ON THE HANKEL-NORM APPROXIMATION OF
UPPER-TRIANGULAR OPERATORS AND MATRICES

P. Dewilde and A.-J. van der Veen

A matrix T = [Tij]Z'}:_ s Which consists of a doubly indexed collection {T;;} of op-
erators, is said to be upper when T;; = 0 for 7 > j. We consider the case where the T;; are
finite matrices and the operator T' is bounded, and such that the T;; are generated by a strictly
stable, non-stationary but linear dynamical state space model or colligation. For such a model, we
consider model reduction, which is a procedure to obtain optimal approximating models of lower
system order. Our approximation theory uses a norm which generalizes the Hankel norm of classi-
cal stationary linear dynamical systems. We obtain a parametrization of all solutions of the model
order reduction problem in terms of a fractional representation based on a non-stationary J-unitary
operator constructed from the data. In addition, we derive a state space model for the so-called
maximum entropy approximant. In the stationary case, the problem was solved by Adamyan, Arov
and Krein in their paper on Schur-Takagi interpolation. Our approach extends that theory to cover
general, non-Toeplitz upper operators.

1. INTRODUCTION

Approximating a matrix with one of low complexity is an important problem in linear
algebra. In one special case where it has been approached successfully, the matrix —say A— is
close to a matrix of low rank. A singular value decomposition (SVD) of A will yield a diagonal
matrix of singular values, many of which are close to zero and can be neglected, i.e., set equal to
zero. One can show (see e.g., [1]) that the so obtained approximation is optimal, both in Euclidean
operator norm and in Frobenius norm. The SVD has been used by Adamjan, Arov and Krein
(AAK)[2] to obtain another kind of approximation in the context of complex function theory, in
relation with the approximation of infinite-size Hankel matrices. This problem arises as follows. In

classical model reduction theory, one is given a transfer function 7'(z) belonging to Hy, of the unit
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circle, T(z) = to + t1z + toz® + --- . Associated to T'(z) are its transfer operator,
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(a Toeplitz matrix), which maps an £s-sequence u boundedly to an output sequence y via y = uT,

and its Hankel operator

t ty 13
ty 13
Hr =
t3

(For historical reasons, we use mostly a prefix notation such as uT" for the application of a function
or operator T to an argument u.) Kronecker [3] has shown that the model order of T'(z) —the
minimal number of states needed in a state space realization of T', or the number of poles of T'(z)—
is equal to the rank of H7 and finite if and only if the system has a rational transfer function.
However, the rank of a matrix or operator is not a well conditioned quantity in the presence of
numerical inaccuracies. An SVD on the Hankel operator (if it exists) will determine the so-called
‘numerical rank’. The approximating matrix (in Hilbert-Schmidt norm) resulting from setting the
neglectable singular values equal to zero is not of Hankel-type anymore: the approximant does not
correspond to a linear time-invariant system. AAK showed that there is a Hankel matrix of low rank
nearby, namely such that the Euclidean norm difference between the original Hankel operator and
the approximant is equal to the value of the largest neglected singular value. This approximation
can be called the optimal reduced system in Hankel norm.

Corresponding to the approximating Hankel operator there is a transfer function T(z)
— often called its symbol — with degree equal to the number of singular values (multiplicities
counted) that have not been neglected. T'(z) approximates T'(z) in a certain sense. If 7y is the value
of the largest neglected singular value, then it is known that || T'(z) — T'(z)|2 < 7. However, there
is a much stronger result. One may introduce a norm on transfer functions in Hy via the Hankel
operator and write

1T = || Hrl-

The approximant 7" then surely has the property | T — T llzr < . The Hankel norm is considerably
stronger than the Lo-norm [4]. Nehari’s theorem [5] provides the connection between the Hankel
norm and the space Ly, on the unit circle of C. Let h(z) be a function on the unit circle belonging
to Lo and such that its Fourier coefficients with non-negative index vanish (a strictly conjugate

analytic function), then it is not hard to see that

1T(2) + h(2) oo 2 T 2z -
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Nehari’s theorem asserts that the infimum of || 7'(z) + h(2) ||e over all qualifying h(z) is precisely
1T ||z

Related to the Hankel approximation problem, and discussed in [2], is the Schur-Takagi
interpolation problem. Suppose that a number of complex values are given at a set of points in
the interior of the unit disc of the complex plane, then this problem consists in finding a complex
function (a) which interpolates these values at the given points (multiplicities counted), (b) which
is meromorphic with at most k poles inside the unit disc, and (c) whose restriction to the unit
circle (if necessary via a limiting procedure from inside the unit disc) belongs to Lo, with minimal
norm. It turns out that the Schur-Takagi problem can be seen as an extension problem whereby
the ‘conjugate-analytic’ or anti-causal part of a function is given, and it is desired to extend it to a
function which is meromorphic inside the unit disc with at most k poles, and belongs to Ly, with

minimal norm.

It was remarked in Bultheel-Dewilde[6] and subsequently worked out by a number of
authors (Glover[7], Kung-Lin[8], Genin-Kung[4]) that the procedure of AAK could be utilized to
solve the problem of optimal model-order reduction of a dynamical system, as outlined above.
The computational problem with the general theory is that it involves an operator which maps
a Hilbert space of (input) sequences to a Hilbert space of (output) sequences, and which is thus
intrinsically non-finite. In [6] it was shown that the computations are finite if one puts oneself in
the context of a system of finite (but possibly large) degree, i.e., an approximant to the original
system of high order. It turns out that the resulting computations involve only the realization
matrices {A, B, C, D} of the approximating system and can be done with classical matrix calculus.
They can also be done in a recursive fashion, see [9] as a pioneering paper in this respect. The

recursive method is based on interpolation theory of Schur-Takagi type.

In [10, 11, 12, 13, 14, 15, 16], the one-port and multiport lossless inverse scattering (LIS)
problem was considered and a mathematical machinery involving reproducing kernel Hilbert spaces
to solve it was set up. The connection with interpolation theory both in the global and the recursive
variety was firmly established and the monograph [14] devoted to this aspect of the problem. In a
parallel development, the state space theory for the interpolation problem was extensively studied
in the book [17]. The great interest in this type of problems was kindled by one of its many
applications: the robust control problem formulated by Zames in [18] and brought in the context of
scattering and interpolation theory by Helton [19]. (We only give the very early references here, an
immense literature exists in the field.) A special mention is due to the broadband matching problem
[20] which provided the link between the circuit and system theory problems and the mathematical
techniques around interpolation, reproducing kernels and lifting of a contractive operator.

But then, what about approximating matrices the same way as system transfer func-
tions? Or, put differently, is there an algebraic analogue to the analytic theories? In a recent series
of papers [21, 22, 15, 16, 23, 24], such a theory was developed. The cornerstone of the theory is the
definition of the W-transform (originally in [15]) which proves to be a perfect analogue to the classi-
cal z-transform. It turns out that classical interpolation problems of Schur or Nevanlinna-Pick type

carry over almost effortlessly in the new algebraic context, provided the ‘point-evaluation’ concepts
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forced by the W-transform are used. The W-transform has also been called the diagonal transform,
because it treats diagonals of matrices as if they were scalars. A comprehensive treatment can be
found in [23]. We shall adopt the notation of that paper.

In the present paper, the aim is to extend the model reduction theory to the time-varying

context, by considering bounded upper £s-operators with matrix representation

Too| Tor To2

T = Ty Ty (1.1)
0 Tho

which are now no longer taken to be Toeplitz. The 00-entry in the matrix representation is distin-
guished by a surrounding square. 7" maps /2-sequences u = [ - - - u1 ug ---] into f2-sequences
y via y = uT', and is thus seen to be a causal operator: an entry y; only depends on entries wuy for
k <1i. The rows of T can be viewed as the impulse responses of the system. Tj; is the transfer of
the entry u; in an input sequence u to entry y; of the corresponding output sequence.

The approximation theory in this paper draws heavily onto realization theory for such
operators. This theory is an extension of time-invariant (Ho-Kalman) realization theory [25] and has
been developed since the 1950s. While most of the early work is on time-continuous linear systems
and differential equations with time-varying coefficients (see e.g., [26] for a 1960 survey), time-
discrete systems have gradually come into favor and are applicable to our context. Some important
more recent approaches are the monograph by Feintuch/Saeks [27], in which a Hilbert resolution
space setting is taken, and recent work by Kamen, Poolla and Khargonekar [28, 29, 30]. The
realization theory as used in the present paper can be found in [24]. Some results are summarized
below.

We will be interested in systems T' that admit a realization in the form of the recursion

Try1 = TpAp + upBg [ A Cy ] (1.2)

Ty, =
yr = xkCk +upDy By, Dy

in which we will require the matrices {A, B, Ck, D} to have finite (but not necessarily fixed)
dimensions. Let Ay be of size dy X diy1, then the size of zy, i.e., the system order at point k, is
equal to di. See figure 1(a). The collection {Ag, By, Ck, Di}* is a realization of T' if its entries
T;; are given by

0, i>j
Tij = § Dy, 1= (1.3)
BiAjq - -Aj_lcj, 1< 7.
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Figure 1. (a) Time-varying state realization, (b) Hankel matrices are (mirrored) submatrices of T'. Hy is
shaded.

Define a sequence of operators { Hy}*°, with matrix representations

Te-1k Th-1k+1 Th-1k+2
- Tr—2k Tk—2k+1 )
k = . . .
Ty 3k K

We will call the Hy, time-varying Hankel matrices of 7', although they do not have the traditional
Hankel structure unless 7" is a Toeplitz operator. Their matrix representations are mirrored subma-
trices of T' (see figure 1(b)). Although we have lost the traditional anti-diagonal Hankel structure,

a number of important properties are retained:
1. If {Ag, B, Ck, Dy } is a realization of T, then Hy has a factorization

By
By _2Ar1

H, —
k By _3Ap_2Ak_1

[Cr ApCry1r ApAp11Criz -] =1 CrOg . (1.5)

Cr and O can be regarded as time-varying controllability and observability operators. If the

realization is minimal, then the rank of Hy is equal to the system order at time k.

2. Hy, has shift-invariant properties. Denote by H~ the operator Hj, with its first column
deleted. Then
By
By 2Ak-1

Hf =
k By _3Ak_2Ak1

Ag [Crt1 Ap+1Cky2  Ap14k4+2Ckys ] = CrAROkya -

(1.6)



The shift-invariance property states that the row space of H;~ is contained in the row space
of H k+1-

These two properties are sufficient to derive a minimal realization for 7' [24]. The
construction consists mainly of the factorization of each Hj, into minimal rank factors C; and Ok.
Once these have been determined, then the By, and Cj are equal to the first (block)-column of Cj,
and first row of Ok, whereas Ay can be determined by using the shift-invariance property. We will
assume, throughout, that all Hy have finite rank (we will call such systems locally finite), so that
the factorization is well defined. In this case, one can show that the rank of Hy is equal to the
system order at point k of any minimal realization of T

Because the minimal system order of any realization is at each point k given by the
rank of the Hankel matrix Hy at that point, a possible approximation scheme is to approximate
each Hy by one that is of lower rank (this could be done using the SVD). The approximation error
could then very well be defined in terms of the individual Hankel matrix approximations as the
supremum over these approximations. Because the Hankel matrices have many entries in common,
it is not clear at once that such an approximation scheme is feasible: replacing one Hankel matrix
by one of lower rank in a certain norm might make it impossible for the next Hankel matrix to
find an optimal (in that norm) approximant such that the part that it has in common with the
previous Hankel matrix will be approximated by the same matrix. This situation parallels what
already occurs for linear time-invariant systems.

The Hankel norm of an operator T' can be defined at present as
I Tllm = sup | He . (1.7)

(The definition which we will use in the paper appears in equation (2.5) below.) This definition is
a generalization of the time-invariant Hankel norm and reduces to it if all H are the same. Let
I’ = diag(~;) be an acceptable approximation tolerance, with ; > 0. If an operator T, is such that
ITY(T — T,) ||z < 1, then Ty, is called a Hankel norm approzimant of T, parameterized by T.
We are interested in Hankel norm approximants of minimal system order.

