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Rate-Distributed Spatial Filtering Based Noise
Reduction in Wireless Acoustic Sensor Networks
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Abstract—In wireless acoustic sensor networks (WASNs), sen-
sors typically have a limited energy budget as they are often
battery-driven. Energy efficiency is, therefore, essential for the de-
sign of algorithms in WASNs. One way to reduce energy costs is
to select only the sensors that are most informative, a problem
known as sensor selection. In this way, only sensors that signifi-
cantly contribute to the task at hand will be involved. In this paper,
we consider a more general approach, which is based on rate-
distributed spatial filtering. Depending on the distance over which
a transmission takes place, the bit rate directly influences the en-
ergy consumption. We try to minimize the battery usage due to
transmission, while constraining the noise reduction performance.
This results in an efficient rate allocation strategy, which depends
on the underlying signal statistics, as well as the distance from sen-
sors to a fusion center (FC). Through the utilization of a linearly
constrained minimum variance beamformer, the problem is de-
rived as a semidefinite program. Furthermore, we show that rate
allocation is more general than sensor selection, and sensor selec-
tion can be seen as a special case of the presented rate-allocation
solution, e.g., the best microphone subset can be determined by
thresholding the rates. Finally, numerical simulations for estimat-
ing several target sources in a WASN demonstrate that the pro-
posed method outperforms the sensor-selection-based approaches
in terms of energy usage, and we find that the sensors close to the
FC and point sources are allocated with higher rates.

Index Terms—Rate allocation, sensor selection, LCMV
beamforming, noise reduction, energy usage, sparsity, wireless
acoustic sensor networks.

I. INTRODUCTION

R ECENTLY, wireless acoustic sensor networks (WASNs)
have attracted an increasing amount of interest [1]–[3].

Compared to conventional microphone arrays with a fixed con-
figuration, WASNs have advantages in array-size limitation and
scalability of the networks. In a WASN, each sensor node is
equipped with a single microphone or a small microphone ar-
ray, and the nodes are spatially distributed across a specific
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environment. Due to the fact that the microphone nodes in a
WASN can be placed anywhere, the sound field is sampled in a
much larger area. It is possible that some of the nodes are close to
the target source(s) and have higher signal-to-noise ratio (SNR),
such that higher quality recordings can be obtained. In a WASN,
the microphone nodes are connected to their neighboring nodes
or a fusion center (FC) using wireless links, resulting in a dis-
tributed or centralized framework, respectively. In this work,
we will mainly focus on the centralized framework, where each
node samples and quantizes the microphone recordings, and
transmits them to a remote FC. The tasks of interest, e.g., signal
estimation or binaural cue preservation, are assumed to occur at
the FC.

In WASNs, each sensor node is usually battery powered hav-
ing a limited energy budget. It is therefore important to take the
energy consumption into account in the design of algorithms.
Generally, the energy usage within the context of WASNs can
be linked to two processes: data transmission and data process-
ing [4], [5]. The data transmission occurs between the nodes
and the FC, and data processing at the FC end. Usually, data
exchange is more expensive than data processing in terms of
energy usage.

In order to reduce the energy usage in WASNs, there are two
techniques that can be employed: sensor selection [6]–[12] and
rate allocation [13]–[15]. For sensor selection, the most infor-
mative subset of sensors is chosen by maximizing a performance
criterion while constraining the cardinality of the selected sub-
set, or by minimizing the cardinality while constraining the
performance. In this way, the number of sensors contained in
the selected subset can be much smaller than the total set of
sensors, resulting in a sparse selection. Due to the fact that only
the selected sensors need to transmit their recordings to the FC,
sensor selection is an effective way to save the energy usage.

Compared to sensor selection, rate allocation allows for a
more smooth operating curve as sensors are not selected to
only operate at full rate or zero rate (when not selected), but
at any possible rate. For rate allocation, the idea is to allocate
higher rates to the more informative sensors while lower or
zero rates are allocated to the others. There are many studies
on quantization for signal estimation in the context of wireless
sensor networks, see [16], [17] and reference therein, typically
under the assumption that the measurement noise across sen-
sors is mutually uncorrelated. These models are not suitable for
realistic audio applications, e.g., speech enhancement, where
the noise is typically correlated across sensors because of the
presence of directional interfering sources. In [14], [18], the
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effect of a bit-rate constraint was investigated for noise reduc-
tion in WASNs. In [13], rate-constrained collaborative noise
reduction for wireless hearing aids (HAs) was studied from
an information-theoretic standpoint, resulting in an informa-
tion transmission strategy between two nodes. However, the
approach proposed in [13] requires full binaural statistics which
are difficult to estimate in a practical setting. In [15], a greedy
quantization method was proposed for speech signal estima-
tion based on a so-called signal utility, which indeed represents
the importance of microphone recordings. However, it only de-
creases/increases one bit for a node at each iteration, resulting
in low convergence speed.

