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Abstract

An electrogram array can be modeled as a spatial con-
volution of transmembrane currents generated by each
activated atrial cell, with an appropriate measurement-
function that depends on the cells’ distance to the elec-
trodes. Compared to electrograms, transmembrane cur-
rents suffer less from the superposition of far-field atrial
activities as they are not affected by the spatial convo-
lution. As a result, transmembrane currents represent
more local information and estimation of the local acti-
vation time using the steepest deflection will be more ac-
curate than when using fractionated electrograms. How-
ever, transmembrane current estimation from electrogram
array recordings is an under-determined problem, having
infinite solutions, among which the desired solution. To
constrain the solution space, additional prior information
can be used. As the temporal derivative of transmembrane
currents are typically sparse, we use this as prior informa-
tion. We use a Split Bregman method with a quick conver-
gence rate to iteratively solve the problem. Our implemen-
tation of circulant operations in the formulation of the so-
lution of each step, makes it possible to perform them very
fast using FFTs. Using simulated electrograms, we show
that the proposed approach outperforms the conventional
approach of annotating the steepest deflection of electro-
grams as the activation time.

1. Introduction

Atrial fibrillation (AF) is the most common age related
cardiac arrhythmia and is characterized by rapid and ir-
regular electrical activity of the atria. Atrial electrograms
play an important role in the analysis of AF and examining
the level of electropathology in human tissue [1]. Wave-
front activation maps, estimated from electrogram arrays,
are the most common tool for interpretation and diagnosis
of AF. However, the accuracy of such analyses are limited
by the accuracy of the local activation time (LAT) estima-
tion in the recorded electrograms.

In addition to the cells directly under the electrode, an
electrode also measures the potential of cells in its direct
surrounding. The electrode has therefore not only a lo-
cal view on the cell potential, but experiences a superpo-
sition of distant atrial excitations. This can hamper the
exact LAT estimation. The main goal of this paper is to
introduce a fast and efficient approach to solve the decon-
volution problem in order to estimate the transmembrane
current and subsequently to improve LAT estimation. First
we constrain the under-determined deconvolution problem
by adding an appropriate constraint. This reduces the solu-
tion space. To do so, we constrain the first temporal deriva-
tive of the estimated transmembrane currents to be sparse.
The problem formulation is solved using the Split Breg-
man method [2] with a quick convergence rate to solve the
problem iteratively. Moreover, unlike traditional deconvo-
lution approaches, the proposed approach diagonalizes the
underlying operators even if some electrogram recordings
are missing. This enables the fast implementation of these
operations using FFTs.

2. Electrogram Model

We use φ[x, y, t] to denote an electrogram recorded on
an assumed 2D uniform grid of modeled atrial cells where
x ∈ {1, 2, .., rc} is the row index, y ∈ {1, 2, .., cc} is
the column index and t ∈ {1, 2, .., T} is the time sam-
ple index. As shown in literature [3], an electrogram can
be modeled as a spatial convolution of per cell transmem-
brane currents I[x, y, t] with a specific distance function
R0[x, y], that is

φ[x, y, t] = S0[x, y](R0[x, y] ∗∗ I[x, y, t]), (1)

where ∗∗ is the 2D spatial convolution operator. In the
model, we included S0[x, y] as a sampling function (or
masking function) that equals 1 at specific coordinates
where an electrode is positioned and 0 otherwise. These
coordinates with no available electrograms can be the
added cells at the boundaries of the electrode array or
faulty electrodes recording no useful data. This is demon-
strated in Figure 1. The main electrogram array of size
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Figure 1. The 2D grid of modeled cells (in pink and white)
as well as the distance function in the left bottom corner
(in blue). The cells with no available electrograms are de-
noted by white color. These can be the cells at the extended
boundary, the four electrodes in the corners that are used
for different measurements, and defect electrodes.

