factorization problem) For a given data
matrix X : mxn of rank d, find & and W :  x m, such that

WX=S, [§j|=1,

where Sisof full rank and d < d isaslarge as possible.

In this formulation, X is alinear combination of d signals, but
only & < d of them are of CM type. Only the CM signalswill be
reconstructed by the beamformer.

The formulations X = AS and WX = S are equivalent only
if the factorization X = ASis essentially unique, meaning that
the only CM signals that can be constructed by the beamformer
are the signals that were originally sent, and not some spurious
“ghost” signals. Trivial transformations such asthe choice of or-
dering of the rows of Sand the complex phases of the entries of
the first column of S cannot be avoided but lead to an admissi-
bleform of non-uniqueness. Savefor these transformations, and
under conditionsthat A, Sare full rank and the sources generat-
ing S are “sufficiently independent” and have “sufficient phase
richness’, uniquenessis guaranteed with probability 1 oncenis
“largeenough”. Thisiswell knownford=d,n - o, andanalog
CM signas (viz. e.g., [7] for equalization, [37] for beamform-
ing). One may have concerns on the “ sufficient phase richness”
of digital CM signals with small constellations, but in fact even
BPSK signalsgiveuniquefactorizations[13]. However, asharp-
ening of then — oo condition is possible.

Lemma 1: Supposethat X : mxn hasrank d and that the fac-
torization { X = AS,|Sj| = 1} isuniquefor n — . Thenthefac-
torizationisin general already uniquefor n=2d.

Proof: See Appendix B. m|

The agorithm which we derive in this paper requiresn > d?,
whichisstill quite reasonablefor small valuesof d (say d < 10).

B. The Gerchberg-Saxton algorithm

Denote by row(X) the subspace spanned by the rows of X (the
co-range of X), and define the set of CM signals as

CM={8|l|sj|=1, ali,j}.

Problem P1 asksfor all row vectorsw (the rows of W) such that
wX =sisaCM signal, for linearly independent signalss. Hence
we have the following lemma:

Lemma 2: Problem P1 is precisely equivalent to finding all
linearly independent signals s that satisfy

(A) sOrow(X),
(B) sOCM.

From this formulation, it is straightforward to devise an a-
gorithm based on alternating projections. start with a (random)
choice of sintherow span of X, and alternatingly project it onto
CM and back onto the row span of X. Theset CM isnot alinear
subspace, so that the the projection onto CM is non-linear:

O . Wn
V)il 7 1Yl

i.e., every entry of the vector isradially projected onto the com-
plex unit circle. It is customary to estimate weight vectors w
rather than signals, in which case the alternating projection al-
gorithm is expressed as the iteration

Pem(y) =

Wi+ = [Pey (W)X, 3)

(Notethat st = w() X, and that - XTX isaprojection onto the row
span of X.)



Itisinteresting to notethat thisis awell-established algorithm
in the field of optics for solving the phase-retrieval problem,
where it is known as the Gerchberg-Saxton algorithm (GSA)
[38]. The connection of the phase-retrieval problem with the
CM problem was made only recently [37]. Essentially the same
algorithm was derived from the CMA by Agee [39], called the
LSCMA, and claimed to have faster convergence than the stan-
dard CMA. It is aso closely related to the OCMA variant by
Gooch and Lundell [11], who replaced the LM S-type updating
of the CMA by an RLS-update. One difference of the GSA and
LSCMA with other CMA methods is that they are block meth-
ods. they iterate on X, rather than update vectors xi. Hence,
they typically requirelessdata(smaller n), although of coursethe
standard iterative CM A couldreuseold dataaswell. Conversely,
the GSA/LSCMA methods could be used on data matrices of in-
creasing sizes, by introducing updating versions for the pseudo-
inverse, which leads to the OCMA. The disadvantage of using
these iterative algorithms on small finite data setsis that global
convergence propertiesare lost: spuriouslocal minimacould be
introduced. It is not known how large the block-size has to be
before the asymptotic global convergenceresults are applicable.

C. Equivalent problem statement

However, our intent is to compute an exact solution to the
problem inlemma?2 viaanalysis, and not via aternating projec-
tions. Recall that we are searching for al vectors s that are in
the row span row(X) and also have the CM property. The first
property has so far been captured as requiring s = wX, but it is
more convenient to take linear combinationsof aminimal (ortho-
normal) basis for the row span of X. This avoids problemswith
non-unigqueness of w when d < m, and makes sure that different
linear combinations lead to different signals.

Thuslet X =UsV:U OC™™, > OR ™" Vv OC™ beasn-
gular value decomposition of X [40]: U andV are unitary matri-
ces containing the singular vectors, and % isareal diagonal ma-
trix with non-negative entries: the singular values. Suppose that
there are d sources, so that the rank of X isequal tod. Only d
singular values are non-zero, and we collect the corresponding
right singular vectors of V in amatrix V O C " The rows of
V form an orthonormal basis of the row span of X, and we can
rewrite condition (A) in lemma?2 as

A :

Here, theweight vector wisnot precisely thesameasbefore: itis
now acting on the orthogonal basisvectorsof row(X), rather than
directly on X. Thisreducesthe number of parametersto estimate
frommtod, and ensuresthat linearly independent w resultinlin-
early independent s. A second advantage of an orthogonal basis
isthat the corresponding matrix W (acting onV instead of X) has
a condition number that tendsto 1 as n grows:. for uncorrelated
signals and large n, S,/n becomes an isometry and W//n, asa
mapping of one isometry into another, becomes unitary. When
using X instead of V, W would have a bad condition number if
signals come from close directions.?

sOrow(X) < s=wV V:dxn.

7

2Theideato switch to an orthogonal basis and force W//n to be close to uni-
tary can be used to enhance convergence to independent solutions in iterative
CMA algorithms as well. Similar to Pro-ESPRIT [41], such an approach could
be called a Procrustes-CMA.
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To rewrite condition (A) : sTICM, putV = [vy --- vn], where
Vi 0c % isthei-th columninV. Then

A s=[(91 - (9n] O M

<[9P - (] = [1 -+ 1]
wvivin® = 1
an\./,E\NEI =1

If we define P = vivil 1C %9, for k = 1,---,n, then the above
derivation has shown that problem P1 is precisely equivalent to
finding all linearly independent vectors w such that

whRw =1, k=1,---,n, (4)
which calls for the simultaneous solution of n quadratic equa-
tionsinto the entries of w, or the intersection of n ellipsoids. To
find all solutions, the approach is to expand these equations in

the entries of w, which leads to Kronecker products.
For matricesY OC %9 and vectorsy [OC dz, denote

Y
vec(Y) i= Y;l ) ®)
Yc:jd
Eygl Eygz EY;d
vec 1(y) _ 'y d+1 Y)d+2 :y 2d ©)
(¥)d2-g+1 (¥)a2
If we set
[ (W)l(W)E 1
(W) (W)}
y = vec(wHw) = (W)l:(W)E —wOwoc ¥
(W)Z.(W)l
| (W)a(w)g |
Pk = vee(P)T=[R)u (P12 (P adl,

then the quadratic expression wRw" is“linearized” as

(")

Collect the n condition vectors py in one matrix P of size nx d?:

2] (i
P= = . A
Pn

[ O va]T
Lemma 3: Problem P1 is precisely equivalent to finding all
linearly independent vectorsy satisfying

i

wOw (10)

WRW" = pyy.

(8)

Py = (9)

y:
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For each solution w, the corresponding CM signa is given by
sS=wV.