The difference between sensor selection and rate allocation
problems lies in binary versus more smooth decisions. Given
a maximum bit rate, the sensor selection approaches choose a
subset of sensors first, and the selected sensors then communi-
cate with the FC using the maximum rate. That is, each sensor
only makes a binary decision on the communication rate, i.e.,
zero or maximum rate. In contrast to sensor selection, rate al-
location approaches can execute multiple decisions on the rate,
i.e., any bit rate can be fractional from zero bit rate to the max-
imum bit rate. If a sensor is allocated zero bits, it will not be
selected. Hence, in general, rate allocation approaches do not
lead to a WASN that is as sparse as the one that is obtained
by the sensor selection approaches, but they can better reduce
energy consumption used for transmission. On the other hand,
sensor selection approaches could save more energy usage for
data processing at the FC end, as typically less measurements
are involved in computations.

In this work, we will only consider the energy usage for data
transmission and neglect the energy usage for other processes.
The wireless transmission power is regarded as a function of the
distance between sensor nodes and the FC and the rate (i.e., bits
per sample) which is used to quantize the signals to be trans-
mitted. We intend to reduce energy usage from the perspective
of rate allocation for spatial filtering based noise reduction in
WASNs. The total wireless transmission costs are minimized by
constraining the performance of the output noise power. Using
a linearly constrained minimum variance (LCMV) beamformer,
the problem is solved by convex optimization techniques. After
the bit rates are determined, each microphone node uniformly
quantizes and transmits its recordings to the FC for the signal
processing tasks at hand.

A. Contributions

The contributions of the paper can be summarized as follows.
Firstly, we design a rate allocation strategy for rate-distributed
LCMV (RD-LCMV) beamforming in WASNs by minimizing
the energy usage and constraining the noise reduction perfor-
mance. The original non-convex optimization problem is re-
laxed using convex relaxation techniques and reformulated as
semi-definite programming. Based on numerical results in sim-
ulated WASNs, we find that the microphone nodes that are close
to the sources (including target sources and interferers) and the
FC are more likely to be allocated with more bit rates, be-

cause they have more information on SNR and cost less energy,
respectively.

Secondly, we extend the model-driven microphone subset se-
lection approach for minimum variance distortionless response
(MD-MVDR) beamformer from [7] to the LCMV beamform-
ing framework (referred as MD-LCMV). By doing so, we find
the link between rate allocation and sensor selection problems,
i.e., rate allocation is a generalization of sensor selection. In [7],
the best microphone subset is chosen by minimizing the total
transmission costs and constraining the noise reduction perfor-
mance, where the transmission cost between each node and the
FC is only considered as a function of distance. The selected
microphone will communicate with the FC using the maximum
bit rate. The energy model of the approach in the current pa-
per is more general as compared to that in [7]. Based on the
rates obtained by the proposed RD-LCMV approach, the best
microphone subset of MD-LCMV can be determined by putting
a threshold on the rates, e.g., the sensors whose rates are larger
than this threshold are chosen.

Finally, numerical simulations demonstrate that the selected
microphone subsets resulting from thresholding the rates from
the RD-LCMV method and directly applying MD-LCMV are
completely the same. Both RD-LCMV and MD-LCMV can
guarantee a given performance requirement, but RD-LCMV
shows a superiority in energy efficiency.

B. Outline and Notation

The rest of this paper is organised as follows. Section II
presents preliminary knowledge on the signal model, uniform
quantization, the used energy model and LCMV beamforming.
In Section III, the problem formulation and a solver for the
RD-LCMV optimization are given. Section IV extends the sen-
sor selection for MVDR beamforming from [7] to the LCMV
beamforming framework and discusses the link between sen-
sor selection and rate allocation problems. Section V shows
the application of the proposed RD-LCMV method within the
WASNs. Finally, Section VI concludes this work.

The notation used in this paper is as follows: Upper (lower)
bold face letters are used for matrices (column vectors). (·)T or
(·)H denotes (vector/matrix) transposition or conjugate trans-
position. diag(·) refers to a block diagonal matrix with the ele-
ments in its argument on the main diagonal. 1N and ON denote
the N × 1 vector of ones and the N × N matrix with all its ele-
ments equal to zero, respectively. IN is an identity matrix of size
N . E{·} denotes the statistical expectation operation. A � B
means that A − B is a positive semidefinite matrix. Finally, �
denotes the Hadamard (elementwise) product.

II. PRELIMINARIES

In this section, we introduce some preliminary concepts re-
lated to rate-distributed spatial filtering in WASNs.