9 × 15 is shown by the light red color, the distance func-
tionR0 of size (2b+1)× (2b+1) at the left bottom corner
is denoted by the blue color. For a proper convolution, the
boundaries of the electrode array is padded with b rows and
columns of cells on each side. As you can see in Figure 1,
the electrogram array and the modeled cells are sampled
on the same grid. However, in practice it might be more
appropriate to use finer grid for cells than electrograms.
We can then use S0 to only sample cells with available
electrograms as before.

3. Methods

3.1. Problem formulation

Given the model in Equation 1 we aim to deconvolve
the electrograms with the distance function R0 and esti-
mate the trans-membrane currents I . However, this decon-
volution problem is under-determined and has an infinite
number of solutions. A typical approach to reduce the so-
lution space, is to add prior information as a constraint.
As the temporal derivatives of transmembrane currents are
typically rather sparse, we use this as prior information
and constrain the first temporal derivative of the estimated
transmembrane currents I ′(x, y, t) to have a few non-zero
values, i.e., to be sparse. These sparse non-zero values rep-
resent the sharp variations in the electrogram that are also
important for the further analysis of the data, because they
appear when an activation wave reaches an electrode or its
surrounding. Using sparsity, imposed through the l1-norm,
will help to maintain these variations. Therefore, the con-

straint deconvolution problem is

min
I

∑
x

∑
y

∑
t

|I ′[x, y, t]| s.t.

φ[x, y, t] = S0[x, y](R0[x, y] ∗∗ I[x, y, t]), (2)

where the objective represents the aforementioned l1-
norm. To develop a systematic approach to solve the prob-
lem formulation in Equation 2, we need to rewrite it as a
system of linear equations, that is,

min
i
‖Dti‖1 s.t. φφφ = SR̃ i (3)

where vectors φφφ ∈ RNT and i ∈ RNT are the vectorized
form of all electrograms and trans-membrane currents, re-
spectively. N = rc× cc the total number of modeled cells.
We have also introduced three new matrices: S as the ap-
propriate masking matrix of size N ×N , R̃ as the appro-
priate block circulant with circulant block (BCCB) matrix
that performs convolution as a matrix multiplication (with
periodic boundary condition), and Dt as the first temporal
derivative operator. Notice that these new matrices (Dt, S
and R̃) and notation are introduced to develop a systematic
framework for solving the problem. While, in practice, we
do not require to construct them as we can do the opera-
tions more efficiently in a transformed domain due to their
special properties (see Section 3.2).

3.2. Split Bregman algorithm

We use the Split Bregman algorithm to reformulate
Equation 3 and solve the problem formulation numerically.
This algorithm converges very quickly, especially for prob-
lems with l1-norms [2]. First we make Equation 3 into an
unconstrained problem

min
i
‖Dti‖1 +

λ

2
‖ φφφ − SR̃ i ‖22. (4)

Next, we introduce two splitting variables z1 = Dti and
z2 = R̃i and two Bregman iterative parameters b1 and b2

and reformulate Equation 4 into

min
i,z1,z2,b1,b2

‖z1‖1 +
µ1

2
‖z1 −Dti− b1‖22

+
λ

2
‖φφφ − Sz2‖22 +

µ2

2
‖z2 − R̃i− b2‖22, (5)

where µ1 and µ2 are the penalty parameters. The Split
Bregman algorithm solves Equation 5 by iteratively solv-
ing simple subproblems that minimize over one variable
at a time. The subproblems at iteration k + 1 and their
solutions are listed below.
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1) Minimizing over i: In the first step, variable i is esti-
mated by solving the following optimization problem,

ik+1 =argmin
i

µ1

2
‖zk1 −Dti− bk1‖22

+
µ2

2
‖zk2 − R̃i− bk2‖22, (6)

which can be shown to have the following solution,

ik+1 =[µ1D
T
t Dt + µ2R̃

T R̃]−1[µ1D
T
t (z

k
1 − bk1)

+ µ2R̃
T (zk2 − bk2)], (7)

Since R̃T R̃ and DT
t Dt are both BCCB, we can efficiently

calculate ik+1 using FFTs and avoid the costly matrix in-
version.