In this respect, we will prove the following theorem:

THEOREM 1.1. Let T be a bounded operator which is strictly upper, strictly stable
and locally finite, and let ' be an invertible Hermitian diagonal operator. Let Hy be the Hankel
matriz of T YT at time instant k. Suppose that the singular values of each H}, decompose into two
sets o_ and oy i, with lower bound of all o_ j larger than 1, and upper bound of all o } smaller
than 1. Let Ny be equal to the number of singular values of Hy which are larger than 1.

Then there exists a strictly upper locally finite operator T, of system order at most Ny
at point k, such that

IT™NT —To) |lw < 1.

(The notion of strict stability is defined in section 2.1.) In fact, there is a collection of
such T,. We will obtain a state space realization of a particular T, as well (theorem 7.5). Theorem

8.8 gives a parametrization of all solutions. It is shown that no Hankel norm approximants of order
6



lower than N exist. Finally, if all singular values of all Hy are smaller than 1, Nehari’s theorem
for time-varying systems is recovered. Such extensions have been described by Gohberg, Kaashoek
and Woerdeman [31, 32].

2. PRELIMINARIES

2.1. Spaces

The basic elements of our theory are generalizations of /o-series to sequences of which
the components have non-uniform dimensions [24]. Let {N; € N ,i € Z } be an indexed collection

of natural numbers* which we will always take finite. The sequence

N=[N,]®, = [-- N, Ny Ny ---]eNZ

is called an index sequence. Using N, signals v = [--+ u_1 u; ug ---] live in the space of

non-uniform sequences which is the Carthesian product of the N;:
N=---xN_ ><></\/’1 XNy X € cN ,

where N; € CVi so that N; is the dimension of Aj;. Some of these components may have zero
dimension: we define C° = (). In this way, finite dimensional vectors are also incorporated in the
space of non-uniform sequences, by putting N; = 0 for ¢ outside a finite interval. We will write
N = #(N) to indicate the sequence of dimensions N of the sequence of spaces N.

The inner product of two non-uniform sequences f,g in N is defined in terms of the
usual inner product of (row)-vectors in N; as (f, g) = >; ( fi, gi) where ( f;, gi) = fig; is defined
to be 0 if N; = 0. T The norm of a non-uniform sequence is the standard 2-norm (vector norm)

defined on this inner product:
o
u=[u]"% ¢ lulf=(,u) = Y llull-
—0o0

The space of non-uniform sequences with index sequence N and with finite 2-norm is denoted by
& (N e CV, with N € N z ). #) is a Hilbert space.
Let M and N be sequences of spaces corresponding to sequences of indices M, N. We
denote by X (M, N) the space of bounded linear operators £31 — ¢): an operator T is in X (M, N)
if and only if for each u € £}, the result y = w7 is in EJQV , in which case the induced operator norm
of T,
1T = sup [|uT |,

llulla<1
is bounded. T € X(M,N) has a block matrix representation [T};]3__, such that
y=ul < yjzz u;Tij . (2.1)
i

*0 is included in N .
tMore generally, we define the product of an n x 0 matrix with a 0 x m matrix to be the zero matrix of dimensions

nxXm.



Consequently, we will identify 7" with its matrix representation and write

T 1,1 T-1p T-17
T = [Tl = |- To—1 |Too| Tor --- (2.2)

i,j:—OO )

Ti,1 T Tn

(where the square identifies the 00-entry) such that it fits the usual vector-matrix multiplication
rules. The block entry T;; is an M; x N; matrix.

As explained in [24] and [23], operators T' in X’ have an upper part and a lower part: all
entries T;; above the main (0-th) diagonal and including this diagonal form the upper part, while
all entries below the diagonal, including the diagonal, form the lower part. When 7' is a bounded
operator éé\" — EQ/ , then its upper part need not represent a bounded operator. The situation
generalizes what already happens with Toeplitz operators: if the symbol of such an operator belongs
to Lo of the unit circle, then its analytic part need not belong to Lo,. Nonetheless, each diagonal
of a bounded operator, taken by itself, is again a bounded operator with norm not exceeding
the norm of the original operator. Concerning the diagonal calculus on operators between non-

uniformly indexed spaces, we adopt the notation of [24] and [23]:

M) the k-th shift rightwards in the series of spaces as in M) =[... M_, My ---].
Z the shift operator: [--- z_4 x1 | Z =] T_9 zo ---]. Notice that

Z it — féw(l).
Z[kl the product of k shifts. It is an operator £ — éé\"(k).
X (M, N) the space of bounded operators 31 — E“Qv .
the space of bounded, upper triangular operators 5! — Eév .
the space of bounded, lower triangular operators 51 — EJQV .
D(M,N) the space of diagonal operators /51 — ZJQ\[ . The norm of a member of D will be the

supremum over the norms of its components.

Let T € U, then we can formally decompose T' into a sum of shifted diagonal operators

as in

T =Y zZW1y,, (2.3)

where Ty € D(M®) N) is the k-th diagonal above the main (0-th) diagonal. Given an operator
A, we can define its k-th shift in the South-East direction as

A®) = (Zkhyx g ZI¥] (2.4)
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We will often encounter products (AZ)", where A € X(N,N(=1). These evaluate as

(AZ)" = (AZ)(AZ) ---(AZ)
zIn] A(n) g(n—=1) ... 4(1)
—. zln] g{n}
where A{"} is defined as
A0 — 1

7

Aln} = A) g{n-1} — g(n) g(n-1) ... 4(1)

The spectral radius 7(AZ) = lim, o0 || (AZ)"™ ||Y™ = lim,,_, || A} ||/™ of AZ will be of consid-
erable interest and is denoted by £4.

Besides the spaces X, U, £, D in which the operator norm reigns, we shall need Hilbert-
Schmidt spaces Xo, Us, Lo, Dy which consist of elements of X, U, L, D respectively, and for whom
the norms of the entries are square summable. These spaces are Hilbert spaces for the usual Hilbert-
Schmidt inner product. They will often be considered to be input or output spaces for our system
operators. Indeed, if T' is a bounded operator £5' — EQ[ , then it may be extended as a bounded
operator Xy — Xy by stacking sequences in £5 to form elements of Xs. This leads for example to
the expression y = uT', where u € XQ(CZ ,M)and y € XQ(CZ ,N) [23]. We will use the shorthand
XM for Xy (CZ , M), but continue to write X» if the precise form of M is not of interest.

We define P as the projection operator of X, on Uy, Py as the projection operator of X,
on Dy, and P, 1 as the projection operator of X3 on LoZ 71

2.2. Left D-invariant subspaces

We say that a subspace H of Xy is left D-invariant if A€ H = DA € H for all D € D.

Let A; =diag[--- 0 0 I 0 0 ---], where the unit operator appears at the i-th position,
and let H be a left D-invariant subspace. Define H; = A;H, then H; is also left D-invariant, and
H; C H. If i#j, then H; L H; (where orthogonality is with respect to the Hilbert-Schmidt inner
product). It follows that H = ®;H;.

A left D-invariant subspace is said to be locally finite if, for all 4, dim H; is finite. In
that case, there exists a local basis for H, where each basisvector is itself a basisvector of some H,;.
The conjunction of the basisvectors of all H; span H. With d; = dim H;, we will call the sequence
[--- dy dy do ---] the sequence of dimensions of #, and denote this as s-dim #.

We list some properties of D-invariant subspaces. If A C X is left D-invariant, then so
is AL. If A, B C X, are subspaces, then let P_4(B) indicate the projection of B onto A, obtained by
projecting vectors of B onto A. If A and B are left D-invariant, then so are P 4(B) and P 4. (B).
If A or B is locally finite, then so is P 4(B).

If two linearly independent subspaces A and B of Xy are locally finite, then so is their
direct sum A + B, so that a local basis of A + B can be obtained from bases of A; + B;, for all i.
If A is a left D-invariant subspace and B is a linear operator, then AB is also left D-invariant.
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2.3. Hankel operators and state spaces

Let T € X be a bounded operator. An abstract version of the Hankel operator maps
inputs in £2Z7" to outputs restricted to Us: the Hankel operator Hy connected to T is the map
u € L3771+ P(uT). Note that only the strictly upper part of T plays a role in this definition. The
operators Hj, of equation (1.4) are ‘snapshots’ of it: Hy can be obtained from Hr by considering
a further restriction to inputs Agu of which only the k-th row is non-zero: the operator (A -)Hr
is isomorphic to Hy. [The isomorphism consists of removing zero rows of Axu and y = (Agu)Hr,
and writing the resulting f2-sequences as one-sided sequences.] The canonical realization theory
in [24] is based on distinguishing characteristic spaces in £5Z ! and Uy, which are the range and
kernel of Hr and (Hr)*:

~ the natural input state space H(T) = ran (Hj}) = {P ;1 (yT*) 1y € Us} C L3777,
— the natural output state space Ho(T) = ran (Hr) = {P(uT) : u € L23Z7'} C Us.

These spaces are left D-invariant: DH C H, DHg C Ho. H and H, are not necessarily
closed; their closures H and H are left D-invariant subspaces, which have shift-invariance prop-
erties as are explained in the cited paper. Throughout the paper, it will be assumed that 7T is
such that H(T) and Hy(T) are locally finite subspaces. Such T will be called locally finite transfer

operators.

2.4. Hankel norm

Let the Hankel norm of T' be defined as the operator norm of its Hankel operator:
1T g =IHrll (2.5)

This definition is equivalent to the definition in (1.7). It is a norm on ZU, but a seminorm on X.
We will also employ another norm, the diagonal 2-norm. Let T; be the i-th row of a block matrix
representation 7' € X, then

DeD: | Dlps = sup; | Ds .

TeX: |T|py=Po(TT*)lp2 = sup; | LT} |-
For diagonals, it is equal to the operator norm, but for more general operators, it is the supremum

over the ‘vector’ 2-norms of each row of T'.

PROPOSITION 2.1. The Hankel norm satisfies the following inequalities:

Tex: 1T g < 1T (2.6)
Tezu: [T lp2 < Tz (2.7)

PrOOF The first norm inequality is proven by

1T = SUPye£yz-1 || ul|ms<1 | P(uT) ||us
S SupuEACzZ*I,HuHHsfl ||UT||HS
< SUPuey ||u||ms<l vl |lus = (T
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For the second norm inequality, we first prove || T'[|$, < suppep,, I Dllns<1 || DTT*D* ||gs - Indeed,

T3 = [IPo(TT*) 152

SUPDeD,, || D|jps<t | DPo(TT*)D” [|p2
SUPDeps,||D|us<t | DPo(TT*)D* ||lus
SUPDeD,, | D|lns<t || DTT*D* [[us.

IN

Then (2.7) follows, with use of the fact that T € ZU, since the latter term is majorized by || T ||%:

IT % < SUPpep,,||D|us<i | DTT*D* ||ms

= SUPpep,, || D|us<t || PZ*TT*ZD* ||us

= SUPpepy, || D|ns<t || P(DZ*T)[P(DZ*T)]" ||us
SUDye oz |[ullns<t || P@WD) [P@D)]* lus = |T|%-

IN

a

We see that the Hankel norm is not as strong as the operator norm, but is stronger than

the row-wise uniform least square norm.

2.5. Realizations

If the natural input state space and the natural output state space have a locally finite
basis then realizations of type (1.2) can be derived. Turning to this type of realizations, we can as-
semble the matrices { Ay}, { By} etc. as operators on spaces of sequences of appropriate dimensions,
by defining A = diag(Ay), B = diag(By), C = diag(Cy) and D = diag(D},). Let £5 be the space
of input sequences, 6/2\[ the space of output sequences, and let us define B = {B; : k € Z} as the
sequences of spaces to which the state z = [--- z¢ z; z2 ---] belongs. If all operators { A}, { Bk},

etc. are uniformly bounded over k, then A, B, etc. may be viewed as bounded diagonal operators

A € D®B,BY), C € D(B,N), (2.8)
B € DWM,BY), D € DWM,N), '
which together define the dynamical equations
1 _
YA = zA+uB T — A C (2.9)
y = zC+uD B D

With £,4 the spectral radius of the operator AZ, we shall say that the realization (2.9) is strictly
stable if £4 < 1. In that case, the operator (I — AZ) ! exists as a bounded operator and elimination
of z in (2.9) leads to

r=uBZ(I—AZ)! (2.10)
so that T can be written in terms of {A,B,C,D} asT =D+ BZ(I — AZ) 'C.