A. Signal Model

We consider a spatially distributed candidate set of M
microphone sensors that collect, quantize and transmit their
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observations to an FC. In the short-term Fourier transform
(STFT) domain, let l denote the frame index and ω the fre-
quency bin index, respectively. We assume that there are I
speech sources of interest, while J interfering sources are po-
tentially present in the environment. Using an STFT-domain
description, the noisy DFT coefficient of the quantized signal
which is to be transmitted to the FC at the kth microphone, say
ŷk (ω, l), k = 1, 2, . . . ,M , is given by

ŷk (ω, l) = yk (ω, l) + qk (ω, l),∀k, (1)

where qk (ω, l) denotes the quantization noise which is assumed
to be uncorrelated with the microphone recording1 yk (ω, l),2

given by

yk (ω, l) =
I∑

i=1

aik (ω)si(ω, l)︸ ︷︷ ︸
xi k (ω,l)

+
J∑

j=1

bjk (ω)uj (ω, l)
︸ ︷︷ ︸

nj k (ω,l)

+vk (ω, l),

(2)

with
� aik (ω) denoting the acoustic transfer function (ATF) of the

ith target signal with respect to the kth microphone;
� si(ω, l) and xik (ω, l), the ith target source at the source

location and the ith target source at the kth microphone,
respectively;

� bjk (ω) the ATF of the jth interfering source with respect
to the kth microphone;

� uj (ω, l) and nik (ω, l), the jth interfering source at the
source location and the jth interference source at the kth
microphone, respectively;

� vk (ω, l) uncorrelated noise at the kth microphone.
Notice that in (2), we assume that the ATFs are shorter than

the length of the STFT window, such that the ATFs can be mod-
elled as a multiplicative factor that varies with frequency in the
STFT domain. For longer ATFs, a more accurate signal model is
required for each frequency band, e.g., see [20]. For notational
convenience, we will omit the frequency variable ω and the
frame index l now onwards bearing in mind that the processing
takes place in the STFT domain. Using vector notation, the M
channel signals are stacked in a vector ŷ = [ŷ1 , ..., ŷM ]T ∈ CM .
Similarly, we define M dimensional vectors y,xi ,nj ,v,q for
the microphone recordings, the ith target component, the jth
interfering component, the additive noise and the quantization
noise, respectively, such that the signal model in (1) can com-
pactly be written as

ŷ = y + q =
I∑

i=1

xi +
J∑

j=1

nj + v + q, (3)

where xi = aisi ∈ CM with ai = [ai1 , ai2 , . . . , aiM ]T and
nj = bj uj ∈ CM with bj = [bj1 , bj2 , . . . , bjM ]T . Alterna-
tively, if we stack the ATFs for the target sources and the inter-
fering sources, in matrices, the microphone recordings can also

1This assumption holds under high rate communication. Under low rate, this
can be achieved using subtractive dither [14], [19].

2In real-life applications, yk is already quantized, since it is acquired by the
analog-to-digital converter (ADC) of the kth microphone. In this case, qk would
represent the error from changing the bit resolution of yk .

be written like,

y = As + Bu + v, (4)

where A = [a1 , . . . ,aI ] ∈ CM ×I , s = [s1 , . . . , sI ]T ∈ CI ,
B = [b1 , . . . ,bJ ] ∈ CM ×J ,u = [u1 , . . . , uJ ]T ∈ CJ . In or-
der to focus on the concept of rate-distributed noise reduction,
we assume in this work that the ATFs of the existing sources
(i.e., A and B) are known.

Assuming that the target signals and the interferers are mutu-
ally uncorrelated, the correlation matrix of the recorded signals
is given by

Ryy = E{yyH } = Rxx + Ruu + Rvv︸ ︷︷ ︸
Rn n

∈ CM ×M , (5)

where Rxx =
∑I

i=1 E{xixH
i } =

∑I
i=1 Psi

aiaH
i = AΣxAH

with Psi
= E{|si |2} the power spectral density (PSD) of the

ith target source and Σx = diag([Ps1 , . . . , PsI ]). Similarly,
Ruu =

∑J
j=1 E{ninH

i } =
∑J

j=1 Pui
bjbH

j = BΣuBH with
Pui

= E{|ui |2} the PSD of the jth interfering source and
Σu = diag([Pu1 , . . . , PuJ ]). The correlation matrix of all dis-
turbances including quantization noise in the quantized signals
ŷ is given by

Rn+q = Rnn + Rqq , (6)

under the assumption that the received noises and quantization
noise are mutually uncorrelated. In practice, Rn+q can be es-
timated using the quantized noise-only segments of sufficient
duration, and Rxx = Rŷŷ − Rn+q can be estimated using the
quantized speech+noise segments.3