Proof: To prove that this problem is equivalent to solving
equation (4), and hence problem P1, it remains to show that a
set of solutions {wy O Wk}? is linearly independent if and only
if the corresponding set {Wk}flS is linearly independent. Thisis
straightforward; see Appendix B. O

The linear system of equations (9) is overdetermined for n >
d?. Nonetheless, if there is more than one CM signal present in
X, there has to be more than one solution y to the linear system,
and because they are linearly independent, P has to be singular.
Hence, the set of independent solutionsy to the linear system is
not unique: any vector in the kernel of P can be added to any so-
[utiony. The second condition (10) restrictsthe solution spaceto
vectorsy that have a certain structure: they must be expressible
as a Kronecker product of a vector with its complex conjugate.
Note that it is not sufficient to compute solutions y to the sys-
tem of equations and hope that they have the required structure
y=wOWw.

In general, the solution spaceto (9) can be written as an affine
space of theformy = yo+ d1y1 + -+ 0ys, Wwhereyg isapar-
ticular solutionto (9), andyq, - -,y isabasis of the kernel of P.
We find it more convenient to work with afully linear solution
space, which is obtained via a linear transformation, as follows.
Let Q be any nxnunitary matrix such that

nl/2
il
! 0

Simple choices for Q suffice; e.g., Q could be a Householder
transformation [40],

1 nt/2
O
qq 1 0
=1-2_=, =7 |- X , 11
Q a9 q : : )
1 0
or Q could be aDFT (discrete Fourier transform) matrix. Apply
QtoP:
. ﬁ} Ql . 1><d2
QP =: [ P ] ’ P: (n-1)xd?

With these definitions, we have

! _ { () py = ntf?

i (i) Py = 0.
We will show that the first condition can always be satisfied by
scaling a non-trivial solution to the second equation. This then

leads to the following equivalent problem statement:
Lemma 4: The CM problem P1 is precisely equivalent to the
following problem. Let X be agiven matrix. With P OC (n-1)xd?

andV constructed from X, find all linearly independent non-zero
solutionsy that satisfy

Py = (12)

Py = 0

y W, (13)

|

=
O
=

For each solution w, scaled such that [|w | = n'/2, the vector
s=wV isaCM signal containedin X.
Proof: See Appendix B. O

Suppose that the dimension of the kernel of Pisequal to some
number & (we will arguein section 111-A below that in general &
is, indeed, equal to the number of CM signals). Let{y1,---,ys}
beabasisfor thiskernel. It can be computed viaa QR factoriza-
tion, or, with more numerical accuracy, froman SVD of P. Inthe
latter case, {yk} ? aretheright singular vectors corresponding to
thed singular valuesof P that are zero. With abasisof thekernel,
any solutiony to Py = 0 can bewrittenasy = o1y, + -+ azYs
for arbitrary coefficientsa; OC. The conditionthaty =wOW
aswell ismore conveniently expressed asY = wtw, whereY =
vec L(y). Likewise, denote by Yy = vect(yy), k=1,---,9, the
corresponding d x d matrices constructed from the chosen basis

of ker(P). Since

O1y1+---+0zyz=wlUW
= 01Y1+ -+ 03Y; =ww

it isseen that, in essence, we haveto find scalar linear combina-
tions of a set of matrices (a generalized matrix pencil for more
than two matrices) such that the result isarank 1 hermitian ma-
trix, hence factorizable asw-w. Linearly independent solutions
w correspond to linearly independent y, andinturnto linearly in-
dependent parameter vectors[ay --- az]. Hence, we may rewrite
the conditions(13) in termsof the Yy, which givesanew problem
statement that is entirely equivalent to the original CM problem.

Problem P2 (Equivalent CM problem) Let X be the given
matrix, from which the set of d x d matrices {Yy,---,Y;} are
derived as discussed above. The CM problem P1 is precisely
equivalent to the following problem: determine all independent
non-zero parameter vectors [0y -+ a3 such that

O(1Y1+---—|—O(8Y8=W[\N. (14

For each solution w, scaled to ||w|| = n/2, the vector s=wV is
aCM signal contained in X.

Finding all solutionsto (14) is thus the core of the CM prob-
lem. In the next section, we show that (14) is, in fact, a general-
ized eigenvalue problem.

Remark

The given definition for the vec-operation in (5)—(6) does not
make use of the fact that we only apply it to hermitian matrices
wHw and Py. Other choices that do make use of this are possi-
ble; e.g., wecould definevec(w-w) to beareal vector containing
Re((w)i(w)§), Im((w)i(w)}) instead of the redundant (w); (w)"
and (w);j(w). This transformation to real vectors leads to an
equivalent but numerically and computationally favorable vari-
ant of the procedure and is detailed in Appendix A. The result
is that, with this alternate definition, P and P are transformed to
real matrices, and that the basis matrices Y constructed from the
kernel of P are hermitian by construction. The coefficientsay to
be computed may then be restricted to reals as well.

1. EXACT SOLUTION TO PROBLEM P2

In this section, we will show that problem P2 admits an exact
solution, which can be computed using standard linear algebra



techniques. We still operate under the assumption that there ex-
ists a solution, and that the solution is essentially unique. For
computability, we will now also require that n > d?.

A. Estimation of the number of CM signals

We first show that there is arelation between 9, the number of
CM signalsthat are presentin X, and 9, the dimension of the ker-
nel of P. With &independent constant modulus signals, there are
0 linearly independent solutionsw to the CM factorization prob-
lem, corresponding to d linearly independent vectorsy = w W
inthekernel of P. Hence, itisnecessary that dimker P> 3. Since
P: (n-1)xd2 we also have dimkerP > d2-(n-1). To be
able to detect 3 from dimker P, we have to require that, at least,
n>d?+ 1.

Proposition 5: Let & be the number of CM signalsin X, and
suppose n > d2. Then dimkerP = 5. Generically, dimkerP = 3.

Proof: See Appendix B. O

Inthe proof it is shown that the occurrence of the non-generic
case where d > 9 isindependent of the propagation environment
and can only happen if there are specific phase rel ations between
the signals. Explicit examples can be constructed for the case of
two CM signals s1, Sp: arank deficiency occurs if and only if
there are constants a, ¢ [0C such that for each sample point k,

(s1)k(S2)k+ a(s2)k(S1)k =c.

Writing (2)k = (S1)k€Xp j @, where ¢ is the phase difference
between the two signals, this reducesto
e 1% 4 qel% =, (15)
For every choice of constants a, ¢, there are at most two values
for ¢ such that the equation holds. Hence, adegeneracy can oc-
cur only for BPSK-type (two state) signals sampled at the sym-
bol rate. E.g. for BPSK, ¢ [0 {0, 1}, so that there are constants
(a = -1, c = 0) for which (15) holdsfor all k. A problem also
occursfor MSK signals, which are +1 for even k and + for odd
k. These degeneracies go away when the signals are fractionally
sampled, because ¢ then also assumes intermediate values.

B. Computation of W

We will assume from now on that dimker P = 3 isequal to the
number of CM signalsin X. The CM problem is solved once we
have found all 6 independent parameter vectors[ay, ---,as] that
make the generalized matrix pencil (14) rank one and hermitian.
Thisproblemisin essenceageneralized eigenvalueproblem. In-
deed, if d = d = 2, thenthere are two matricesY; and Y,, each of
size2x2, and we haveto find A = /a4 such that Y1 + AY; has
its rank reduced by one (to become one). For larger 3, there are
more than two matrices, and the rank should be reduced to one
by taking linear combinationsof all of them. Thiscan beviewed
as an extension of the generalized eigenvalue problem.

From the opposite perspective, suppose that the solutions of
the CM problem are wy, ---,wg. We already showed that w1 [
Wy, - -, W5 O Wy isalinearly independent set of vectors; together
they are abasis of the kernel of P. Moving to matrices, each of
the matrices Y, - -+, Y isa different (independent) linear combi-
nation of the “pencil basis” wiwy, -+, Wsws, i.e.,
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Y1 = AaWiwg + ApW5Wo + -+ A gsWsws = WEAL W

Y2 = A21WiW1 + AgoW5Wo + -+ -+ A s Wi W = WEALW (16)
Ys - AsIWIW1 + AspWoWo + -+ + A ssWsWis - WEAW
where
w1 A1 0
W=| |, A= . (k=1,---,9).
W 0 Ao

Hence, by the existence of a solution to the CM problem, there
must be a matrix W whose inverse simultaneously diagonalizes
Y1,:-+,Ys. (Itsuniquenessis, in fact, proven in [15] for the case
of hermitian matrices Yg.) This makes problem P2 equivalent to
the following problem.