The realization (2.9) can be generalized further, by considering inputs and outputs in

&M and XQM , respectively, for which again the same relations hold:

(2.11)

zZ' = zA+uB T — A C
y = zC+uD B D
11



If £4 < 1, then also z = uBZ(I — AZ)~! € X¥. By projecting both equations in (2.11) onto the
k-th diagonal, and using the fact that A, B,C, D are diagonal operators, a generalization of the

recursive realization (1.2) is obtained as

-1 _
Ty = TwA+umB (2.12)
Y = 2w C +upD

(see figure 2(b).) Note the diagonal shift in $Ek_ ii} Two more representations for 7' can be derived
from (2.12). For u € X5, we define the past and future signals, with respect to the 0-th diagonal of
u, by the projection of u onto £2Z ™ and Uy respectively, so that u = Up +us € LoZ 7 ® Uy, with
up =Proza(u) = Zilu[_l] + Zfzu[_Q] + - and uy = P(u) = ujg + Zup) + Z2u[2] + ... If the

same is done to y € Xy, then y = uT is equivalent to y = y, + ys, with

{yp = upKr where {KT = Pr,za(-T)le,z (2.13)
yr = uwHr + usBr Ep = P(-T)|y,

and where Hr is the Hankel operator defined before (see figure 2(c)). If uy = 0, then y; = u, Hr.
The following construction shows that the existence of a realization implies that Hr can be factored

into two operators. According to (2.12), and assuming £4 < 1, z[g] is equal to

z) = Po(z) = Po(uBZ(I - AZ)™
= Po(upBZ(I—AZ)™') + Po(uy BZ(I—AZ)™") (2.14)
= Po(u,BZ(I—-AZ)™1).
If uy = 0 then, for k > 0, yy) = 2 C = xf(])c])A{k}C, so that
yr = >0 Z[k]y[(k:])
= Yy glklpk) 4{k}
220 “lo i ¢ (2.15)
26 @)(AZ)"C
31'[0](] — AZ)*lC

Hence Hr has the factorization Hy = Po(-F*) G, with F* = BZ(I-AZ) 'and G = (I-AZ)~!C.

Representation (2.13) is thus equivalent to the equations

T, = [Po(-F*) Kr]
= u,T, P
{[9”[0] yp] “I’TP with o _|¢ (2.16)
vr = Lo wrlTy I = By

See figure 2(d). We call the decomposition of T" into the operators T}, and T a state splitting of T'.

2.6. Controllability and observability operators

An important aspect of the factorization Hr = Py(-F*) G is its minimality, since this
will imply the minimality of the sequence of dimensions of z and thus the minimality of the

realization. A realization is said to be controllable if the range of Po(-F*)|,, ;1 is dense in DF, and
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Figure 2. (a) Causal transfer operator T, (b) realization T, (¢) splitting into past and future signals, (d)
representation by T}, and T7.

uniformly controllable if its range is all of D5, that is, if Po(L2Z 7 F*) = Dy. If Py(-F*) is regarded
as an operator from £,Z7' — D,, then its adjoint is - F with domain D, and the realization is
controllable if DF =0 = D =0 (D € D), that is, if the gramian Po(FF*) > 0. The realization is
uniformly controllable if Po(FF*) is uniformly positive, by which we mean e > 0 : Po(FF*) > €.
Observability is defined in much the same way. A realization is observable if P(U2G*) is dense
in DF, which is equivalent to Po(GG*) > 0, and uniformly observable if Py(UoG*) = D5, i.e.,
Py(GG*) is uniformly positive. A realization which is both controllable and observable is said to
be minimal. If a realization has £4 < 1 and is uniformly observable, then the input state space is
H(T) = D5F = DE(I—-Z*A*)~1 Z*B*. Similarly, for a uniformly controllable realization the output
state space is Ho(T') = D5G = DE(I— AZ)~'C. This shows that if the realization is minimal, then
s-dim H = s-dim H, is equal to the sequence of dimensions of B, the space of state sequences. It is
possible to prove the converse, i.e., to show that if s-dim H(7T) = s-dim Ho(T) =[--- dp d1 dg ---]
is a uniformly bounded sequence of dimensions, then there exist realizations of 1" with dp = dim #H,
equal to the system order at point £ [24]. This number is equal to the rank of Hj. We will call the
sequence the minimal system order of T. If T admits a locally finite realization, then it is always
possible to choose this realization to be either uniformly controllable or uniformly observable,
although it may not be possible to have both (this is typically the case if the range of Hr is not
closed).

The action of the operators Py(-F*) and G can be made more ‘visual’ by considering a
13



representation as sequences of diagonals [24]. From (2.14) and (2.15) we obtain

I = Py (up BZ(I - AZ)_I)
= Po([Z ‘u_y+ Z 2uy++|[BZ+ BZAZ+BZAZAZ + "))
- P [ufi)ﬂz—l + UEZ}ZJ +--][ZBW + 22B@ AW 4 73B3) 4@ AW 4 .. ])
B
" B AW
- [“[—1] Yl-2) Y-t ] B® 4@ AW

and
[Y[0] y[(l_]l) y[(g_]Q) o] =) [C ACCD 44D 0(=2) ]
The operators
B
B@ AM

R —1 —1 —92
B4 | 0= [0 ACED AaNctD ]

are representations of Po(-F*) and G in ‘diagonal sequence’ spaces f5(D) which are isomorphic to
LoZ 1 and Us. Ci, and Oy, as defined in the introduction (equation (1.5)) are obtained from C and
O by taking the k-th entry along each diagonal of C and O. The controllability gramian Py (FF*)
is equal to C*C. Likewise, the observability gramian is Po(GG*) = OO*.

2.7. Lyapunov Equations

Another notion that we shall need is that of state transformations. If {A, B,C,D} is a
strictly stable realization of a system with transfer operator 7', then an equivalent strictly stable
realization is found by applying a state transformation & = zR on the state sequence z of the

system with a bounded and boundedly invertible diagonal operator R. The transition operator T

[ )

(Note the diagonal shift in (R("1)~1). Tt is easy to see that Lra(r(-n)-1 = L4, hence that strict

stability is preserved under the transformation. State transformations are often used to bring a

is then transformed to

transition operator into some desirable form. This then leads to equations of the famous Lyapunov

or Lyapunov-Stein type. For example, the Lyapunov equation
MY = A*MA + B*B, M € D(B, B) (2.17)

arises in the transformation of a strictly stable and uniformly controllable realization to input

normal form: one for which A*A + B*B = I. If the original realization is uniformly controllable,
14



then a boundedly invertible state transformator R can be found such that A; = RA(R(-1)~1,
B; = B(RCY)"! and A% A; + BfB; = I. Substitution leads to equation (2.17), with M = R*R,
and hence it suffices to solve this equation for M and to verify that M is boundedly invertible, in

which case a factor R is boundedly invertible too. Equation (2.17) will have the unique solution

00 (1)
M = {Z(A{k})*(B*B)(k)A{k}}

k=0
provided £4 < 1, in which case the sum converges in operator norm. By taking the k-th entry of
each diagonal which appears in (2.17), this equation leads to M1 = A} M Ay, + B}, By, which can
be solved recursively if an initial value for some M} is known. Finally, if C is the controllability
operator of the given realization, then M = C*C is the solution of (2.17), which shows that M
is boundedly invertible if the realization is uniformly controllable. Likewise, if the realization is
strictly stable and uniformly observable (O is such that @ = OO* is boundedly invertible), then @

is the unique bounded solution of the Lyapunov equation
Q =AQYA* + cC* (2.18)

and with the factoring of = RR* this yields a boundedly invertible state transformation R
such that A, = R"'ARCY, By = BRUY, ¢; = RIC, and A1 A% + C,C; = I. The resulting
{A1,B;,C;, D} then form an output normal realization for the operator. In section 6 we shall
assume that the operator to be approximated is indeed specified by a realization in output normal
form. If T is locally finite, then it is always possible to obtain a realization in output normal form
by constructing it from an orthonormal basis of the output state space Ho(T') [24]. For a general
upper operator 7', one other way to obtain such a realization is by breaking off the diagonal series
representation of T" at a sufficiently high order, T' = Zév Z WT[,C], in which case we can take as a

trivial (possibly non-minimal) realization

0 1 0 0 ]
0 1 :
A G ] :
lBk Dk]_ 0 1 0
0 0 1

| Tyt N Tkgt1 | Tk

In this case, £4 = 0 (A is nilpotent) and the realization is strictly stable, while it is also in output
normal form: AA* + CC* = I. This realization is a high-order approximating model of T', which
can subsequently be reduced to a low-order Hankel-norm approximant by application of theorem
1.1.

3. J-UNITARY OPERATORS

In the sequel, we shall be dependent on the properties of certain unitary and J-unitary
operators. These are well-known for their time-invariant analogs, and some of the generalizations

15



have already been derived for the context of upper operators which act on ‘constant size’ sequences
of spaces in [16, 23]. The present section considers the more general case of non-uniform sequences

of spaces.

3.1. J-unitary operators and J-unitary realizations

If an operator is at the same time unitary and upper, we shall call it an inner operator.
In this paper we shall make extensive use of operators © that consist of 2 x 2 block entries which are
upper operators such that © is J-unitary in a generalized sense. To introduce this notion properly,
we must define a splitting of the sequence of input spaces of © into two sequences M7 and N7,
a splitting of the sequence of output space sequences into two sequences My and N5, and define

corresponding signature sequences J; and Js:

I
@Zl@n 912]’ lelMl

(3.1)
O91 O

I

© decomposes in four blocks, mapping /5" @ ZJQ\[ Lto 6512 @ éév 2. If each of these maps is upper, we

—1Iz =1y, ] .

say that © is block-upper. © will be called J-unitary relative to this splitting in blocks, when
®*J1® = J2 and @JQG* = J1 .

We will not say that such a © is J-inner unless additional constraints which go beyond the scope
of the present paper are satisfied (see also [23]). We will now show that a state realization © which
is J-unitary in a certain sense leads to a J-unitary transfer operator ©. Let B be the sequence
of spaces of the state of ©, and let B = By @ B_ be a decomposition of B into two sequences of
spaces. Let

Jg =

Is,
. ] (32)

be a corresponding signature matrix, which we call in this context the state signature sequence of

©. We have the following connection between a realization matrix © and the transfer operator ©.
THEOREM 3.1. Let Ji, Jo and Jg be signature sequences with dimensions as given

in (3.1), (3.2). If a state realization operator © = [ g Z ] is strictly stable and satisfies

7
e*lJB ]GZ[JB (3.3)

Ji Jo |

(1)
e[JB JZ]G*:[JB ; (3.4)

then the corresponding transfer operator © = §+ BZ(I — aZ) ™'y will be J-unitary in the sense that

O*J10 =Jy, ©J,0F=J. (3.5)
16



With 4’ indicating the sequence of dimensions of a space sequence, we will have in addition that

#B, + #M; = #BUY + #M,
4B+ #N, = #BUY 1 4N,

PrROOF The theorem is readily verified by evaluating J, —©*J;0 and J; — ©J20%, e.g.,

(3.6)

Jo—0*J10 = Jy—6"J6 + ’)’*(I— Z*a*)*lZ*a*JB'y + ’Y*JBOéZ(I — OéZ)il’)’ +
— (I = Z*a*) 12 {JS Y — o* Jga} Z(I — aZ) 1y
= y*Jgy + v*(I - Z*a*) " YHZ*a* g + JpaZ — Jg — Z*a* JgaZ (I — aZ) 1y
since f*J16 = —a*Jgy, B*J10 = Jl(;_l) —a*Jga and Jy — §*J16 = v*Jg7y, and hence
Jo—O* 10 = (I —-Z*a*) H{{I - Z*a")Jsg(I — aZ) +
+ Z*a*Jg + JgaZ — Jg — Z*a*JBaZ}(I — OzZ)_l’y
= 0.
The second equality of (3.5) follows by an analogous procedure.
Equations (3.3) and (3.4) show that © is invertible, so that for each time instant &, the
total positive signature at the left hand side of each equation is equal to the total positive signature

at the right hand side (the so-called inertia theorem). A similar observation holds for the total

negative signature at each point k. This is expressed in (3.6). O

3.2. Interpolation properties of J-unitary operators
A J-unitary upper operator has the special property that it maps its input state space
to [UQ Z/{Q].

