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Abstract — In this paper we demonstrate the ef-
fectiveness of Krylov subspace model-order reduc-
tion techniques to simulate wave field propagation
in strongly resonating structures. By utilizing an
optimal complex-scaling method that simulates the
extension to infinity, we show that Krylov reduc-
tion allows for effective wave field computations and
dominant open resonant modes can be obtained at
negligible additional costs as well. A number of nu-
merical examples illustrate the performance of the
proposed Krylov reduced-order modeling technique.

1 INTRODUCTION

In this paper we demonstrate the effectiveness of
Krylov subspace model-order reduction techniques
to simulate wave field propagation in strongly
resonating structures. By utilizing an optimal
complex-scaling method that simulates the exten-
sion to infinity, we show that Krylov reduction in
combination with a stability-correction procedure
allows for effective wave field computations.

The complex scaling method was proposed al-
ready in the 1970s (see, for example, [1] – [3])
and can be seen as a variant of the perfectly
matched layer technique. In [4] this method
was refined and a global and optimal complex
scaling method for domain truncation was pro-
posed (see [5] for further improvements). However,
the problem with complex scaling is that causal-
ity is lost. Fortunately, stable time-domain or
conjugate-symmetric frequency-domain solutions
can still be constructed, provided that a stability-
correction procedure is applied [4]. In addition, the
scaled Maxwell system matrix can be shown to be
complex-symmetric with respect to a certain bilin-
ear form for instantaneously reacting media [6] as
well as for media exhibiting relaxation [7]. This
symmetry property enables us to efficiently com-
pute Krylov subspace reduced-order models for the
electromagnetic field via a three-term Lanczos-type
reduction algorithm. Furthermore, with the help of
the Lanczos algorithm we are able to identify the
dominant open resonant resonant modes that are
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excited by the external current source. The num-
ber of these modes is typically very small for res-
onating structures and the electromagnetic field can
therefore be computed very efficiently provided the
resonant modes are quickly captured by a Krylov
reduction method.

2 BASIC EQUATIONS AND REDUCED-
ORDER MODELING

We consider electromagnetic wave propagation in
instantaneously reacting media or media exhibiting
first- or second-order dielectric relaxation effects.
In both cases, the electromagnetic field is governed
by the Maxwell equations

−∇×H + ∂tD = −Jext (1)

and

∇×E + µ0∂tH = 0, (2)

where D = εE+P̃ with ε = ε0ε∞ and ε∞ is the in-
stantaneous (high frequency) relative permittivity.
For instantaneously reacting materials P̃ = ε0E,
while for matter exhibiting first- or second-order
relaxation effects (Debye, Drude, or Lorentz ma-
terials), P̃ is related to the electric field strength
via a first- or second-order differential equation in
time. For example, for a Drude material we have
the constitutive relation

∂2t P̃ + γp∂tP̃ = ε0ω
2
pE, (3)

where γp is the collision frequency and ωp the vol-
ume plasma frequency of the material.

Introducing the auxiliary field U = −∂tP̃, we
can write Maxwell’s equations and the constitutive
relation in first-order form as

(D + S +M∂t)F = −Q′, (4)

where D is the spatial differential operator, S and
M are medium matrices, F is the field vector, and
Q′ is the source vector. We only consider source
vectors of the form Q′ = w(t)Q, where w(t) is the
source signature that vanishes for t < 0 and Q is
time-independent.
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Figure 1: Normalized analytic (blue squares) and
computed (black circles) open resonances of a one-
dimensional slab.

Subsequently, we discretize the above first-order
Maxwell system in space on a staggered Yee grid
and use an optimal complex scaling method to sim-
ulate the extension to infinity (a variant of the per-
fectly matched layer technique, see [1] – [5] for de-
tails). After this discretization procedure, we arrive
at the state-space representation

(D + S + M∂t) fcs = −w(t)q. (5)

This system is complex and unstable due to the
application of the complex scaling method. How-
ever, by applying the stability correction procedure
described in [4], stable time-domain field approxi-
mations can be computed from this system as

f(t) = −w(t) ∗ 2η(t)Re
[
η(A) exp(−At)M−1q

]
, (6)

where the asterisk denotes convolution in time, A =
M−1(D + S) is the system matrix, and

η(z) =

{
1 if Re(z) > 0

0 if Re(z) < 0
(7)

is the complex Heaviside unit step function.
Furthermore, the system matrix A is complex-
symmetric with respect to the bilinear form

〈x, y〉 = yTWMx, (8)

where W is a step size matrix having certain prod-
ucts of the step sizes of the computational grid as its
elements [7]. Now assuming that the system matrix
is diagonalizable, the field vector can be written as

f(t) = −w(t) ∗ 2η(t)Re
[ n∑
j=1

αjη(λj) exp(−λjt)sj
]
,

(9)

Figure 2: Part of a finite one-dimensional photonic
crystal.

where n is the order of matrix A, λj and sj are the
eigenvalues and corresponding eigenvectors of this
matrix, and αj = 〈sj ,M−1q〉. How many modes
essentially contribute to the electromagnetic wave
field on a given time interval depends on the con-
figuration of interest, of course.