Theorem6: Suppose n > d? and dimker(P) = 3. Then the
CM factorization problem P1, or P2, is equivalent to a simulta-
neous diagonalization problem: find W : xd (full rank &) such
that

Y., = WEAW (A1,-++,As DC P9 diagonal®)
Y, = WAW
Ys = WAsW

In general, Y1 and Y, are d x d matrices of rank 8, and not
lessthan d. Inthiscase, ageneralized eigenval ue decomposition
of just Y; and Y, will aready determine W: there exist matrices
M,N (invertible) such that

MBY;N =
MAYLN =

AV
N;

where A1, /\, are diagonal matrices, sized xd, each with  non-
zero entries. Reducing these matricesto 6 x 6 diagonal matrices
with non-zero entries on the diagonal, and trimming M and N
likewiseto full rank 6xd matrices, we obtain the decomposition

MOYIN =

A
MOY,N =

Ns.

M and N are unique up to equal permutations of their columns
and (possibly different) right diagonal invertible factors. This
uniquenessimpliesthat, after asuitable diagonal scaling, we can
arrange it such that M = N =W, or W = N, with each row of
W having norm n%/2,

For the case where Y; and Y, are not of rank 9, it is possible
that they do not fully determineW, so that the other Y, also have
to betaken into account. It isobviousthat it is possibleto obtain
W also in this case, but we omit the details of this more general
procedure at this point. Numerically, itisbetter to takeall Yy into
account in all cases, and thisis of course preferable in the pres-
ence of noiseaswell. Such an algorithmis described in the next
section.

Hence, we have shown at this point that in absence of noise,
the CM problemisin fact ageneralized eigenval ue problem and
can be solved explicitly.

31f we make sure that the Yy are hermitian by our choice of the vec-operation,
thenthe Ay arereal.
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IV. THECM PROBLEM WITH ADDITIVE NOISE
A. Equivalent optimization problem
With noise added to the data,

X =AS+N,

an exact decomposition of X as X = ASis no longer possible.
To recover the CM signals, we first define a (squared) distance
function of signalsto the set of CM signals,

n

dist(sCM) = 3 (I -1)%.
k=1

(17)

In terms of this distance, the problem can be posed as finding &
independent signals s that are minimizers of

min{ dist(s,CM) | sOrow'(X)}, (18)

whererow’ (X) isthe estimated row span of S, whichwewill take
to be the principal row span of X as determined using an SVD.
Thuslet X = UXZV as before, and let d be the number of singu-
lar values of X that are significantly larger than zero. The detec-
tion of d from the singular values is relatively straightforward
if the noise power and the statistical distribution of the noiseis
known, but notoriously non-trivial otherwise (cf. [42] and ref-
erences therein; we do not go into details here). The rows of V
corresponding to these singular values form an orthogonal basis
of the principal row span of X, and are collected in the matrix
V. The matrix P and P can be constructed from V as in section
[1-C. Thefollowing propositionisaresult of expressing the cost
function in equation (18) in terms of P and w.

Proposition 7: The CM problem with noise (equation (18)) is
solved by finding the set of all linearly independent minimizers
y of .

&) == min || Py|%, (19)
subject toy = wOW, ||w|| = n¥/2. For each such y, the corre-
sponding signal siss= (cw)V, where the corrective scaling cis
givenby ¢ =n/(n+€2).

Proof: See Appendix B. |

The correction of w by ciscloseto 1 and of no importancein
practice, asit will only scale the amplitude of the corresponding
signal s.

Minimizing (19) with the given conditions on y undoubtedly
requires some iterative method, but the route set out by the solu-
tion of the noiseless case will provide accurateinitia points for
suchamethod. Thus, wefirst compute abasis of orthogonal vec-
tors yk that solve (19) without structural constraint: as before,
thesefollow froman SV D of P astheright singular vectorscorre-
sponding to the smallest & singular values (the numerical kernel
of P). The number of CM signalsis estimated from the number
of singular valuesthat are* significantly smaller” than the others;
asuitable threshold level isgivenin (30) later in this paper. The
next step is to unstack the vectors yy into corresponding matri-
ces Yy = vec (yy), and subsequently impose the required Kro-
necker structure onto these matrices: linear combinations of the
Y should result in matricesthat are closeto rank-1 hermitian ma-
trices of the formw-w, i.e.,

arYi+ 05 =Y ~ whw. (20)

Again, it isnot clear how to solve such aproblem exactly. Inthe
noise-free case, the solution was given by a simultaneous diag-
onalization of d matrices Y, ---,Ys, but it could be found from
only two of them. We now extend the simultaneous diagonal-
ization approach to the noisy case, thistimetaking all available
Yy into account.

B. Smultaneous diagonalization as a super-generalized Schur
problem

Assume, for the moment, that thereisno noise added to X. As
we have seen in theorem 6, the matrix W 0C 9 that we try to
find is full rank and such that

Y, = WIAW (A1,-++,N\s OC %2, diagonal) (21)
Y, = WIAW
Ys = WIASW.

With noise, we can try to find M = W' to simultaneously make
MM, -+, MBYsM as much diagonal aspossible. Because M is
not unitary, thefact that it hasto havefull rank ishard to quantify,
and it makes senseto rewritethis d-generalized eigenval ue prob-
lem asad-generalized Schur decomposition. Wefirst explainthe
procedure for the noise-free case. Bring in aQR factorization of
W and an RQ decomposition of W:
W'=Q'R, WwW=R'Z"

where Q, Z are unitary d xd matrices, and R OC %, R" OC %
are upper triangular. The factorizationsare of courserelated, but
wewill ignorethisfor themoment. If d < d, then we can arrange
that only the leading &% d blocks of R and R’ are non-zero (and
non-singular). Substitution into (21) leadsto

QMZ = R (Ry,-+,Rs0C™, uppertriang.) (22)
QZ = R
Q%Z = Rs
with
R. = RAR
Ry = RAR'.

Only the top-left 3x & block of each Ry is non-zero. In addition,
each of these blocks is non-singular. Hence, there exists Q,Z
such that QYxZ is upper triangular, for k = 1,---,9, which is a
generalized Schur decomposition, but for & matrices rather than
two. With this decomposition, it is seen that a parameter vector
[01 -+ O] satisfies (20) only if

o1R;+ -+ asRs isrank 1. (24)

Withthemodel of Ry, - - -, Ry in (23), weobtain that, equivalently,
011+ -+ 0s\s isrank 1.

Since all the Ay are diagonal, the o are straightforward to com-
pute: only one entry of the diagonal matrix a1/ + -+ + 0g/\;5



canbenon-zero. Settingthisentry equal to one, all possible para-
meter vectors[aq -+ O] follow by constructing amatrix whose
columns consist of the diagonal entries of the Ay,

(A1) (M)ss
A . .