PROPOSITION 3.2. If {«,B,7,d} is a J-unitary state realization for a J-unitary
block-upper operator ©, then

(I—-2Z**)'Z*6* 10 € U U] (3.7)

that is, (I — Z*a*)~1Z*3*J1, which consists of two strictly lower blocks, is mapped by © to block
upper.
Note that the input state space of © is H(0) = Dyo(I — Z*a*) "1 Z*6* € [L2Z71 LoZ71).
PrROOF Evaluation of (3.7) and using (3.3) reveals that

(I—-Z*a")1Z*B* L {6+ BZ(I —aZ) 1y}
= (-2 2" {—o*Jp+ (J§ Y — 0’ Jga) Z(I — aZ) " } 4
= (Z-a) o Js(I - aZ) + Js V7 — a* JZ} (I - aZ) "1y
= Js(I—aZ)"\y € U Ul.

This property has an ‘interpolation’ interpretation which is explained in detail (for the
less general context of uniform sequences of spaces) in [23]. The interpolation principle will provide

us with the necessary factorizations and will be used in section 6.
17
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Figure 3. Relation between a J-unitary operator © and its corresponding unitary operator 3.

3.3. Scattering operators

Two of the relations in the expressions ©*J10 = Jo, 0J,0* = J; are 05,09 = I +
075012 and ©22035, = I + ©2,05,. Hence Og2 is a one-to-one map of 6/2\[1 onto 69/2, which ensures
that it is boundedly invertible [16, lemma 5.2]. Associated to © is an operator X,

by by
5o l 11 212 ]
o1 Yoo

such that [a; b2]X = [ay b1] & [a1 b1]© = [ay bo], (see figure 3). ¥ can be evaluated in terms
of the block-entries of © as

B 7 - (3.9)
0 1 0 @221 O I @221921 @221

l I -0 ] l O 0 ] l I 0 ] _ l 011 — 01205, 0y —0120,,
It is well-known and straightforward to prove that from the J-unitarity of © it follows that X is
unitary. 3 is known as a scattering operator, while © is called a chain scattering operator.
and © constitute the same linear relations between the quantities a1, ag, b1, bo. However, ¥ has
the connotation of visualizing the ‘positive energy flow’ between these quantities: aja] + babs =
aga5+ b1 b}, whereas for O, aja] —b1b] = agad —bybs. In engineering literature, a; and by are known
as incident waves, whereas ao and by are reflected waves. One fact which will be essential for the
approximation theory in the later chapters is that, although © has block-entries which are upper,
@;21 need not be upper but can be of mixed causality, so that the block-entries of 3} are in general

not upper.

3.4. Realization for X

The realization © for O satisfies (3.3) and (3.4). The state space sequence B decomposes
into two complementary space sequences B = By @ B_ of locally finite dimensions. Let any state
sequence z € XF and © be partitioned accordingly into z = [z, z_|withz, € Xy " andz_ € X) -

and

[ty - a1 b]O = [2,.Z27 . Z7' ay by. (3.10)
18



© has a corresponding partitioning into

.’E_|_Z_1 /A as by
Ty a1l Q12 ‘ Yir 712
Z— Q21 02 Y21 Y22
o = (3.11)
a | Bu B ‘ b1 b1z
by Ba1 B2 do1 d22

A reordering of rows and columns with respect to their signatures converts © into a genuine square-

block J-unitary operator, i.e., each matrix

a1l 71| 12 Y12
P11 011 | B2 O12
a1 Y21 | (o2 Y22
Por Oo1 | Pa2 022 |,

is a square and J-unitary matrix with signature [I(5,), o)), + — I5_),@(M1),]- In particular,

[0622 722]
Bao 022 k

of ©y is square and invertible, and because © is J-unitary, the block-diagonal operator constructed

each submatrix

from these submatrices is boundedly invertible as well. It follows that the following block-diagonal
operators are well-defined (cf. equation (3.9)):

-1

[ Py Hypp | :lan 711]_[0412 712] lam 722] lazl 721]
| Gu1 Ki1 | P11 d11 Br2 012 || Ba2 O2o Bo1 21
- : ~1
Fip Hip | [ Q12 Y12 ] [ Qa2 Y22 ]
G K 1) )
[ G2 Ko | B2 12 ) Ba2 022 (3.12)
Fy1  Hyy _ [ Qg2 Y22 ] [ Qa1 o1 ]
| G211 Ko | Boz 022 Ba1 b2
- : —1
Fyy  Hggp _ [ Qg2 Y22 ]
| G2 Ky | P22 022
and we obtain the relation
[ty z_Z7' a1 b]E = [2. 27 z_ ay b (3.13)
where
m+Z*1 T_ a by
Ty F  Fi Hyy Hi
z_Z71 Fyy  Fyp Hyy Hy
T- (3.14)
aq G  Gio ‘ K1 Ko
bo Ga1  Goo Ky Ko
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Figure 4. (a) The spaces connected with a realization for a J-unitary block-upper operator ® which transfers
o x ﬁé\/ 1 to 912 x KQ/ 2. The state transition operator is marked as ©. © transfers, at stage k,
(B+)k X (B_)k X (Ml)k X (N1)k to (B+)k+1 X (B—)k+1 X (Mg)k X (Nz)k (b) The corresponding

scattering situation.

See figure 4. ¥ is a kind of generalized or implicit realization for ¥, which can be obtained after
elimination of z_ and z,. It can be interpreted as a realization having an ‘upward’ state sequence
z_ and a downward state sequence z ., as depicted in figure 5. Be that as it may, the important

point is the existence of ¥ and its unitarity:
¥ =1; ¥E=1]
which is easily derived from the J-unitarity of ©.

3.5. Existence of ¥, and ¥

In section 2, we defined for a signal u € A5 the decomposition v = u, + uy, where
up = Pp,z-1(u) € L3771 is the ‘past’ part of the signal (with reference to its 0-th diagonal), and
us = P(u) € Uy is its ‘future’ part. We also showed how a causal operator T' with state realization
T can be split into a past operator T}, which maps u, to [37[0] yp] and a future operator Ty which
maps [w[()] uf] to ys. In the present context, let the signals ai,bq,az,bo and the state sequences
Z4+,Z_ be in Xy and be related by © as in (3.10). With the partitioning of a1, etc., into a past and
a future part, © can be split into operators (-)©, and (-)O via

lap b1p)Op = [wip0) T_pg azp Dy (3.15)
[Er0) @ @y bif)Op = oz byl
We wish to define operators (-)%,, (-)X;:
[2_0) aip bop|Zp = [zip0] azp by
[z10) a1 bof]l By = [z_j) a2 biy]

which are the (non-causal) scattering operators corresponding to ©, and Oy, respectively. (See

figure 5(b).) The existence of ¥, and X is asserted in the following proposition.
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Figure 5. (a) The state transition scheme for ¥, with £»-sequences as inputs. (b) The decomposition of
¥ into a past operator ¥, and a future operator Xy linked by the state [z,jo) =_[oj]. This
summarizes the figure on the left for all time.

PROPOSITION 3.3. Let © € U be a locally finite J-unitary operator with strictly
stable J-unitary realization ©. Then the associated scattering operators ¥y, and X are well defined

and unitary.

PrOOF The proof follows an argument that parallels the proof of existence of ¥ from
©, but now applied to restrictions of ©, and ©; to inputs and outputs for which only the k-th
row is non-zero, for all k£ in turn (c¢f. the connection of Hy with Hy). In this proof, the operator
© is considered as an operator from éé\/[l @ £/2\/’ ! to 6942 @ éév 2. Fix some time point k, and let
My i be the restriction of M; to the interval (—oo, k£ —1), and likewise for Ny, ;. Let the operator
Opi define the state splitting at time point k, mapping signals belonging to Eéwlp’k &) zﬁ“ Pk to
Byk @By @ 60 @ £)*:

epk : [alp,k: blp,k] = ['T+,k T_k Q2pk b2p,k]'

It has a state realization, {wi, i, Vi, 0i } >, say, which coincides with the state realization of © up
to the index k — 2. For the index k£ — 1, the computed z ; and z_ have to be considered as

outputs (not as states), and hence the realization at that point has vanishing ax_1, Bx—1, leaving a

[ V-1
Ok—1

From point k on, all state matrices of ©,; have vanishing dimensions. Because ©,; now has a

square J-unitary pair

=61.

J-unitary realization, it is a J-unitary operator itself (by theorem 3.1), and the corresponding
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scattering map X, exists as well as a bounded, unitary operator linking

Yok o [_k aipk bopk] = [Tk azpk Dipil

Finally, returning from /3 to the X5 context, X, is obtained by piecing the ¥, together into one
global operator. A parallel, dual reasoning holds for 3. O

4. SUMMARY OF THE APPROXIMATION PROCEDURE

In the present section we shall outline the overall procedure to obtain a reduced-order
approximant, and put the various facts needed in perspective. Details are proven in subsequent
sections.

Let M and N be sequences of spaces, and let T' € U(M, N) be a given bounded, locally
finite, strictly upper operator which has a strictly stable realization {A4,B,C,0}. We assume,
without loss of generality, that this realization is uniformly observable. Let I' be a diagonal and
hermitian operator belonging to D(M, M). We shall use I' as a measure for the local accuracy
of the reduced order model. It will also parametrize the solutions. We will look for a bounded
operator T'' such that

ITH(T -1 <1, (4.1)

and such that the strictly upper part of T/ has state space dimensions of low order — as low as

possible for a given T'. Let T, be the strictly causal part of T'!. Proposition 2.1 shows that

ITHT - To) |z = ITHT=T")|a

- (4.2)
< IrHT-T9| <1,

so that T, is a Hankel-norm approximant when T is an operator-norm approximant. A generaliza-
tion of Nehari’s theorem to the present setting would state that inf || T~ (T'—T"') || over all possible
extensions T’ of T, actually equals | T~ (T — Ty) ||z (see section 9).

The construction of an operator T satisfying (4.1) consists of three steps. We start by

determining a (minimal) factorization of T in the form
T = AU (4.3)

where A and U are upper operators which have finite state space dimensions of the same size as that
of T', and U is inner. We call this factorization an external factorization of T', and show in section
5 that it always exists if the realization {A, B, C,0} for T is strictly stable and is chosen to be in
output normal form, i.e., such that AA* + CC* = I, a condition that is always possible to achieve
by a state transformation starting from an initial realization which is uniformly observable (see the
Lyapunov equation (2.18)). It will follow from the construction that a state space realization for
U shares A and C with 7.

Next, we look (in section 6) for a locally finite J-unitary operator ©® with 2 x 2 block-

upper entries chosen such that

[U* —-T'T'6e =[A" —B' (4.4)
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consists of two upper operators. We will show that a solution to this problem exists if certain
conditions on a Lyapunov equation associated to I' 1T are satisfied (this can always be the case for
judiciously chosen I'). © will again be locally finite. There is an underlying generalized interpolation
problem leading to ©, which will also be elucidated in section 6. The procedure is an extension of
the method used in [23] to solve the time-varying Nevanlinna-Pick problem.

With a block-decomposition of © as in (3.1), it is known that ©99 is boundedly invertible
so that X9 = —@1262_21 exists and is contractive. From (4.4) we have B’ = —U*OQ15 + T*T 109, .
As the third step in the construction of the approximant T,, define

T = B'0,,T. (4.5)
Substitution leads to
T = 701 —U*0190,,
. 1222 (4.6)
— T U%,
and it follows that (T* — T'* )"} = —U*%5. Because Y19 is contractive and U unitary, we infer
that
T*_TI* 1‘\—1 — —U*Z
| =T = | US| (4.7
= [[Z] <1,

so that T = (B' @5;[‘)* is indeed an approximant with an admissible modeling error. In view
of the target theorem 1.1, it remains to show that the strictly causal part of T'' has the stated
number of states and to verify the relation with the Hankel singular values of I''7". This will
done in section 6 and 7. The definition of T in (4.5) can be generalized by the introduction of
a contractive operator Sy, which parameterizes the possible approximants. This is the subject of
section 8. We first show that 7" has indeed a factorization T = A*U, and derive expressions for ©
satisfying the interpolation condition (4.4).