2) Minimizing over z1: In the second step z1 is esti-
mated by solving the following optimization problem,

zk+1
1 = argmin

z1

‖z1‖1+
µ1

2
‖z1−Dti

k+1−bk1‖22, (8)

which is given by [2]

zk+1
1 = shrink(Dti

k+1 + bk1 ,
1

µ1
), (9)

where shrink(α, β) = α
|α| max(α − β, 0) is the shrinkage

operator.

3) Minimizing over z2: In the third step z2 is estimated
by solving the following equation

zk+1
2 = argmin

z2

λ

2
‖φφφ−Sz2‖22+

µ2

2
‖z2−R̃ik+1−bk2‖22.

(10)
The solution to this equation is

zk+1
2 =[λSTS+ µ2I]

−1[λST φφφ + µ2(R̃ik+1 + bk2)].
(11)

where matrix STS + µ2I is diagonal and can be easily
inverted.

4) updating b1 and b2: Finally, b1 and b2 are updated
as

bk+1
1 = bk1 − zk+1

1 +Dti
k+1. (12)

bk+1
2 = bk2 − zk+1

2 + R̃ik+1. (13)

4. Results

We use simulated two-dimensional tissues to generate
electrograms and to compare the performance of our pro-
posed method in LAT estimation, denoted by SDtmc, with
the conventional method, denoted by SDegm. We use zones

Figure 2. (a) The conductivity map of a simulated tissue,
the red dots show the electrode array location. (b) The re-
sulting activation map. (c) 9 representative simulated elec-
trograms.

of slow conduction in tissue, introduced in [4], as a mech-
anism for generating fractionated electrograms. Figure 2
shows an example of the tissue’s conductivity map with
randomly distributed zones of slow conduction. The red
dots show the location of electrodes on the tissue. The
temporal resolution of electrogram recording is 0.2 ms.
The cell-to-cell distance on the tissue is 0.66 mm, while
the electrodes are sampled on a coarser grid where the
electrode-to-electrode distance is 2 mm. This makes the
ratio of available electrograms to the total number of cells
in the recording area 1 to 9. We then use S0 to set the
value of cells with no available electrograms to zero. In to-
tal we simulated 10 tissues and generate 1350 electrograms
including 51 fractionated electrograms (electrograms with
more than one distinctive descents) .

The proposed deconvolution algorithm (from Section 3)
was used to estimate the transmembrane current. First, the
simulated electrogram arrays were normalized to have a
maximum amplitude of 1. Vector i was initialized with
the zero padded electrogram array. Parameters λ = 7 ×
10−6, µ1 = 0.01, and µ2 = 0.01 were heuristically ad-
justed based on visual inspection of the estimated trans-
membrane current estimation and a small LAT estimation
error. For faster convergence, we also update µ1 and µ2 in
each iteration, based on the approach proposed in [5]. The
algorithm stops after 100 iterations.
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Figure 3. The histogram of absolute errors (larger than 1
ms) in LAT estimation using SDegm and SDtmc on simu-
lated fractionated electrograms.

Finally SDtmc and SDegm were used to estimate the
LATs. SDtmc annotates the timing of the steepest de-
scent of the estimated trans-membrane currents as the LAT,
while SDegm annotates the timing of the steepest descent
of the electrograms [6]. Figure 3 shows the histogram of
the absolute error between the ground truth LAT and the
estimated activation time using SDegm and SDtmc of all
electrograms with absolute errors larger than 1 ms. As
can be seen, the reference algorithm SDegm produces much
larger errors (up to 13 ms). These large errors usually be-
long to areas with a large delay and abrupt change in LAT
which might be an indicator of electropathology. On the
other hand, the SDegm ignores these large delays and pro-
vides a more regular, but less correct, map.

5. Conclusions

A fast approach for estimation of transmembrane cur-
rents from an electrogram array through a constraint de-
convolution problem, was proposed. The approach uses
l1-norm to penalize solutions with a non-sparse temporal
gradient. The timing of the steepest descent in the result-
ing transmembrane currents (instead of the electrograms)
can then be used as the LATs. We showed, by using sim-
ulated data, that the estimated trans-membrane current can
be used for a better estimation of LATs.
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