(/\e;)aes

The rows of A™! are the independent vectors [a; -+ ag]. A
straightforward generalization shows that we do not need to
compute the factorization (23), as the parameters can be com-
puted directly from the main diagonals of R without knowing
the Ag:

Proposition 8: For given Yy, ---, Y5, assume the decomposi-
tion (22) and the existence of decomposition (23). All indepen-
dent parameter vectors [0y --- as] suchthat Y :=daiYs + -+
0Ys hasrank 1 are given by the rows of A:

(R)11

(/\e;) 1

(R1)ss

A=R?, R=

(Rs)11 (Re)ss

Proof: Because the Ry are upper triangular, a necessary
condition for (24) to hold is that the resulting matrix hasamain
diagonal with at most one non-zero entry. But, in view of the
existence of factorization (23) with R, R” having non-singular
main diagonals, it cannot happen that the main diagonal of the
result isall zero. |

Note that proposition 8 by itself does not ensurethat Y is her-
mitian, unlesse.g., al Y;'sarehermitianand all R'sarereal. This
featureisaside effect: the set of & independent solutionsY isin
our case unique, and it suffices to enforce the rank-1 property.

Factoring each of the 6 rank-1 matricesthat isobtained in this
way gives 0 independent vectors w, which form the rows of the
matrix W that wewerelooking for in equation (21). Hence, inthe
noise-free case, the computation of a“super-generalized” Schur
decomposition, i.e., two unitary matrices Q, Z, givesthe solution
to the simultaneous diagonalization problem. Although it seems
at first sight that we have doubled the number of parameterstoes-
timate (two matrices Q, Z, rather than one matrix W), thisis not
true: the fact that the matrices are unitary makes that the total
number of parameters to estimate is precisely the same. How-
ever, the constraint that Q, Z be unitary is a desirable condition,
whereasthe fact that W must have full rank isdifficult to handle.

We now return to the case where the datamatrix X is distorted
by noise. In this case, thereis no unitary Q, Z which simultane-
ously makes all matrices Yy exactly upper triangular. However,
we can try to find Q, Z to make these matrices as much upper
triangular as possible, by minimizing the Frobenius norm of the
residual lower triangular entries. One approach for doing thisis
described in section 1V-C below. It is an extension to more than
two matrices of the usual QZ iteration for computing the gener-
alized Schur decomposition of two matrices. There are several
other approachesfor solving simultaneous diagonalization prob-
lems aswell, as discussed in that subsection.

With Q,Z and henceRy, - - -, Rs obtained thisway, we can com-
pute all independent parameter vectors[ay --- 0is] asin proposi-
tion 8. Each parameter vector givesamatrix Y, approximately of
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the form Y ~ wHw, and each w can be estimated as the singular
vector corresponding to the largest singular value of each Y. It
remainsto scale w to ensure that ||w|| = n%/2

The above scheme provides an approximate solution to the
problem in theorem 7, i.e., the CM factorization problem with
additive noise. The algorithm is summarized in figure 2; we call
it the ACMA. Itisnot clear in what sense the solution approxi-
matesthe optimal solution; however, it findsthe exact solutionif
there is no noise, and simulations give very accurate results for
moderate noise levels or large n. For high noise levels, closely
spaced signals, or small n, the vectors w that are obtained by
the above procedure can be used as initial starting pointsin a
Gerchberg-Saxton iteration, which effectively searches for the
minima of (18). Since these starting points are accurate, a few
iterations suffice, and independent signals are almost always ob-
tained, except in severely ill-conditioned cases. Examplesof the
application of the algorithm to simulated and measured data are
givenin section V.

C. Super-generalized Schur decomposition

In this subsection, we describe a possible approach to the
super-generalized Schur decomposition problem: for given ma-
trices Yy, -+, Ys, find Q,Z (unitary) such that

QZ = R
: (25)

Q%BZ = Rs

where Ry, -+, Rs are as much upper triangular as possible. Our
approach isto modify the standard QZ iteration method used for
computing the Schur decomposition of two matrices so that it

works for more than two matrices. There are several waysto do
this. We will present a variant that treats all matrices Yy, Ys

equally.
The QZ iteration for computing the Schur decomposition of
two matrices [40] starts with setting Q@ =1, (9 =|. At the

k-th iteration step, a unitary matrix Q) is computed such that
QM (vpzkD) is upper triangular, and a unitary matrix Z® is
computed to make (QY,)ZK upper triangular. As an exten-
sion to more than two matrices, we propose the following two
step iteration. Denote by || - ||Le the Frobenius norm of the
strictly lower triangular part of a matrix.

[Extended QZ iteration]*
QO =1,z =
fork=1,2,---
a Find Q¥ (unitary) to minimize
QW MVZE M) (12 + -+ |QW(Ysz D) |12,
b. find ZK (unitary) to minimize
HQWY)ZM 2+ -+ 1(QNY5)ZH) |12 .
(26)
Each of the two stepsin the iteration poses aleast squares prob-
lem with an exact solution, which might however be hard to find.
The customary idea in such situationsisto find an approximate
solution to each of the steps, and rely on the outer iteration to
provide convergence.

4A different suitableinitialization follows from a Schur decomposition of just
Y; and Ys.
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Given amatrix X = AS+ N OC ™", An estimate of SO CM is obtained as follows:
1. Estimate row(X):
a. Compute SVD(X): X =:UxV
b. Estimate d = rank(X) from Z: the number of signals
c. V = first d rows of V
2. Estimate ker (P), which summarizes all CM conditions:
a Construct P: (n—1) xd? fromV:
V =:[vy - Vy]
P = [vec(vivy) -+ vec(vavy)]T

[ F% ] := QP, with Q asin (11)
b. Compute SVD(P): P =: UpZpVy

c. Estimate 8 = dimker(P) from 2, the number of CM signals
d. [y1 -+ y5] := last & columns of V,,
3. Solve the simultaneous diagonalization problem (21):
a Y1 =vec(y1), -, Y5 = vec }(ys)
b. Find Q,Z to make Ry := QY1Z, -+, Ry := QYsZ approximately upper (section IV-C)
. From Ry, ---,Rs, compute all vectors [0 - dys],k=1,---,0
st. Ye = Qg Y1 + - -+ OigYs is approximately rank 1 (proposition 8)

4. Recover the signals: for each Y:
a Compute wy such that Yi ~: wiwy
b. scale wy such that ||wy|| = n%/2
C. S¢i= WV

Thevectors sy, -+, S5 aretherows of S

(d. perform afew Gerchberg-Saxton iterations, as in equation (3))

Fig. 2. The ACMA (analytic CM factorization algorithm). The vectoring operations in steps 2a and 3a may be replaced by hermitian vectoring operations (see

Appendix A).

To describe the approximate solution to step a (or b, whichis
similar), suppose that, at the k-th stage, we have matricesR; :=
Q= Dy, 7k ... Ry:=QkDYzz(k=D not yet upper triangular,
and we haveto find aunitary matrix Q that minimizesthe bel ow-
diagonal norm of QRy, -+, QRs. Recall that for a single matrix
R;, a QR factorization gives the solution, and is obtained as a
product of Householder rotationsHy, - - -, Hg-1, whereasingle H;
maps the bel ow-diagonal entries of thei-th column of the matrix
to zero. This approach may be mimicked for the simultaneous
triangularization of a set of matrices, although we can only try
to make the below-diagonal entries small. Thus, Q in step ais
obtained asthe product of d—1 more elementary unitary matrices

Thefirst factor, Hy, is designed to simultaneously minimize the
bel ow-diagonal norms of only thefirst column of each of the ma-
trices Ry, ...,Rs. Similarly, Hy is used to minimize the below-
diagonal norm of all the k-th columns. Denote by (Ry); thefirst
column of Ry, and similarly for the other R(’s, then

laz | O
0 [Hea

1] 0
0| H,

o o

Hi[(R)1 - (Re)1] = [%]

where [ --[J isthefirst row of theresult, and E containsthere-
maining rows. Theobjectiveistofind Hy suchthat || E || ismin-
imized. The solution isnot unique, but a possible H; follows di-

rectly from an SVD:
[(R)1 -+ (Rs)i]=:Uxv® O Hy=U"

Indeed, for thischoiceof Hy, wehave || E[|2 = 02+ ---02, which
isas small aswe can hope for.