5. EXTERNAL FACTORIZATION FOR T

THEOREM 5.1. Let T be an upper operator which has a strictly stable locally finite
and uniformly observable state space realization {A, B,C,D}. Then there exists a factorization of
T as

T = A*U, (5.1)

where A and U are upper operators, again locally finite and strictly stable, and U is inner, i.e.,

upper and unitary.

PrROOF We start from a realization of 1" in output normal form, such that
AA*+CC* =1, (5.2)

i.e., at each time point k the equation Ay A} + C,C}; = I is satisfied. We will assume that A is a
diagonal operator mapping ¢5 to Eg(_l) and T is an operator from £ to éé\f . For each time instant
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k, augment the state transition matrices [Ay Cj] of T with as many extra rows as needed to yield

a unitary (hence square) matrix Uy:

Bryi Nk
U, = B [A’“ Cr ] (5.3)
(Muv)r | (Bu)r (Do)

The added rows introduce a space (My); with the property #By + #(Mu)r = #Bk+1 + #Nk -
From AxAj; + CxCy = I it follows that #Bgi1 + #Ni > #Bg, hence #(My)i > 0. Assemble the
individual matrices {Ag, (Bv )k, Ck, (Dv )k} in diagonal operators {A, By, C, Dy }, and define U by
taking the corresponding operator U as a state space realization for U; U = Dy+By Z(I-AZ)™1C.
U is well-defined and upper because £4 < 1, and it is unitary because it has a unitary realization
(this fact is a specialization of theorem 3.1).

It remains to show that A = UT™ is upper. This follows by direct computation of A, in
which we make use of the relations AA* + CC* = I, ByA* + DyC* = 0:

A = UT*=[Dy+ByZ(I—-AZ)"1C) [D*+ C*(I — Z*A*)"1Z*B*]
= [Dy+ ByZ(I— AZ)~'C]D* + DyC*(I — Z*A*)"1Z*B* +
+ ByZ(I - AZ) 'CC*(I — Z*A*) ' Z*B*
= [Dy+ ByZ(I—- AZ)~'C] D* — ByA*(I — Z*A*)~'Z*B* +
+ ByZ(I — AZ)™' (I — AA*) (I — Z*A")"1Z*B*.

Now, we make use of the relation
Z(I—AZ) V(I - AANYI — Z* A 7' 2 = (I — ZA)™' + A*(I - Z*A") "' 2"

which is easily verified by pre- and postmultiplying with (I — ZA) and Z(I — Z*A*), respectively.
Plugging this relation into the expression for A, it is seen that the anti-causal parts of the expression

cancel, and we obtain

A = [Dy+ByZ(I-AZ) 'C|D*+ By(I— ZA) 'B*
= DyD*+ ByB*+ By(I - ZA) 'Z(AB* + CD").

a

Underlying theorem 5.1 is the interpolation property 3.2, specialized to inner operators.
For a minimal realization of T, the space D5 (I — AZ)~'C may be seen as the natural output state
space Ho = Ho(T) of T. The procedure in the theorem amounts to finding a unitary U with an
output state space that at least contains the output state space of 7. The interpolation property
then ensures H(U) U D Hy, i.e.,

HoU* C H(U)
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@) T (b) U (© A

Figure 6. (a) The state space structure of an example T', (b) The structure of the corresponding inner factor
U and (c) of A.

and it follows that A* = TU* must be lower triangular: P(L2Z1A*) = 0. The latter is checked
as follows:

P(L2Z71A%) = P(LZ7'TUY)
= P(HTU*) [since U* € L]
= P[PHT)U* +Pr,z (HT)U*]
= P[P(HT)U*
= P[HoU*] c P(H(U)) = 0.

Because the Ay are not necessarily square matrices, the dimension of the state space
may vary in time. A consequence of this will be that the number of inputs of U will vary in time
for an inner U having minimal state dimension. The varying number of inputs of U will of course

be matched by a varying number of outputs of A*. Figure 6 illustrates this point.

6. DETERMINATION OF ©

6.1. Construction of ©

In this section we shall show how, under satisfaction of a condition of Lyapunov type,
equation (4.4) can be satisfied with a J-unitary transfer operator ©. We use the fact that an
operator is J-unitary if its state realization is J-unitary in the sense of theorem 3.1. Let {4, B, C,0}
be the realization for 7" used in section 5 (it is in output normal form), and let {4, By, C, Dy} be
the unitary realization for the inner factor U of T' as derived in that section. Let M be the input
space sequence of T', and My for U. The strategy consists in constructing a J-unitary (for an
appropriate set {Jg, Ji, Jo}) state space realization {«, §,7,0} for © which is such that the input
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state space H(©) is generated by
H(O) = DE(I—-2*A*)"'Z*[B; BT] (6.1)

It will be shown in the proof of theorem 6.1 that this definition will ensure that [U* — T*T''] is
mapped by © to block upper. The definition (6.1) specifies {«, 8} of the realization © of © up to
a state transformation X, which must be used to ensure that the realization is J-unitary in the
sense of equation (3.3): in particular o*Jga + *J1 5 = Jl(;_l) for some signature operator Jz and
J1 =[Im, + — Inm]. This condition leads to a Lyapunov-Stein type equation which will play a
key role. Indeed, we try to find a boundedly invertible diagonal operator X € D(B, B) such that

XA(XED)—L

[“] = | Byxt) (62)
/8 P—lB(X(—l))—l

is J-isometric, i.e., such that

(XENTA*X* JpXAXEN™1 4 (XEN) =By By (X))~ +

1)y —x ok N 1 (6.3)
— (X)) r2B(x (D)1 = g&Y
Writing A = X*JpX, this produces
A*AA + Bj,By — B*T2B = A1), (6.4)

Since £4 < 1, this equation will always have a solution A (see section 2), and the signature of A
will determine Jg. For X to be boundedly invertible, it is sufficient to require A to be boundedly
invertible. Equation (6.4) may be rewritten in terms of the original data by using Bj;By = I —A*A

to obtain the equation
AMA+BT?B=M"Y, M=I-A. (6.5)

M is the solution of one of the Lyapunov equations associated to I' 1T (viz. equation (2.17)), and

hence can be given in closed form as

) (1)

M = { Z(A{’“})*(B*I‘_QB)(’“)A{’“}} : (6.6)
k=0

We shall see later that M is closely related to the Hankel operator of I' T, and in particular that

the singular values of this Hankel operator determine the signature of A, and hence Jg.

THEOREM 6.1. Let T be a strictly upper locally finite operator mapping £3* to EJQV,
with output normal realization {A,B,C,0} such that £4 < 1, and let T be a Hermitian diagonal
operator. Also let U be the inner factor of a factorization (5.1) of T. If the solution M of the
Lyapunov equation

A*MA+ B T~?2B = M=) (6.7)

18 such that A = I — M 1is boundedly invertible, then there exists a J-unitary block upper operator
© such that
[U* —T*T™e € [U U].
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PROOF The condition insures that there exists a state transformation X such that (6.2)
is J-isometric, i.e., such that @ = XA(XC D)1, 8 = By(XC D)1, gy =T 1B(X(-D) 1 satisfies

o Jga + BB — BB = IS5 (6.8)

X is obtained by solving the Lyapunov equation (6.7) for M, putting A = I — M, and factoring
A into A = X*JgX. This also determines the signature operator Jz and thus the space sequence

decomposition B = By @ B_. We proceed with the construction of a realization © of the form

X A ‘ Cl 02 (X(fl)),l ‘ « §a! 72 a v
O = By | D11 Dia = | 1|01 d12 | = (6.9)
| g 5 o
I'*B

D1 Do

which is a square matrix at each point k, and where the C;, D;; are yet to be determined. © is to
satisfy (3.3) for

. Jyi= (6.10)

J = [ IMU [ IM2

—Inq ] —Iy, ]
where J5 is still to be determined, and with it the dimensionality of the sequences of output spaces
M and Ns. However, since all other signatures are known at this point, these follow from theorem
3.1, equation (3.6) as

#My = #Bp —#BV +#My >0

#No = #B_—#B"Y M >0,

Finally, to obtain ©, it remains to show that l ; ] can be completed to form © in (6.9), in such

a way that the whole operator is now J-unitary in the sense of (3.3). This completion can be
achieved at the local level: it is for each time instant k an independent problem of matrix algebra.

For each time instant &, o and [ are known and satisfy

* * (JB)k: Qg .
[ B [ Tk ] [ B, ] = (JB)k+1 -

@
Because (Jp)k+1 is non-singular, the # B8 columns of l k ] are linearly independent. Choose a

k

Ck ] with #(Ma)g + #(N2) independent columns such that

matrix
dy

x % (JB)/C Ck .
o | U] = 6.)

@

We claim that the square matrix l ﬁk dk ] is invertible. To prove this, it is enough to show that
k k

its null space is zero. Suppose that

e lln]=1]
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then
Qp  Cp

Br  dy

T

e " o a ] 2] -]

Z2

Hence 1 = 0 and l K ] z9 = 0. But the columns of l Zk
k k |
zo = 0. Thus
[O‘Z ﬁi][(JB)k ][ak Ck‘|:-
ck dj (J1)k Br  dg i

are linearly independent, so that

(JB)k+1
Ny

where Nj is a square invertible matrix. By the usual inertia argument, the signature of Ny is equal

to (J2)k, and hence N has a factorization Ny = R} (J2), Ry, where Ry, is invertible. Thus putting

KRk

ensures that © is J-unitary as required.

]Rkl, ek:lﬁk

Q. Yk

N

To conclude the proof, we have to show that [U* — T*I'71]© is block upper. We have

U* —1T7Y = [D}
and it will be enough to show that

Do(I — Z*A*) ' Z*[B};

—~ DT+ C*(I - Z*A") "' Z*[B};

. B*I-\fl

— BT (6.12)

10 (6.13)

is block upper. With entries as in equation (6.9), and using the state equivalence transformation
defined by X, this is equivalent to showing that Do X (I — Z*a*) ' Z*B* J; O is block-upper. That

this is indeed the case follows directly from proposition 3.2—see

For later use, we evaluate [U* — T*I'"!]©. Equation

C*(I-Z*A*)"'z*[B};, —BT'|® =

equation (3.7). O

(3.8) gives

C*X(I-Z*a")"1Z*p*J, ©

Consequently,

[U* —-1T71e

= C*XJp(I—aZ) y
C*A(I — AZ)7L[Cy C).

[Dy; 01{6 + [By BT*Z(I-AZ)7'[C,

{[Dy 016 + C*A[C1 Col} + C*(A—1)AZ(I — AZ)7[Cy

CQ]} + C*A(I—AZ)_1[01

9]

(in which we used C*A + Dj;By = 0). Since this expression is equal to [A" — B'], we obtain a

state space model for B’ as

B' = {=D};D1a + C*(I — M)Co} + C*MAZ(I — AZ)"'Cs.
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6.2. Connection with the Hankel operator

We conclude this section by establishing the link between the Lyapunov equation and
the Hankel operator of I' ' 7.

THEOREM 6.2. Let T be a locally finite upper operator which has a strictly stable
realization {A, B,C,0} which is in output normal form. Let Hy, be the Hankel matriz of T7'T at
time instant k, and suppose that the singular values of each Hj decompose into two sets o_ and
04k, with lower bound of all o_ . larger than 1, and upper bound of all oy smaller than 1. Let
Ny, be equal to the number of singular values of Hy which are larger than 1. Then the solution M

of the Lyapunov equation
A*MA+ B*T?B = M"Y

1s such that A = I — M is boundedly invertible and has a signature operator Jp having Ny negative
entries at point k.
PROOF The solutions of the two Lyapunov equations associated to I,

M1 A*MA + BT 2B
Q = AQ-DA* +CC*

may be expressed in terms of the controllability and observability operators of T T,

(r-1B)+1)
(F—lB)(+2)A(+1)

C:= (P—1B)(+3)A(+2)A(+1)

0 = [0 ACD  AAED (-2

as M = C*C, Q = OO*. The Hankel operator Hy, of I''T' at time instant k satisfies the decom-
position Hy = C, Oy . Hence
HyH} = C,O,O;Cy .