Finally, by exploiting the symmetry of the system
matrix with respect to the bilinear form of Eq. (8),
we can construct Krylov subspace reduced-order
models for the electromagnetic field via an efficient
Lanczos-type three-term recursion algorithm [4].
With the source vector M−1q as a starting vec-
tor, this algorithm produces a basis for a Krylov
subspace generated by the system matrix and the
source vector M−1q and after m� n iterations we
have the summarizing equation

AVm = VmHm + rmeTm, (10)

where the n-by-m matrix Vm = (v1, v2, ..., vm) has
the Krylov subspace basis vectors vi as its columns
and Hm is an m-by-m tridiagonal matrix containing
the recurrence coefficients of the Lanczos algorithm.
Finally, rm is a residual vector and em is the mth
column of the m-by-m identity matrix. Based on
the decomposition of Eq. (10) we can construct the
reduced-order models

fm(t) =

− w(t) ∗ 2‖M−1q‖η(t)Re [Vmη(Hm) exp(−Hmt)e1]

(11)

and dominant open resonant modes can be deter-
mined from Eq. (10) as well. Specifically, if (θi, xi)
is an eigenpair of the tridiagonal matrix Hm then
postmultiplication of Eq. (10) by xi leads to

Azi = θizi + rmeTmxi, (12)

where zi = Vmxi. Equation (12) shows that
if |eTmxi|‖rm‖ is small then (θi, zi) is an approxi-
mate eigenpair of the system matrix A. Note that
|eTmxi|‖rm‖ can be computed directly and it is there-
fore easily checked whether an eigenpair of ma-
trix Hm has converged to an eigenpair of matrix A.
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Figure 3: Bandgap structure on the first Brillouin zone
of the infinite 1D photonic crystal that corresponds to
the finite crystal of Figure 2. The bandgap structure is
computed via the plane wave expansion method.

3 NUMERICAL RESULTS

As a first example, we consider a one-dimensional
configuration which consists of a dielectric lossless
slab with a relative permittivity of εr = 4 and width
d embedded in vacuum. The open resonances can
be computed in closed form for this example and
are given by

sn =
c0
4d

[
log(

1

9
) + 2πin

]
with n ∈ Z. (13)

Discretizing the 1D configuration in space and ap-
plying the complex scaling method, we obtain a sys-
tem matrix A with an order n = 1000. The eigen-
values of this matrix can be computed directly and
a subset of these eigenvalues are shown in Figure 1
(circles) along with a subset of the analytical poles
(squares). The latter poles are located on a line
parallel to the imaginary axis and all resonances for
which the spatial discretization procedure is appro-
priate are well approximated.

As a second example, we compute the band struc-
ture of the simple finite one-dimensional crystal
shown in Figure 2. The thickness of the layers is
ap = 30 µm and bp = 3 µm and the crystal con-
sists of 41 primitive cells. The dielectric layers are
lossless and have a relative permittivity of εr;1 = 3
and εr;2 = 1. It is well known, of course, that if
the crystal extends periodically to infinity then its
band structure can be computed using the plane
wave expansion method (PWE method). This band
structure is shown in Figure 3 for an infinite crystal
with the same primitive cell as our finite crystal. In
Figure 4 we show the bandgap structure of the fi-
nite crystal as determined via our Krylov subspace

Figure 4: Bandgap structure of the finite 1D photonic
crystal. The bandgap structure is computed via Krylov
subspace reduction.

reduction technique. We observe that resonances in
the middle of a band have higher radiation losses
than the resonances located near the edge of a band.
The quality factor of resonances near the edge of a
band is therefore higher than the quality factor of
resonances in the middle of a band.

As a third example, we consider H-polarized elec-
tromagnetic fields in a two-dimensional configura-
tion that is invariant in the z-direction. The config-
uration consists of a square golden object embedded
in vacuum (see Figure 5) and a Drude model is used
as a constitutive relation for gold with medium pa-
rameters ωp = 13.6 · 1015 s−1, γp = 0.1 · 1015 s−1,
and ε∞ = 1, while the sidelength of the object is
50 nm. Both the source (cross) and the receiver
(triangle) are located outside the object as indi-
cated in Figure 5. The source signature is a deriva-
tive of a Gaussian with a maximum in its spectrum
at λpeak = 350 nm (in vacuum). After the dis-
cretization procedure, a semidiscrete Maxwell sys-
tem with approximately n = 47000 time-dependent
unknowns is obtained.

Figure 6 shows the reduced-order model of or-
der m = 6500 for the magnetic field strength (solid
line) at the receiver location and as a function of
time. This reduced-order model has essentially con-
verged and coincides with FDTD. Furthermore, us-
ing Eq. (12) we can identify the dominant reso-
nant modes that give the largest contribution to the
time-domain signal of Figure 6. Taking the first 16
dominant modes into account, the magnetic field re-
sponse as indicated by the dashed line in Figure 6 is
obtained. This result almost completely coincides
with the reduced-order model of order 6500 and the
FDTD result and illustrates that a small number of
resonant modes may give an accurate description of
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Figure 5: A square golden object embedded in vacuum.

Figure 6: Magnetic field strength at the receiver lo-
cation as a function of time. Solid line: reduced-order
model of order 6500. Dashed line: resonant expansion
based on the first 16 dominant resonant modes.

the time-domain magnetic field signal on the time
interval of interest. Finally, in Figures 7 and 8 we
show the magnitude of the magnetic field strength
and the real part of the x-component of the electric
field strength of one of the modes that contributes
to the time-domain signal. Clearly, these modes are
confined to the boundary of the golden object and
satisfy the electromagnetic boundary conditions as
well.

4 CONCLUSIONS

We have shown that electromagnetic fields on un-
bounded domains can be efficiently computed via
standard Krylov subspace projection techniques.
Bandgap structures of finite crystals and dominant
resonant modes that are excited by an external
source can all be retrieved using a Lanczos-type
three-term reduction algorithm both for instanta-
neously reacting media and media exhibiting relax-
ation. In future work we will focus on the appli-
cation of rational Krylov subspace methods, since
these methods are expected to provide an addi-
tional speedup for inhomogeneous media in general
and resonating structures in particular.

Figure 7: Magnitude of the magnetic field strength of
a dominant open resonant mode.

Figure 8: Real part of the x-component of the electric
field strength of a dominant open resonant mode.
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