After Hy has been computed and applied to Ry, -+, Rs, we
have obtained new matrices R}, -- -, R, with the bel ow-diagonal
norm of thefirst columns minimized. The next factor, H, isused
to minimize the below-diagonal norm of the second columns of
these matrices. AsH; isunitary and does not affect thefirst rows
of Ry, -+, R, thiswill not change the below-diagonal norm of
the first columns. Infact, H, can be found in precisely the same
way as Hi by looking at the reduced problem where we act on
R, -, Ry with their first rows and columns removed. The ma-
tricesHg, - - -,Hg-1 follow in turn.

The reason that this does not necessarily provide the optimal
solution to the LS problem of step aisthat H; only looks at the
first columns of the matrices Ry, and might introduce potentially
large entries in the bel ow-diagonal part of subsequent columns.
It is not even guaranteed that the bel ow-diagonal norm is lower
than before. Note that thisis nothing new: the same happensin
theoriginal QZ iteration for two matrices, and nonethel essit con-
verges (except perhaps for strongly nonnormal problems).

The resulting QZ iteration (26) is observed in simulations to
converge fast, usually quadratically in 3-5 iterations. At this
point, thereisno proof of convergence. Hintsfor apossibleproof
might be provided by convergence proofsfor the standard QZ it-
eration. Because the inner loop consist of SVDs, the schemeis
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only practical if d issmall, whichiscertainly the casefor the cur-
rently envisioned applications.

Remark

While this paper was in review, we learned about other ap-
proaches to the super-generalized Schur decomposition, and to
simultaneous diagonalization problemsin general. These prob-
lems are not entirely new to the SP community: in the context
of blind beamforming of non-Gaussian signals, anaysis of the
fourth-order cumulants of the datamatrix hasled to problems of
the form (21), viz. [18, 43], as well as related problems of the
form Q°Q = A, i = 1,---,d with the X; hermitian, Q unitary
and all A\;j closeto diagonal, viz. [17]. Thefact that Q is unitary
instead of just non-singular isaconsequence of the statistical ex-
pectation operator: with infinite data, our W would be unitary as
well (cf. footnote 2). 1n[18, 43], awhitening transformation de-
rived from the data covariance matrix immediately reduces the
problem to QUX,Q = A; aswell.

Overviewsof several such problemsaregivenin[44,45]. The
algorithms in [44] are of Jacobi-type, and intended for solving
QX Q = A; and some structured variants. A similar Jacobi al-
gorithm is proposed in [17]. Such Jacobi iterations are readily
set up for the generalized Schur decomposition (25) as well, al-
though one hasto be careful about “outer” and “inner” rotations
to ensure convergence; cf. [46]. The (rea-valued) QZ problem
is considered in [45], and solved using isospectral flows, which
results in a steepest gradient-type algorithm. For the diagonal-
ization problem (21) with positive definite matrices';, the “ non-
orthogonal FG*” algorithm of [47] may be used. The orthogo-
nal variant of this algorithm is a generalization of the cyclic Ja-
cobi algorithm. Note that in our application, theY;, even if they
are constructed to be hermitian, are not necessarily positive, al-
though we may try to find linear combinationsthat are positive.
Theapproachin[18,43] isto find one such positive combination,
then try to glean W from a Cholesky decomposition (or Schur
decomposition, after a whitening transformation) of this single
matrix. Numericaly, thisis likely to be suboptimal, because in
the end only two matrices determine the decomposition. So far,
none of the above approaches has proven convergence, but re-
ported experimental results are invariably positive.

D. Computational complexity

We briefly investigate the computational complexity of the
proposed algorithm (figure 2). The ACMA consists of mainly
three computational steps: an SVD of X (sizemxn), an SVD of
P (sizen—1xd?), and asimultaneous diagonalization of & matri-
cesY; of sized xd. The second SVD is the most expensive and
has order n(d?)? operations. Sincewerequiren > n?, andm=d,
the complexity of thisstep is at least O(d®). In comparison, the
first SVD has O(mPn) = O(d*) operations, and the complexity
of the simultaneous diagonaization stepisalso O(d*). Thisim-
plies that d cannot be very large and that the algorithm is too
complex for equalization purposes (where sometimesd > 100is
taken).> Since only subspaces are needed but not the individual

5As mentioned before, the CM equalization problem satisfies the same model,
but has different properties: the data matrix has a Hankel structure, and, in prin-
ciple, it suffices to find only one solution. In this case, a combination with
other (intersection-type) algorithms that make use of this structure is probably
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singular vectors, the SVDs may be replaced by any other princi-
pal subspace estimator, such as provided by the Schur subspace
estimation (SSE) method [48], the URV updating [49], the PAST
method [50], the FSD [51], or the FST [52]. The latter three al-
gorithms can also exploit the fact that only d kernel vectors out
of d? singular vectors are needed, which gives rise to significant
savings. In addition, all above-mentioned methods allow for ef-
ficient updating of the subspaces for increasing n, so that the
ACMA agorithm may be transformed from a block-algorithm
into an adaptive algorithm. (Interesting complications arise be-
cause the two SVDs operate in conjunction. A more detailed
analysisof the possibilitiesis beyond the scope of the present pa-
per.)

Toillustrate the computational requirementsin amore quanti-
tative manner, we consider areplacement of the SVD by the SSE.
Without updating, one implementation of the SSE (the “ SSE-2"
[53]) hasacomplexity of about m?n complex multiplicationsand
2m?n complex rotations (for amatrix of size nxm). Assuming
no special purposerotation processors, we set 1 complex rotation
equal to 4 complex multiplications, and 1 complex multiplica-
tion equal to 4 real floating point operations (flop). In that case
the SSE of X takes 36n?n real flop, and (since P can be trans-
formed to areal matrix) the SSE of P takes 9(d2)2n real flop, so
that the complexity of ACMA is

ACMA : 9d*n+36n?n real flop. (27)
In comparison, the complexity of the Gerchberg-Saxton algo-
rithm (GSA) (3) is mainly determined by aloop containing two
complex matrix multiplications, W-X and S-XT (wherew : d xm,
X :mxn, S:dxn), not taking additional soft orthogonaliza-
tion steps or restarts into account. Each of the multiplications
has a complexity of dmn complex operations. About 10 iter-
ations of the inner loop are usualy sufficient, although occa-
sionally many more are needed. In addition, the computation of
XT = XHXXH)™ calls for about 2mPn complex multiplications
(ignoring theinversion), or 8mén real flop. Altogether, the com-
plexity of GSA is approximately

GSA (CMA): 4-10-2dmn+ 8mPn = 80dmn + 8n¥n real flop.

(28)
The standard CMA may be viewed as an updating version of the
GSA, where instead of iterating on the same data, new data is
continuously introduced. It is not likely to converge faster than
GSA, viz. [37], so that it has at least the complexity of (28). Ta
ble | gives alisting of (27) and (28) for a range of values of m
and d, in kflop per snapshot (i.e.,, n = 1). It is seen that for up
to 6 sources the complexity of the ACMA is comparable to the
GSA.

V. EXPERIMENTAL EVALUATION

To assess the performance of the algorithm, we have applied
it to a number of test matrices, based both on computer gener-
ated data and on real data collected from an experimental set-
up. The results are quite convincing. For example, the algo-
rithm could find weight vectors to separate a superposition of
four CM signals using 4 sensors and only 17 data samples, in

preferable.
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TABLEI
APPROXIMATE COMPUTATIONAL COMPLEXITY OF BLIND ALGORITHMS (KFLOP PER SNAPSHOT)

ACMA (kflop/n) GSA (kflop/n)
m=4 6 8 10 m=4 6 8 10
d=2 07 14 24 37 d=2 08 12 18 24
4 29 36 46 59 4 14 22 31 40
6 13.0 140 153 6 32 44 56
8 39.2 405 8 56 7.2
10 93.6 10 8.8

well-conditioned cases even if each signal has a signal to back-
ground noise ratio of 5 dB.