The state realization of T' is assumed to be in output normal form: @ = OO* = I. With the
current finiteness assumption, the non-zero eigenvalues of HyH; = C;C;, will be the same as those
of C;;Cy = Mj. In particular, the number of singular values of Hj, that are larger than 1 is equal to
the number of eigenvalues of M}, that are larger than 1. Writing Ay, = I — M}, this is in turn equal

to the number of negative eigenvalues of Ay. O

Figure 7 shows a simple instance of the application of the theory developed in this
section, emphasizing the dimensions of the input, output and state sequence spaces related to the
©-operator. We assume in the figure that one singular value of the Hankel operator of I 'T" at time
1 is larger than 1, so that the state signature Jp of © has one negative entry in total. We known
from equation (3.13) that the negative entries of Jz determine the number of upward arrows in the
diagram of the unitary scattering operator £. We will show, in the next section, that this number

also determines the number of states of the Hankel-norm approximant 7, of 7.
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Figure 7. (a) State space realization scheme for 7" and (b) for U. (¢) State space realization scheme for a
possible ©, where it is assumed that one singular value of the Hankel operator of I 'T at time 1
is larger than 1, and (d) for the corresponding scattering operator X.

7. COMPLEXITY AND STATE REALIZATION OF THE APPROXIMANT

At this point we have proven the first part of theorem 1.1: we have constructed a J-
unitary operator ® and from it an operator T, which is a Hankel-norm approximant of 7. It
remains to verify the complexity assertion, which stated that the dimension of the state space of T,
is at most equal to N: the number of Hankel singular values of I''T that are larger than one. In
view of theorems 6.1 and 6.2, N is equal to the number of negative entries in the state signature Ji
of ©. We will now show that a state model for T, can be derived from the model of ©, and that its
complexity is indeed given by #_(Jg). The construction is, again, based on the determination of
the natural input state space for T;,, which can be derived in terms of the realization of a scattering
operator that is connected to ©.

Throughout section 7, we take signals a1, a2, b1, by to be elements of Xy, generically
related by

[a1 bl] e = [G,Q bQ]

where © is as constructed in the previous sections. In particular, © is a bounded operator, and
05, exists and is bounded. In section 6 we showed that © has a (block-diagonal) realization ©
which is J-unitary with state signature matrix Jz — see (6.9) and following. © is bounded by
construction (due to the assumption that none of the Hankel singular values of I' *7T are equal or
‘asymptotically close’ to 1), and is strictly stable. Any realization T = {A,B,C, D} with £4 < 1
defines a bounded map from input u € X3 to state z € X9, z = wBZ(I — AZ)™!, which we will
call the state evolution of T. The diagonal z[y in the state evolution defined by the realization ©
will play an important role in the definition of the state evolution for 7.

Associated to the transfer operator ©, there is the scattering operator 3 which relates

[(11 bg]z = [(12 bl]
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We have derived in section 3 a representation ¥ = {F, G, H, K} in terms of entries {a, 3,7,d} in
O.

7.1. State dimension of T,

Suppose that the conditions of theorem 6.1 are fulfilled so that © satisfies
U* -1'T%e =[A" -B'

with A’, B € Y. Let T""I'"! = B'O, as in section 4. The approximating transfer function T}, is,
in principle, given by the strictly upper part of 7'’ (see section 4 for the summary of the procedure).
It might not be a bounded operator, since operators in X are not necessarily decomposable into
an upper and lower part in X. However, its extension T’ is bounded, and hence its Hankel map
Hy, = Hy: is well-defined and bounded. We have

PROPOSITION 7.1.  Under the conditions of theorem 6.1, the natural input state
space of T Ty, satisfies
H(TT,) C H(Oy). (7.1)

PrROOF From the definition of # and the operators we have

H(TIT,)

PLQZ 1(Z/{2T Fil)

PL‘2Z 1(U2T'*F71)

= Pr,72(UB'0y; )

C Pryz 1 (U©33) [since B’ € U]
= (922 ) -

a

Hence the dimension sequence of H(©,,) is of interest. Define the ‘conjugate-Hankel’

operator
H HI 1 == PL2Z 1( @2_21)|u2 . (72)

Then H(©3) = ran (H'). Let the signals a1, b1, az2,bs and the state sequences zy,z_ be in Xp
and be related by © as in (3.10). As discussed in section 3, © can be split into operators (-)©, and
(1)Of via

laip b1p]Op = ['T+[0] T_[0] G2 bap) (7.3)
[T10) Z—jo) a1y bif]©p = [agy boy].

and according to proposition 3.3, the associated scattering operators 3, and 3y are well defined by

[z 0] ap boplZp = [Ty azp by

(7.4)
[z40) aif bylZp = [z_) az; bif]

and constitute the same relations as in (7.3). (See figure 5(b).) Because O,y = Yo, the conjugate-
Hankel operator H' defined in (7.2) is a restriction of the partial map Xgg : by +— by, that is,
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H' : bys + bp is such that by, and by, satisfy the input-output relations defined by ¥ under the

conditions a; = 0 and by, = 0. H' can be factored as H' = o7, where the operators

g: bgf = Z_g
T T_[gg blp

can be derived from Xy and X, by elimination of z o), again taking a; = 0 and by, = 0. We will
show, in proposition 7.2, that the operator ¢ is ‘onto’ while 7 is ‘one-to-one’, so that the factorization
of H' into these operators is minimal. It is even uniformly minimal: the state z_jg is uniformly
controllable by byf (i.e., the range of o spans D), and T_[o) as input of 7 is uniformly observable.
It follows, in proposition 7.3, that the dimension of z_[o at each point in time determines the local

dimension of the subspace #(05,") at that point.

PROPOSITION 7.2. Let © € U be a locally finite J-unitary operator with strictly
stable J-unitary realization ©. Let (o), T_[o],a1,b1,a2,ba € X satisfy (7.3) and (7.4).

1. If a1p = 0 and by = 0, then the map T : x_[g) = by 1s one-to-one and boundedly invertible

on its range, i.e.,

Te>0: byl > ello gl (7.5)
2. The relations
.’E_[O]S = :I?+[0] when Q1p = 0, bgp =0 (76)
Ty = z_p when a1y =0, byy =0,

define bounded maps S, R which are strictly contractive: || S| <1, |R| < 1.

3. The map o : bay — x_[g) is onto, and moreover, there exists M < oo such that for any x|

there is a bay in its pre-image such that

[b2s || < Mlz_p |-

PROOF

1. The map T : x_[g] + by is one-to-one. Put a1, = 0 and by, = 0. Equation (7.4) gives
[ [0 0 0]Z) = [z4[0] azp bip), that is, we have for some x_ g and ag,

[0 b1p]©p = [z4p0) 7_[0) az 0. (7.7)

Since Oy is bounded, ||b1, || < 1 = [[z_g| < M and hence, with e = 1/M: ||z_q || >
1 = |[|byy || > €. It follows that z_jg + b1, is one-to-one as claimed, and that (7.5) holds.

2. S exists as partial map of ¥, (taking a1, = 0, byp = 0). Referring to (7.7), we have
Iz I = Nz 7 + 1 b1y ” + [l azy II?
and since || bip [|* > € || z_pg) ||* for some €, 0 < € < 1, we have
lo— I > Nz s I” + €|z I

and hence there exists a constant p (0 < p < 1) such that ||z 1?2 < p? | z_[o | (take
pu = V1 —¢?). This shows that || S| < 1. A similar argument holds for R.
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3. The map o : byy — x_[g] is onto. Let be given any z_[g. We have to show that there is a
boy that via Xy can generate this state. First, with a1, = by, = 0, ¥, associates a unique
bip and z g to T_jp;. Put also a1y = by = 0, then © generates a corresponding by as
bay = b1O22. Because X is well-defined, application of X to [$+[O] 0 b, f] gives again a
state ¢’ 0]’ but this must be equal to z_j because they both generate the same by, and the
map z_[g) — bip is one-to-one. Hence this by generates the given state z_[g. In addition, we
have from | b1, || < [|z_[g || and ||© || < M < oo that

[o2r I < [[©22][]| brp |
< M|z_ql-
This means that the state z_y is uniformly controllable by by as well. O

PROPOSITION 7.3.  The s-dimension of the input state space H(Oy ) is equal to

N = #(B_), i.e., the number of negative entries in the state signature sequence of ©.

PROOF H(035) = Pr,z-1 (UeO2) = {Pr,z-1(bar O3) = b € Up}.
Put a; = 0 and by, = 0 so that b1, = P, 1(boyO5;). The space H(O) = {bip : by € Us}
is generated by the map H' : byy + bip. But this map can be split into o : byy — z_jg] and
T : w_[g) > bip. Because [z_qy 0 0], = [z4q a2 bip], the signal z_5 determines b1y
completely. In proposition 7.2 we have shown that z_g) > b1y is one-to-one and that by — z_o is
onto. Hence, the state z_[g) is both uniformly observable in b1, and uniformly controllable by by,
i.e., its state dimension sequence for the map boy + by, is minimal at each point in time. Since

the number of state variables in z_jq is given by N = #_(Jp), it follows that

s-dim H(03,) = #(B-) .

Proposition 7.3 completes the proof of theorem 1.1.

PROOF of theorem 1.1. Under the conditions mentioned in the theorem, 7" has an inner
factor U of an external factorization (5.1), and there exists, by theorem 6.1, a J-unitary operator
O such that [U* — T*T71]© = [A’ — B'] is block upper. It was established in equation (4.2)
that T,, defined as the strictly upper part of I' @5, B'*, is a Hankel-norm approximant of T
IT~Y(T —T,) ||z < 1. Propositions 7.1 and 7.3 claimed that 7, has an input state space whose
dimensionality does not exceed that of H(©%;"), and that the latter dimension sequence is precisely
equal to the sequence of the number of negative entries in the state signature sequence Jg of ©. In
turn, it was shown in theorem 6.2 that this sequence is equal to N, the sequence of the number of

Hankel singular values of I'7'7T that are larger than 1. O

In the remainder of the section, we shall derive explicit formulas for a realization of the

approximant T,.
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7.2. State realization for T,

In order to obtain a state realization for T,, we will first determine a model for the
strictly upper part of ©,5" from the representation ¥ = {F,G, H,K}. It will be given in terms of
the operators S and R defined in equation (7.6) which can be obtained from ¥ in terms of two
recursive equations. S is for example obtained as the input scattering matrix of a ladder network
consisting of a semi-infinite chain of contractive (i.e., lossy) scattering matrices Fj;. It is well-known
that such ladder or continuous fraction descriptions converge. An early, independent proof of this
fact can be found in [33]. See also [34].

PROPOSITION 7.4.  The operators S and R defined in (7.6) are determined in terms
of B with block decomposition as in (3.14) by the following recursions:

S = (F21 + F22(I — SFlg)_ISFH)(—I_l)

7.8
R = Fip+ F(I-—REVEy)'REDFyy. (7:8)

A state space model {Aq, Bq, Cr} of the strictly upper part of ©55 is given in terms of S, R by

Aa = (FQQ(I_SF12)71)*
B, = (Hy+ Fo(I —SFy) 1SHyp)" (7.9)
c, = (I — SR)f* [GQQ + G21(I — R(fl)Fgl)flR(fl)FQQ] .

PROOF The existence and contractivity of S € D and R € D have already been
determined. First observe that although S satisfies by definition z_iq)S = 7o) (a1p = by =
0), it also satisfies z_[;)S = z,pj) (a1p = by = 0 and a;q) = byyp) = 0), etc. This is readily
obtained by applying inputs Z 'a;, etc., so that we get states Z 'z, and Z 'z_. If (Zflal)p =
Z7ayy + Z7ayq) = 0, then (Z7'z )S = (Z7'z4). But (Z7'¢ ) = x_p, and likewise
(Z_l.’17+)[0] = T[] Hence .’17,[1]5 = T[]

To determine a state realization for the strictly upper part of £3, = ©5°, we start from
the definition of ¥ (3.13), and specialize to the 0-th diagonal to obtain

[37+[0] 37(:[11}) a1o] 1?2[0]])3 = [395:[11]) T_[0] G20 b1[0]]-

Taking a; = 0 throughout this proof, inserting the partitioning of ¥ in (3.14) gives

55(+_[11]) = zyfn + 56(:11)1721 +  bopojGa1
Z_[o] £C+[O]F12 + x(__[ll% Fy + b2[0]G22 (7. 10)
bigg = x4z + ﬂv(__[ll] Hyo + byjq Ko

With bgp = 0 and bypg) = 0, these equations yield an expression for S(=1).

{xi_[ll]) = ﬂU(__[ll])S(*l) = z_[qSFu1 + w(__[ll)Fm

T—[0] = z_[SF2 + 3:(_—[11} Fyo

< (7.11)
z_[o] = oC ) Fn(I - SFip)™! o
2T SCD = 5O (Foa(I — SFip) 'SFi1 + Fan)
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(note that (I — SFy3)~! is bounded because || S| < 1 and || Fi2|| < 1), and hence S satisfies the
indicated recursive relations (see also figure 8). The recursion for R is determined likewise.

Take z_ as state for a realization of the strictly upper part of ©5,, and let {4,, B,, Cr}
be a corresponding state realization, so that the strictly lower part of @2_21 has an anti-causal state
realization

—1

bio) = w(_m%B*

{ T[] = w(__[ll)AZ +  byCF

a
The unknowns A,, B, and C; can be expressed in terms of F', G, H by substitution in equations
(7.10), and using S and R as intermediate quantities. Doing so with by = 0, the first equation in
(7.12) yields the expression for A, in (7.9) and B, can be determined in terms of S from the last
equation in (7.10).

Finally, C7 is obtained as the transfer byjg) — z_[g) for a; = 0 and by = byjg] € D2, so
(-1

] R, Inserting the latter expression into the first equation

that z oS = 2o} and x(__[ll]) =z
of (7.10) twice yields

x(__[ll]) = ‘II’.+[0}F11 (I - R(_I)F21)_1R(_1) + b2[0]G21(I _ R(_I)F21)_1R(_1) '

Inserting this in the second equation of (7.10), and using x (o) = _[q]S results in

z_qSFi2 + z_[SFu(I — REVFy,) T TRED By
+ bQ[O]GQI(I - R(il)F21)71R(71)F22 + b2[0]G22

T—10]

z_jg(I = SR) = byg(Goz + Gar(I — REVFy,) ' RED Fyy)

which gives the expression for C,. O

We are now in a position to determine a state realization for T}, when also £4, < 1 is
satisfied.

THEOREM 7.5. LetT,T, U and © be as in theorem 6.1, so that [U* —T*T)© =
[A" — B']. Let {A,B,C,0} be an output normal strictly stable state realization for T, let M be
defined by the recursion in (6.7), and let {A, By,C, Dy} be a realization for U. Let © have a
partitioning as in (6.9), and X corresponding to © have partitioning (3.14). Let S, R, C,, Aqg,
B, € D be defined by the relations (7.8) and (7.9), and suppose that £4, < 1.

Then the approzimant T,, defined as the strictly upper part of T' = 'O, B', has a
state realization {Aq,T' By, Cq,0}, where C, is given by

Co = C, [-D}yDy + Ci(I — M)C] + A, YV A*MC

and Y € D satisfies the recursion Y = A, YV A* + C.Cs5 .

PROOF The state realization for T, will be obtained by multiplying a model for B’ by
the model {A,, Bg, C;} of the strictly upper part of ©,5 as obtained in proposition 7.4. A model
for B’ has already been obtained in equation (6.14). With D' := —D};D19 + C*(I — M)Cy, T, is
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Figure 8. (a) The propagation of S, (b) the propagation of R.

given by the strictly upper part of

r {BaZ(I - AaZ)—lc,} B"
=T {BaZ(I - AaZ)—lc,.} : {c;(f — Z*AY)TIZFATMC + D'*}
= TB.Z(I— A,2)'C,D" + TB{ Z(I — A, Z)'C,C5(I — 2" A") '} Z"A*MC.
The computation of the strictly upper part of this expression requires a partial fraction decom-
position of the expression Z(I — A,Z)~'C,C3(I — Z*A*)~L. We seek operators X, Y € D such

that
Z(I—AZ) 'CC5(I—Z*A") ' = Z(I — A Z) 'Y + X(I — Z*A") L.

Pre- and postmultiplying with (Z* — A,) and (I — Z*A*), respectively, we obtain the equations

C,Cy = Y —AX X = yba
0 = —yUb4*4+ X Y = A YCVA* 4+ C.C5

Hence Y is determined by the above recursive equation. Via Z(I — A,Z)"'YZ* =YV 4+ Z(I —
A Z) 1A, YD we obtain

T, =TB.Z(I — A,Z) {C’TD’* 1 AaY(*l)A*MC’} :

that is, C, = C, {~D%,Dy + C3(I — M)C} + A, YD A*MC . m
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A check on the dimensions of A, reveals that this state realization for 7, has indeed
state dimension sequence given by N = #(B_): at each point in time it is equal to the number of
Hankel singular values of T at that point that are larger than 1. The realization is given in terms
of four recursions: two for M and S that run forward in time, the other two for R and Y that run
backward in time and depend on S. One implication of this is that it is not possible to compute
part of an optimal approximant of T if the model of T" is known only partly, say up to time instant
k.

8. PARAMETRIZATION OF ALL APPROXIMANTS

Section 8 is devoted to the description of all possible solutions to the Hankel norm
approximation problem of order smaller than or equal to N, where N = s-dim #H(©5,) is the
sequence of dimensions of the input state space of ©5,". We shall determine all possible bounded

operators of mixed type T'' for which it is true that

1)  IrTr-r)=sUvl<t,
and (2) the state dimension sequence of T, = (upper part of T'') is at most equal to N .

It turns out that there are no Hankel norm approximants with state dimension lower than N.
Notice that we do not assume boundedness of T,,. The result is that all solutions are obtained by
a linear fractional transform (chain scattering transformation) of ©® with an upper and contractive
parameter S7. That this procedure effectively generates all approximants of locally finite type of
s-degree at most equal to the sequence N can be seen from the fact that if | T (T —T,) ||z < 1,
then an extension T' of T, must exist such that |[T(T —T') || < 1.

The notation is as in the previous sections. We started out with an operator 7' € ZU,
and we assumed it to be locally finite, with a state realization in output normal form and related
factorization T' = A*U, where A € U and U € U, unitary and locally finite. Then we proceeded
to solve the interpolation problem [U* — T*I'1© = [A’ — B'] € U U], and we saw that
the problem was solvable provided a related Lyapunov-Stein equation had a boundedly invertible
solution. The solution was given in terms of an operator 7' = T 10, B'* in X of mixed causality
type, and the approximant T, of low order was given by the strictly upper part of T'’. In the present
section we shall first show that a large class of Hankel-norm approximants can be given in terms
of the same J-unitary operator ©® and an arbitrary upper, contractive parameter Sy. Our previous
result is the special case Sy, = 0. Then we move on to show that all approximants of s-degree at
most N are obtained in this way.

We first derive a number of preliminary results which will allow us to determine the

state dimension sequence of a product of certain matrices.

8.1. Preliminary facts
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PROPOSITION 8.1. Let B=1—X, where X € X and | X || <1. Then P(-B)|y,,
and P(- B~ )|, are Hilbert space isomorphisms onlUs. Likewise, Pz, 71 (- B)|,, ;1 andPg, 7z (-B7 1),
are isomorphisms on LoZ .
Proor For By = P(-B)|,, and B, = Pg,;1(-B)|;,,~ the proof is almost trivial,
since By = I — Xy, where || Xf| < 1 on U, is invertible in Us. For B~! the proof follows in a
similar fashion if one remarks that B~! = (I — || X||)~}(I — Y) for some Y with ||Y || < 1. This
follows in turn from the fact that || (I — X)~!|| < (I — || X||)~!, since || X || < 1. O

Proposition 8.1 allows to conclude, in particular, that if A is a subspace in Uy, then
s-dim P(AB™') = s-dim A

and if B is another subspace in Us, then BC A < P(BB~!) c P(AB™).
PROPOSITION 8.2. IfB=I1-X,X € X and || X| <1, and if B=P(L2Z ! B),
then
P(BB™') =P(LyZ7' B7Y).

ProOOF We show mutual inclusion.

(1) P(BB™Y) € P(L2Z7'B~1Y). Let y € P(BB~!). Then there exists u € £2Z7 and
u; € L2Z7 such that y = P ((uB +u1)B™!) = P(u1B~!). Hence y € P(L2Z71B7Y).

(2) P(L2Z7'B7Y) c P(BB™!). Assume: y = P(u;B7!) for some u; € L3771, Since
By, = Pg,z-1(-B)|;,, is an isomorphism (proposition 8.1), there exists a u € L7 " such that
P.,z-1(uB) = —u;. It follows that

Yy = P(UlB) = P((UB‘I"UII)Bil)
= P((uB-Pg,;1(uB))B™)
P(P(uB)B!) € P(BB7Y).

PROPOSITION 8.3. IfAcLand A '€ X and if A=P(L2Z A1), then
L:ZPA7Y = A Lo27Y.

PrROOF The left-to-right inclusion is obvious. To show the right-to-left inclusion, we
show that £oZ7! C L2Z71A7!. Assume that u € £L2Z7'. Then u = (uA)A~!. But since A € L,
we have uAd € LoZ7', and v € L2Z 1AL, The fact that A is also in the image follows by

complementation. O

THEOREM 8.4. Let A€ L, A~! € X, and suppose that the space A = P(LoZ 71 A7)
is locally finite of s-dimension N. Let B=1 — X with X € X and || X || < 1. Then

s-dim P(LoZ P AT'B™)=N+p = sdim P(L2Z7'BA) =p.
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PROOF

P(L,Z'AT'BTY) = P((L27 @ A)B) [Prop. 8.3]
= P(L:Z7'B71) + P(AB™Y) [linearity]
= P(BB7!) + P(AB™Y) [Prop. 8.2]

where B = P(L2Z7! B).

In the sequel of the proof, we will use the following two properties. The closure of a
D-invariant locally finite linear manifold H yields a locally finite D-invariant subspace H with
the same s-dim . Secondly, let M be another locally finite D-invariant subspace and let X be a
bounded operator on Xy, then HX = [Pp(H)] X if MtX = .

Since A and B are spaces in Us, and since according to proposition 8.1, P(-B~1)|,,
is an isomorphism mapping A and B to P(AB~!) and P(BB™!), respectively, we obtain that
s-dim (A+ B) = N +p. With A+ = Uy © A4, it follows that P 4. (B) has s-dim equal to p, because
s-dim A = N. The proof terminates by showing that

(1) P(L2Z7' BA) = P(P 41 (B)A), for

P(L2Z7'BA) = P(P(L2Z7'B)A)
= P(BA)
= P(P(B)4),

because AA C LoZ7L.

(2) P(P 4. (B)A) is isomorphic to P 4. (B), which follows from the fact that the map
P(-A)| 4. is one-to-one, for P(zA) =0 = z € A® L,Z !, and the kernel of P(- A)| .. is thus
just {0}.

Consequently, s-dim P(£3Z7! BA) = s-dim P (P 4. (B)A) = s-dim P 4. (B) = p. O

In the above proposition, we had A € £. A comparable result for A € U follows directly

by considering a duality property, and results in the proposition below.

COROLLARY 85. Lt AelUU, X €e X, B=1—-—X and | X|| <1, and let A be
invertible in X. Suppose that A =P, ,1(UsA") has s-dimension N. Then

s-dim Py, (UeB A1) =N+p = s-dim Py, ;1 (U AB) = p.

PrROOF For any bounded operator it is true that the dimension of its range is equal to
the dimension of its corange. This property extends to the present case, where we can claim that
for T € X it is true that s-dim ran (Hr) = s-dim ran (H7}), or

s-dim P(LoZ 'T) = s-dim Py, (UsT*).

This can be verified for each entry in the sequence of dimensions. Indeed, let H; = A;P(-T))] AiLaZs
where A; = diag[---0 0 I 0 ---] (with the identity operator appearing at the i-th entry) is the
projection operator onto the i-th row. Then H; = AP, ;-1(-T")[5,, and the dimensions of
the ranges of H; and H; will match. The sequence of these dimensions make up the respective

spaces. O
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8.2. Generating new solutions of the interpolation problem

Throughout the remainder of the section we use the notion of causal state dimension
sequence of an operator T' € X as the s-dimension N of the space H(T) = P, 71 (UsT*). N is thus
a sequence of numbers {N; : i € Z } where all N; in our case will be finite. Dually, the s-dimension
of P, 71 (UT) will be described as the anti-causal state dimension sequence. We will use the

following lemma.