A. Computer generated data

We first study the performance of the algorithm on computer
generated data. The set-up of this experiment is kept extremely
simple on purpose. We simulate auniform linear array of m= 4
isotropic sensors, spaced A /2 apart, where A is the wavelength
of the carrier frequency of the signals.? The resulting main lobe
has a beam width of approximately 26°. Thereared = 4 signals
present, with angles of arrival 8; = 0°, varying 6, (6, = 30°,
5°), 83 = 60°, 64 = —20°. The number of CM signals among
the four signalsis varied from & = 4 to d = 2. The number of
samplesthat are used is varied, too, and taken to be n = 100, 26,
and 17. TheCM signalsthat are generated are sequences of unit-
modulus numberswith uniformly distributed random phase. The
other (non-CM) signals are normally distributed random com-
plex numbers, with zero mean and unit variance. Thesignalsare
scaled according to their relative SNRs.

In the first experiment, we consider the noiseless case. Fig-
ure 3(a) shows plots of the singular values of P, for 8, = 30°,
and withd = =4 CM signals. Infigure 3(b), only thefirst two
signals are CM, the other two are Gaussian. In figure 3(c), the
number of CM signalsis again equal to 4, but 0, is taken to be
5°. It is seen that the number of zero singular valuesis precisely
equal to the number of CM signals, as predicted by proposition
5. Changing the number of CM signals or moving the angles-
of-arrival closer does not influence the distribution of the other
singular values by much. In particular, the level of the smallest
non-zero singular value stays roughly constant. The distribution
of the non-zero singular values does change with n: they tend
to be located along danted lines. For larger n, the graph flat-
tens which facilitates detection. As thereis no noisein the ex-
ample so far, the CM signals can be retrieved without errors. To
give an idea of the convergence speed of the extended QZ iter-
ation, we list the total below-diagonal norm of the matrices Ry
in (25) after each iteration, for an instance of case (a), n = 17:
0.3,9-107% 4.1012 5.10718,

In the next series of experiments, the same set-up is used, but
now we add normally distributed independent white noise to all
samples. The SNR of each signal with respect to the noise level
issetto 15dB per antennaelement. Wefirst take all signalsto be

6Thisinformation isnot used in any way by the algorithm, and any other array
geometry would have been suitable as well.

CM, and 8, = 30°. Thesingular valueplot of Pisshowninfigure
4(a). Thepreviously zero singular valuesare now rai sed by some
amount, but there still is a gap between the small and the larger
ones. To evaluate how close the analytically computed weight
vectorswi, - - -, W4 areto the optimal solution of the problem (the
minimizers of the distance function in (18)), these weight vec-
tors are used as initial points in the Gerchberg-Saxton iteration
(GSA), viz. equation (3). Figure 4(b) shows the computed aver-
age modulus error of wX,

Sl

IM:

1/2
(I(wX)i |- 1)2] (29)

after each iteration step (solid line), for thecasen = 17. We have
chosen this “1-2" norm rather than the “2-2" norm in (17) be-
causeit hasanicer physical interpretation (as the standard devi-
ation of the modulus of signals), and because the convergence of
the GSA is usually monotonic in thisnorm, but not in (17). Itis
seen that the post-processing hardly changes the computed wy,
which is reflected by the horizontal lines: they are almost equal
to the optimal values. For n = 26 (not shown), the lines are per-
fectly straight. Although not clearly visiblein 4(b), all four sig-
nals are resolved; because the signals have the same amplitude,
the modulus error lines tend to overlap. The independence of
theretrieved signal swas checked by computing their covariance.
The vaue of the modulus error is commensurate with the noise
level and number of antennas: SNR = 15 dB trandatesto an ex-
pected modulus error of 0.063 in situations without co-channel
interference.

Also shown in figure
4(b) isthe performance of the Gerchberg-Saxton algorithm when
started with random initial weight vectors (dashed lines), which
would be the usual approach to the CM problem. It is seen that
not always all signals are retrieved, that the convergence can be
extremely slow, and that the algorithm sometimes convergesto
sub-optimal stationary values. We mention that for larger n (say
n = 100), the local minima are usually not attractive, but recov-
ering all independent signals remains an issue (solved to some
extent by “ soft-orthogonalization”, asmentioned in the introduc-
tion, but thiswas not implemented in these simulations).

Essentially the same remarks can be made for the case where
two out of four signals are CM signals (figure 5), and when the
signal power of one or al of the signalsisreduced to 5 dB (fig-
ures6 and 7). Theeffect of areduced signal power (or increased
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Fig. 3. Singular values of P: no noise, 6, = 30°, for n= 100,26,17. (a) 4 CM signals, (b) 2 CM signals. (c) Similar as (a), but with 8, = 5°.
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Fig. 9. Experimental set-up, with 4 FM transmitters (s, - -
array consisting of 6 receivers
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noise level) is seen in the singular values of P asan increase in
the small singular values, which will limit the detection at some
point. The average modulus error of a5dB signal is expected to
be 0.20, which matches with the figures.

The angular spacing between the first two signals can be re-
duced to 10° without problems. When the spacing is further re-
ducedto5° (figure8), thedetection of thetwo closely spaced CM
signals becomes problematic, and for n = 26, GSA postprocess-
ing failed to keep two of the signalsindependent. The reason is
that, because of the close angles of arrival, the condition num-
ber of the A-matrix isincreased (from 2.3 to 11.9), which, at this
noise level, is sufficient to close the gap between the large and
small singular valuesfor any n. Thisis confirmed by theoretical
predictions of the gap size (section V-C). Nonetheless, n = 100
was sufficient in simulationsto separate the signal s even without
additional GSA iterations: the loss of gap prevents detection of
the number of CM signals, but not necessarily their separation.

B. Experimentson measured data

The agorithm was also tested on data collected from an ex-
perimental roof-top antenna array.” The configuration of the ar-
ray isshown in figure 9. The receiving array consisted of m= 6
isotropi ¢ antennas, where antennas x;—Xs formed part of an air-
plane DF array with a baseline of approximately 1.5m, and an-
tennaxg was adipole at approximately 1m to theright of the ar-
ray. Located nearby were d = 4 dipole antennas, marked s,—
s, each broadcasting FM signals at RF carrier frequencies of
902.1 MHz + 200 Hz (i.e, the individua carrier frequencies
were dightly offset). The signal transmitted by source s; was
an FM-modulated tone of 1 kHz, signals s,—s4 consisted of FM
modulated speech and music. The received signals were RF-
demodulated, sampled at 37.5 kHz (complex), digitized at 12
bits, and band-limited at 25 kHz. The actual 10 dB bandwidth
of the sources was around 6 kHz. In the first experiment, the
power of each transmitted signal with respect to the ambient
background noise (SNR) was 19.1 dB, 17.6 dB, 17.9 dB, 16.7
dB, respectively. In a second experiment, the power of s, was
lowered to SNR(sy) = 7.6 dB.

In figure 10, the singular values of X and P are shown. For
n =100 and n = 50, it is clear that there are four CM signals.
(For the record, we mention that the condition number of A was
later estimated as 5.8.) Denote by d, 5 the parameters used by
the ACMA, as opposed to the true val ues (d = o = 4). Figure
11 shows the modulus error during subsequent Gerchberg itera-
tions when the ACMA isrunwith d,d = 4. For n= 50, the an-
alytically computed values of w are hardly changed; for n = 17,
the Gerchberg iterations improve a bit on the w. With random
initializations, the Gerchberg iterations may convergeto at least
two spurious local minima.

Tablell liststhe estimated signal-to-interferenceratios (SIRS)
obtained by the ACMA, both before and after the additional GSA
iterations. The values are based on the rows of the matrix WA,
whereW containsthe weight vectors as determined by the algo-
rithm for the listed n,d, 3, and A is an estimate of the unknown
true A matrix computed using the ACMA on n = 400 samples
and with d = & = 4. WA should be close to the identity matrix
(or apermutation and diagonal scaling thereof). Thetable shows
the results obtained for various choices of the parameters d and
o used inthe algorithm. It is seen that overestimatingd isnot re-

"The data was measured and provided by ARGOSystems, Inc., Sunnyvale,
CA, as part of an ongoing research project with Stanford University.
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ally aproblem, provided nislarge enough. (Thecased: misof
interest because in that case the SVD of X may be replaced by a
simple QR factorization.) Overestimating & aswell issometimes
not a problem, but led to a fatal result for n = 50: only two in-
dependent signalswere obtained. In general, overestimating dis
not a good idea because the algorithm tries to compute a change
of basis: from an orthonormal basis of ker(P) to arank one ba-
sis{wE\Nk} . If the orthonormal basisistoo large, then thereisno
suitable transformation to arank one basis, and all estimates of
w are affected.

In asecond experiment, the power of source s, waslowered to
SNR(s;) = 7.6 dB. Asthe spacing between s, and s, is till only
1.5°, thisis a challenging test of the algorithm. (The condition
number of Aisnow 15.9.) Some results are depicted in figures
12-13. The detection of the other three signals from the singu-

lar values of P remained the same, but the fourth singular value
(apparently correspondingto ;) israised and now somewherein
the middle of the gap between the large and small singular val-
ues. The detection that there are four independent signals by in-
spection of the singular values of X is aso more difficult now,
evenif n=100. Overestimating d decreases the singular value
gap (resolution) in Pif nissmall, but the gap remainsunchanged
for larger n.

If d and 0 are estimated correctly (d: 0 = 4), then all signals
areretrieved for naslow as26 (figure 13). For n= 17, therecov-
ered signals were not sufficiently independent any more. Table
[11 liststhe SIRs for various choices of the parameters. The im-
provement in SIR is about the same as for the first experiment.
Note that if both d and  are underestimated (as could easily oc-
cur because s, does not show up very well inthe SVD of X), then
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TABLEII
WORST SIR [dB] AFTER SEPARATION, CASE SNR(s;) = 17.6 dB (WORST RECEIVED SIR = -2.4 dB/ANTENNA)

15

d=4,6=4 d=5,6=4 d=6,6=4 d=506=5
ACMA +GSA | ACMA +GSA | ACMA +GSA | ACMA +GSA
n=100 36.0 34.8 354 34.8 35.1 34.8 36.0 34.8
50 272 268 235 269 195 269 | (189) (36.9)
26 126 22.8 6.6 251 3.0 253
17 8.2 17.2
(+): not al signalswere recovered
TABLEIII

WORST SIR [dB] AFTER SEPARATION, CASE SNR(s;) = 7.6 dB (WORST RECEIVED SIR = —11.5 dB/ANTENNA)

d=4,0=4 d=5,06=4 d=5,06=5 d=3,6=3
ACMA +GSA | ACMA +GSA | ACMA +GSA | ACMA +GSA
n=100 24.0 23.1 22.5 23.1 224 23.1 (141 (349
50 122 18.6 9.5 185 14.4 184 (14.2) (332
26 00 2.3 -3.8 94| (82 (196)| (127) (26.1)
17 (7.0 (9.5) (12.4) (12.8)
(+): not al signalswere recovered
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s isof courselost, but the behavior of the other estimatesis ap-
proximately the same.

Note from the tables that the SIR is not always improved by
theadditional Gerchbergiterations. ThereasonisthattheGSA is
connected to adifferent cost function, (29) rather than (17), with
dightly different minima for finite n and SNR. None of these
minima are necessarily coinciding with minimal SIR.

The main conclusion to draw from the experiments carried
out in this section isthat in all observed cases the algorithm ob-
tainsthe optimum of the minimization problemif nissufficiently
large. For four signals, n = 50-100 is typically large enough,
even under severe conditions. For smaller n, the estimates move
away from their optimal values, but usually, the algorithm still
findsall CM signalsif their number has been estimated correctly,
and the optima can be obtained by adding afew iterations of the
Gerchberg-Saxton algorithm as postprocessing. The effect of a
smaller nismostly felt in aclosing of the gap between the larger
and smaller singular values of P, which limits the detection of
0. Thisis mitigated to some extent by the property that the algo-
rithm is quite robust when d or o are overestimated.

C. Detection thresholds

What determines the singular values of P, and thus the reso-
lution of the algorithm? Thisisthe topic of a separate paper, but
it isrelevant to at least summarize some of the results here, as
they explain some properties of the singular value plots quanti-
tatively.

The large singular values of P tend towards 1/4/n, but for
small valuesof n, they are not constant yet but distributed along a
line. Thisdistributionissimilar to that of the singular values of a
random matrix, which hasbeen investigated in[53,54]. Extrapo-
lating the result in [53], the smallest among the set of d?—d large
singular valuesis (with probability better than 0.95) expected to
satisfy

: 1 d-3
min(largesv) > NG et
Thismatcheswith the experiments earlier in this section aswell.
At the other side of the gap, the & small singular values of the
numerical kernel should ideally be equal to O, but with noisethey
areincreased to

(30)

oV2

max(small sv) = o cond(A).
Here, 02 is the normalized noise power per sample per antenna:
20log(1/0) is the SNR of the strongest signal at a single re-
ceiver. The noise is enhanced by a factor v/2 because of thein-
herent squaring of the data. The factor “cond(A)” is the condi-
tioning of A, and includes two effects. When the array response
is approximately uniform in all directions, cond(A) is just the
square root of the ratio of the power of the strongest signal to
theweakest: thistrandates o into the SNR of the weakest signal.
A large (bad) condition number of A may also be dueto aclose
spacing of two signals, as determined by the resolution limit of
thearray. In such cases, acorrectionby 1/+/2issometimesin or-
der. The above two equations allow to derive the maximal noise
power for which there still can be agap as

SNR > 3dB-10logm+ 20logcond(A),

(31)

(32)
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(independent of n), and an indication of the minimal number of
samplesthat is needed in that case,

d-1 ?
2
> [ 1-0v/2cond(A)/ \/n_1] ’ (33

(we still require n > d?, too). They also allow to set automatic
decision thresholds for rank detection in subspace estimators.

VI. CONCLUDING REMARKS

In this paper, we have described an analytic method for solv-
ing the constant modulus problem. The method condenses all
conditions on the weight vectors w into a single matrix P, and
findsall independent vectorsinthekernel of thismatrix that have
aKronecker product structure. Thisproblem, inturn, isshownto
be ageneralized matrix pencil (eigenvalue) problem, which may
be formulated in terms of a super-generalized Schur decomposi-
tion: for given matrices Yy, -+, Ys, find Q, Z (unitary) such that

QZ = R

Q%Z = Rs

where Ry, - -+, Rg are as much upper triangular as possible. We
have proposed a modified QZ iteration which treats all Yy
equally, convergesto upper triangular matrices Ry in the absence
of noise, and usually has quadratic convergence in our simula
tions.

The analytic algorithm is definitely more complex to imple-
ment than the usual iterative approaches for blind beamforming
and blind deconvolution of constant modulus signals. However,
it givesfundamental solutionsto anumber of problemsthat have
plagued iterative CM algorithmsever sincetheir inceptionin the
early 1980s. The most important advantages of the analytic ap-
proach are

1. Itislesshlind: the number of CM signals are detected ex-
plicitly from the close-to-zero singular values of P. Not all
signals have to be CM signals.

2. It is deterministic: the minima of the cost functions are
found by analysis, rather than by trying different initial
pointsin the usual steepest gradient methods. The only pa-
rameters that have to be set are the total number of signals,
and the number of CM signals.