LEMMA 8.6. LetT, T and © be as in theorem 6.1, such that T = A*U 1is a factor-
ization of T with A € U and U € U inner, and © is the J-unitary operator with input state space
given by (6.1) and defined by the realization (6.9). Then

[U* 00 € [£ L]
[~A* T]O € [£ L.

PROOF We will prove this by brute-force calculations on the realizations of U and ©,

as used e.g., in theorem 6.1.

[U* 0@ = {Dy + C*(I—2*A*)"'Z*By} {[Du1 Do) + BuZ(I - AZ)~'[Cy Col}
— D}[Dyy D] + DyByZ(I—AZ)'[C) Co] +
+ C*(I — Z*A*)"1Z*B}; [D11 Dia] +
O (I~ Z*A") ' Z*ByByZ (I — AZ) '[C1 Ca].

Upon using the identities D;By + C*A = 0, B;;By + A*A = I, and
(I—Z*A 12 (I — A*A) Z(I — AZ) = AZ(I — AZ)™ + (I — Z*A*) 71
it is seen that the terms with (I — AZ)~! cancel each other, so that

[U* 00© = Df[Di1 Dio] + C*[Cr Co] +
+ C*(I — Z*A*)_IZ* {A*[Cl CQ] + BE [Dn D12]}
€ [L L]

In much the same way,

[-A* T1® = [{-DDj;— BB}, — (DC*+ BA*)Z* (I — A*Z*)"'B}} T x
Dy1 Dy2 By _
Ao e[ 2 Jra-saie
= (lower) +{(-DDj}; — BB};) By + B} Z (I — AZ) '[Cy Cs] +
+ (=DC* — BA*) Z*(1 — A*Z*)"'B};ByZ (I — AZ)'[Cy (9]
(lower) +{—DD}By — BB};By + B— DC*A— BA*A} Z(I — AZ)7'[C1 Cy]
(lower) + {DC*A— B+ BA*A+ B — DC*A— BA*A} Z(I — AZ)1[C; C%]
= (lower) +0.
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THEOREM 8.7. LetT € ZU be a locally finite operator with strictly stable output
normal realization {A, B,C,0}, let T' be an invertible Hermitian diagonal operator. Let Hy, be the
Hankel operator of T'T at time point k, and suppose that there exists € > 0 such that, for each
k, none of the singular values of Hy, are in the interval [1 — €,1 + ¢]. Let N be the sequence of
the numbers Ny, of singular values of Hy that are larger than 1. Let U be the inner factor of a
factorization (5.1), with unitary realization {A, By,C, Dy}, and let © be a J-unitary block-upper
operator such that its input state space H(O) is given by (6.1).

(1) If S, € U is contractive, then O — Oy is boundedly invertible, and

S = (01151, — 012)(O9 — O9;5,) 7"

18 contractive.
(2) Let, furthermore, T' =T +T'S*U. Then
(@) T HT-T|=|STU|<1,
(b) the causal state dimension sequence of T, = (upper part of T') is precisely equal to N .

That is, T, is a Hankel norm approximant of 7.

PROOF (1) By the J-unitarity of ©, ©g; is boundedly invertible and || 05,09 || < 1,
whence O3 — 09151 = Ogo(1 —@521621 Sp) is boundedly invertible. Hence S exists. Its contractivity
follows by the usual direct calculation (see e.g., [23]).

(2a) follows immediately since I (T — T'') = S*U and U is unitary.

(2b) The proof uses the following equality:

TI*F—I — [U* _T*P—l] l S ]
01 © S
— [U* —T*F_l] [ @11 @12 ] l lIz ] (@22 o @21‘51[’)—1
21 22 -

= [A' —B'] [ SI} ] (@22 _GQISL)_l
= (A'SL + B') (@22 — @215[/)71 .

Since (A'SL, + B') € U, the anti-causal state dimension sequence of T is at each point in time
at most equal to the number of anti-causal states of (@ — ©21.57)~! at that point. Because the
latter expression is equal to (I — O, ©2151,) 105, and |0, ©91 S| < 1, application of corollary
8.0 with A =09 and B=1— @2_219218 . shows that this sequence is equal to the anti-causal state
dimension sequence of @, i.e., equal to N. Hence s-dim #(T') < N (pointwise).

The proof terminates by showing that also s-dim H(7T'') > N, so that in fact s-dim H(T"")
N. Define

Gy = (O9 —095,)7!
Gy = 5.G9

so that



U* a1 az
Yu
Y12 Yo S
U*S by Yoo b2

Figure 9. O (or X) generates Hankel norm approximants via S and parameterized by Sy..

Because O is J-inner: ©*JO = J, this is equivalent to [G] G3] := [S* I]©, and using S =
—AT' + UT"T'! we obtain

NG GS=T'[U* 00 + [-A* T)© (8.1)
However, according to lemma 8.6,

[U* 0@ € [£ L]
[-A* T1® € [L£ L].
This implies H(G3) C H(T'), for let U; be a minimal inner factor of a (left) external factorization
of T', such that UfT' € L (i.e., H(U1) = H(T")), then (8.1) shows that also UfT'G% € L. Hence
s-dim H(T'') > s-dim H(G3) = N. O
So all S of the form S = (01157 —012) (O —O2151) ! with Sp, € U, || S1. || < 1 give rise
to Hankel norm approximants of T'. It is well known that this type of expression for S is a chain

scattering transformation of Sy by ©; consequently, S is the transfer of port a; to by if by = a5y,

as in figure 9. This is readily verified using the standard relations between © and 3::
S = Bp+3nS.(I —Ta1Sr) o
= 01205 + (011 — 01905, 09)Ss, (I — 05, 0215) 105
= [~012(l - 031021 81) + (O11 — 01205 01)S1| (I - 03, 0151) 103,
= (01151 — ©12) (O22 — ©215) ™+
The reverse question is: are all Hankel norm approximants obtained this way? That is, given some
T' whose strictly upper part is a Hankel norm approximant of T, is there a corresponding upper

and contractive Sy, such that T is given by T' = T + I'S*U, with S as above. This problem is

addressed in the next theorem. The main issue is to prove that S;, as defined by the equations is

upper.

8.3. Generating all approximants

THEOREM 8.8. LetT, T, U and © be as in theorem 8.7, and let N be the number
of Hankel singular values of T7'T that are larger than 1. Let be given a bounded operator T' € X
such that

n  Irir-rHi<t,
(2) the state dimension sequence of T, = (upper part of T') is at most equal to N .
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Define S = U(T"* — T*)T™L. Then there is an operator Sy, with (S € U,|| S || < 1) such that
S = (0115 — ©12)(O22 — ©215) 7!

(i.e., © generates all Hankel norm approzimants). The state dimension of T, is precisely equal to

N.

PROOF The main line of the proof runs in parallel with [17], but differs in detail. In
particular, the ‘winding number’ argument to determine state dimensions is replaced by theorem

8.4 and its corollary 8.5. The proof consists of five steps.

1. From the definition of S, and using the factorization 7' = A*U, we know that
IS =1U@"™ -TI7 || =TT -T)| <1

so S is contractive. Since § = —AI'! + UT"I'!, where A and U are upper, the anti-causal
state dimension sequence of S is at most equal to NN, since it depends exclusively on T''*, for

which this is given.

2. Define
[G] G3]:=[S* I]O. (8.2)
Then H(GF) C H(T') and H(G5) C H(T').
PROOF Using S = —AI'! + UT"*T'}, equation (8.2) can be rewritten as

TG G5 =T'[U* 0@ + [-A* T]©

According to lemma 8.6,
[U* 0]© € [L£ L]
[-A* T]® € [£ L].

As in the proof of theorem 8.7, this implies H(GY) C H(T'') and H(G%) C H(T").

3. Equation (8.2) can be rewritten using @ ! = JO*J as

5=l ] w

Go is boundedly invertible, and Sy, defined by S, = G1G5 1'is well defined and contractive:
| Sz || < 1. In addition, S satisfies S = (01151 — ©12)(O22 — ©2151) ™! as required.

PROOF O is boundedly invertible: ©~! = JO*J with [|©7!|| = ||©||. Hence ©0* > €I (for

some € > 0) and
GiG1+G5Gy = [S* 1|00 [ f ]

€(S*S +1)

>
> el.
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We also have from the J-unitarity of ©® and the contractivity of S that
G1G1 < G3Ga (8.4)

Together, this shows that Go > 1/2¢ 1, and hence G4 is boundedly invertible (but not neces-
sarily in U). With Sz, = G1G5 ', equation (8.4) shows that S% Sy, < 1, and hence || Sy, || < 1.
Evaluating equation (8.3) gives

Gyt = O9 — 095,

o (8.5)
SGy" = 0115, — 061

and hence S = (01157, — O12)(Og — O S) L.

4. Gy €U, the space H(T") has the same dimension as H(0,y), and H(GF) C H(G%).

PROOF According to equation (8.5), G5 ' satisfies

Gyt = O (I —050,51)
Go = (I — @2_2192151)71@2_21 .

Let p be the dimension sequence of anti-causal states of G5 ! and Ny < N be the number
of anti-causal states of G, with N the number of anti-causal states of @2_21. Application of
corollary 8.5 with A = @99 and B = (I — @5216215L) shows that Ny = N + p, and hence
Ny =N and p =0: G5' €U, and H(G%) has dimension N. Step 2 claimed H(G3) C H(T"),
and because T has at most N anti-causal states, we must have that in fact H(G%) = H(T'),
and hence H(G7) C H(G53).

5. S, eU.
PROOF This can be inferred from G5 ' € U, and H(G%) C H(GS), as follows. Sy, € U is
equivalent to P, 71 (U2Sr) = 0, and

Proz-1(UaSr) = Ppryza(UhGiGy))
= Pr,z1(Prz1 (UGG, )
since Gy ' € U. Using H(G?Y) C H(G3), or Py, 1(UsG1) C P,y 1(UsGo) we obtain that
Pr,z1(UsSt) C Pryz1(Pr,z1(UsG2)Gs™)

P,z 1 (UGG ) (since G5 € U)
= 0.

9. CONCLUDING DISCUSSION

The theorems of sections 4-6 contain an implicit proof of an equivalent of Nehari’s
theorem to the present setting, for operators 7" which have a strictly stable, uniformly observable
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realization. If I' in (4.2) is chosen such that all local Hankel singular values are uniformly smaller
than one, then T’/ = (B'05,T)* obtained through theorem 6.1 will be a lower (€ £) operator and
the state sequence z_ of section 7 will be of dimension zero: #(B_) = 0. Such a T’ is known as

the Nehari extension of T'.

THEOREM 9.1. If T is a bounded upper operator which has a locally finite strictly
stable and uniformly observable realization, and if ' is a boundedly invertible hermitian diagonal

operator, then
r-ir = inf |DYT-T"]. 9.1
| | & ﬁa” ( ) (9.1)

PROOF Let d = ||[I'7'T || and consider the operator (d + ¢)~'I''T for some € > 0.
Then r := || (d +€)"'T7'T ||z < 1 and theorem 6.1 applies. Since the largest singular value of any
local Hankel operator of (d + €)' !T is majorized by r, we have that the sequence of singular
values larger than one is zero, and T' = (B'©,, T'(d + €))* is a lower operator. We have from
theorem 6.1 that

I(d+e) ' T HT-T) | <1
by construction, and hence
ITHT-T"| < d+e.

Letting € | 0 achieves (9.1). The reverse inequality is obvious from proposition 2.1. |

A comparable result (but with less conditions on 7') has been obtained by Gohberg,
Kaashoek and Woerdeman [35, 31, 32] in the context of block matrix and operator matrix exten-
sions. A state space realization of the ‘maximum entropy’ Nehari extension 7'/ can be obtained as
a special instance of the method in section 7, and does not need the upward recursions because
the dimension of z_ is zero. Omitting the details, we claim that for I' = I and || Hr|| < 1 the

realization of T'"* can be given in terms of a realization {A, B, C,0} of T' that is in normal output

form as
D' = —C*MA(I — A*MA) 1B~
c' = A(I — A*MA)~'B*
B' = —C*MA(I— (I -A*MA)~'B*B)
Al = A(I - (I—-A*MA)"'B*B)

where M satisfies
MGEY = A*MA+ B*B.
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