3. Itisrobust on small data sets and in the presence of noise,
although a few additional iterations of the standard CMA
may be necessary to find the optimal weight vectors.

4. Therearedetection criteriathat predict how many antennas
and samplesare needed in given scenarios (cf. section V-C).

The modest regquirements on the number of samplesis animpor-
tant issue in applications where multipath causes fast fading.

Signals that are not CM signals but have a kurtosis® smaller
than two, e.g., QAM and other finite alphabet signals, may be
modeled as a CM signal at the RM S amplitude plus a limited
amount of noise corresponding to the variance on thisamplitude.
When the equivalent noise power satisfies (32), then the num-
ber of samples n can be chosen large enough to allow detection
of the signal as a CM signal, and thus to recover this signa as

8Thekurtosis of asignal x(t) is defined ask(x) = Ex(t)[*/(Ex(t)[?)2.
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well. This"abuse” of the CM property to separate independent
non-Gaussian signals is of course already common practice in
blind equalizersand beamformersever sincetheir invention (viz.
[6,55]). It might even be argued that the fourth-order cumulant
techniquesin [15-17], constructed to separate independent non-
Gaussiansignals, doinfact rely onthe sameproperty. Further re-
search is needed to bring the many hidden connections into per-
spective.
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APPENDICES
I. VECTORING OF HERMITIAN MATRICES

For hermitian matricesY, we can redefine the vectoring oper-
ation vec(Y) to take advantage of the symmetry in'Y, and end up
with about half the number of parameters. One convenient way
to do so leads to real vectorsinstead of complex vectors and is
based on the property (for x JC)

11 X
S0

Re(x) ] -1 [
Im(x) V2

Hence, a unitary matrix will transform a vector in which both x

and x” are present into avector where these componentsarereal.

Thus define, for hermitian matricesY OC %9, the hermitian vec-

toring operation “vech” as

4|

vy -
Re(Y12)v/2
Re(Y13)v/2

Y : ,
- Im(Y12)v/2
Y22

Yad

i=k
i<k
i>k

Yii,
Y-tk = { Re(Yi) V2,

Im(Y) V2,
Thereisaunitary matrix (U, say) with asimple structure, map-
ping theresult of the original vectoring operation into the new re-
sult: y = Uvec(Y). Theinverse operationisY = vec 2 (Uy) =:
vech™(y), which also may be evaluated explicitly.

Besides the fact that vech(-) is areal vector, a second advan-
tageisthat theinverse operation vech™ returns matricesthat are
hermitian by construction. Both advantages show up when we
elaborate on our application (equation (7)). Because P = vkvEI
is hermitian, P, isareal vector. Theimplication is that the ma-

trix P, constructed from these vectors, isreal, asis the matrix _I3
Hence, the SVD of Pisarea SVD, which saves about a factor

17

of 3 on computations. Because of the unitarity of the transfor-
mation, the singular values of P and P are precisely the same,
but the basis { Xk} that we select from the kernel of P consists of

real vectors. As aresult, the matricesY; = vech‘l(zl), Yy =

vech‘l(yﬁ) that we form from the basis are hermitian by con-
struction.

Il. PROOFS
Proof of lemma 1

Without loss of generality we may take d = m. Our approach
is to determine how many vectors w there can be such that wX
isa CM signal. Asderived in section 11-C, each column of X
gives a quadratic equation that the entries of w have to satisfy.
We assume that these constraints are independent.

Sincew isacomplex vector, it consistsof 2d parameters. Any
w can be scaled by aunimodular scaling such that itsfirst entry is
real and positive; since this scaling does not affect the constant-
modulus property of wX, it is an unconstrained parameter, so
that the n columns of X only put constraints on the remaining
2d -1 parameters. On general principles, we expect that when
n = 2d -1, thereis only a discrete set of isolated solutions for
w. Nonetheless, this set might be too large: e.g., whend = 2,
the isolated solutions are determined by the intersection of 3 el-
lipsoids in 3-space, with 0,2 or 4 solutions. Adding one more
congtraint (i.e., n = 2d) will place a new condition on the iso-
lated solutions, to which in general only the original CM source
signals and their weight vectors can comply. m|

Proof of lemma 3

To prove equivalence, it remains to show that a set of solu-
tions {yk}? of the form yx = wy O Wy is linearly independent if
and only if the corresponding set {Wk}flS islinearly independent.
Indeed, with Y = wiwy and yx = wi 0 Wy = vec(Yi),

{yx}? isalinearly independent set

= [owyr+0ozys+-+0sys=0 0 0aj=0,i=1,---,3]
- [aYi+aYo+ - +as¥s=0 0 0j=0,i=1,,3]
- rank[Yl Y2"'Y6]:6
= rankjw] wywg)=3
< {wy}$isalinearly independent set.

m

Proof of lemma 4

The only issue to show is the equivalence of p1y = n¥/2 to

|w|| = n%2. This proof consists of two (technical) steps.

1. We first show that pry = nt/2 = tr(Y) =n, whereY =
vecly. (tr(-) is the trace operator.) Indeed, let P, =
vec 1(p1). We show that Py = n"Y/2]. For this, we use the
fact that Qisunitary and P is constructed fromV, anisome-
try. p1 only dependson thefirst row of Q. Thisrow must be
equal to n"Y/2[1---1], because all other rows of Q are nec-
essarily orthogonal to thisvector. Using the definition of P
gives
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Finally, it remainsto notethat p1y = wPyw"= wwh=%/2 =
tr(w"w)n /2 = tr(Y)n"Y/2,

2. Furthermore, when y = w O W, then tr(Y) = tr(w-w) =
[lw||? sothat pry = n¥2 = ||w|2=n. m|

Proof of proposition 5

Therelation betweenV and Smay bewrittenasV = AS, where
the nonsingular d x d matrix A is derived from the original an-
tenna response matrix. P was defined in terms of V in (8); in a
similar way, we may define amatrix Psintermsof S This pro-
duces
[s10s]7

P=Ps-[ATOAY, Ps= (34)

S Os)T

The d? x d? matrix [AT 0 A is nonsingular: its singular values
aregiven by all cross-productsof thesingular valuesof A. Hence
the propagati on environment does not influence the dimension of
the kernel of P (or P): it will betoo large only if there are spe-
cific phase relations between the signals, valid for al pointsin
time. Itisnot atrivial task to analyze these relations, except for
the case d = & = 2, which is done in the main text. For statisti-
cally independent signal swith arich enough phase space (analog
FM or PM signals, or digital CM signals with reasonably large
constellations or sufficient oversampling), the probability iszero
that the rank of the matrix Psis any lower than necessary. This
becomes more so for larger n. |

Proof of proposition 7
We first show that dist(wV,CM) = n"(n—ww5)?2 + || P(w 0
W) ||?.
Indeed, takethedefinition of dist( -,CM) inequation (17), and
make the same series of substitutions asin section |1-C:
dist(wV,cM) = 3 (wv?-1)?
= 5 (1-wRw)?
= Y (1-pwy)?
1

(y=wOw)

= -Py||?

1/2 5
1 T || % |ve
= i n-wn 4 By .

In making the last step, we have used the proof of lemma 4:
nY/2-p1y = n"Y2(n—-ww").

Hence, we
have shown that the distance function dist(wV,CM) splitsinto
two terms. Thefirst term n~2(n—ww5)? is only a penalty on the
norm of w: ||w || should be close to n'/2. A multiplication of w
by some number ¢ will scale both (wwH)2 and || P(w O W) || by
¢2. Thismeansthat the given minimization problemis separable
into the constrained minimization problem for w,

e :=min|PwWOW)|?  stww=n,
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which will provide the direction of w, and the computation
of a scalar ¢ to minimize dist((owVW,CM). After solving the
first problem, the optimal value for c is directly determined by
ming n~1(n—c2n)? + c*2, which has the solution

2 n
= ——. 35
n+ g2 (35)
O
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