B. Uniform Quantization

The uniform quantization of a real number a ∈ [−Ak

2 , Ak

2 ]
with Ak/2 denoting the maximum absolute value of the kth
microphone signal using bk bits can be expressed as

Q(a) = Δk

(⌊
a

Δk

⌋
+

1
2

)
, k = 1, . . . ,M, (7)

where the uniform intervals have width Δk = Ak/2bk . Note
that Ak is different from sensor to sensor which is determined
by its own signal observations. Each sensor should inform itsAk

to the FC by communication. Considering the case of uniform
quantization, the variance or PSD of the quantization noise is
approximately given by [21], [22]

σ2
qk

= Δ2
k/12, k = 1, . . . ,M, (8)

and the correlation matrix of the quantization noise across mi-
crophones reads

Rqq =
1
12

× diag

([A2
1

4b1
,
A2

2

4b2
, . . . ,

A2
M

4bM

])
. (9)

3Note that both Rŷŷ and Rn+q have quantization noise included, i.e.,
Rŷŷ = Ryy + Rqq and Rn+q = Rnn + Rqq . Given sufficiently long
noise and noisy segments, the quantization noise will influence Ryy and Rnn
in the same fashion by adding a same matrix Rqq . Therefore, the estimation
of Rxx is not dependent on the communication rate, because it is obtained by
subtracting Rn+q from Rŷŷ .
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C. Transmission Energy Model

We assume that the noise on the communication channels
between the sensors and the FC is additive and white Gaussian
with PSD Vk . The channel power attenuation factor is dr

k , where
dk is the transmission distance from the kth microphone to the
FC and r is the path loss exponent (typically 2 ≤ r ≤ 6) [23],
[24]. Without loss of generality, we assume r = 2 in this work.
The SNR4 of the kth channel then is

SNRk = d−2
k Ek/Vk , (10)

where Ek represents the transmitted energy of the kth micro-
phone node per time-frequency sample. Assuming Gaussian
distributions for the noise and transmitted signal, the maximum
capacity of such a communication channel for a specific time-
frequency bin is given by the Shannon theory [25]

bk =
1
2

log2 (1 + SNRk ) , (11)

which implies that bk bits per sample at most can reliably be
transmitted from microphone k to the FC. Based on the SNRk

and bk , the transmission energy from microphone k to the FC
for a specific time-frequency bin can be formulated as

Ek = d2
kVk (4bk − 1), (12)

which is a commonly used transmission model [23], [26], [27].
The above transmission energy model holds under two condi-
tions [23], [27]: 1) in the context of spectrum-limited applica-
tions (e.g., audio signal processing); 2) under the assumption
that we quantize the microphone recordings at the channel ca-
pacity, which is in fact an ideal source/channel coding scheme,
such that the quantized signals perfectly fit in the channel
capacity.

D. LCMV Beamforming

The well-known LCMV beamformer is a typical spatial fil-
tering technique where the output noise energy is minimized
under a set of linear constraints. These constraints can be used
to preserve target sources, or steer zeros in the direction of in-
terferences (i.e., to suppress noise signals). In the context of
binaural noise reduction [28]–[30], LCMV beamforming can
also be used to preserve certain interaural relations in order to
preserve spatial cues. Mathematically, the LCMV beamformer
can be formulated as

ŵLCMV = arg min
w

wH Rn+qw, s.t. ΛH w = f , (13)

which has U equality constraints with f = [f1 , f2 , . . . , fU ]T ∈
CU and Λ ∈ CM ×U . More specifically, in case the LCMV
beamformer is employed to suppress noise, matrix Λ can be
constructed using A and all the entries in f are non-zero val-
ues [31]–[33]; in case the LCMV beamformer is used for joint
noise reduction and spatial cue preservation in a binaural setup,
Λ is constructed using the matrices A and B, and the vec-
tor f will have some zeros corresponding to the interfering

4The SNR mentioned in this section is used to measure the noise level over the
communication channels, which is different from the acoustic noise or acoustic
SNR that will be discussed in the experiments.

Fig. 1. A typical communication model in WASNs.

sources [28], [29]. To make the framework proposed in this
paper more general, we therefore do not specify the structure of
Λ or f , which should be chosen according to the requirements
in applications. The closed-form solution to (13), which can be
found by applying Lagrange multipliers, is given by [31]–[33]

ŵLCMV = R−1
n+qΛ

(
ΛH R−1

n+qΛ
)−1

f . (14)

The output noise power after LCMV beamforming can be shown
to be given by [33]

ŵH Rn+qŵ = fH
(
ΛH R−1

n+qΛ
)−1

f . (15)

III. RATE-DISTRIBUTED LCMV BEAMFORMING

A. General Problem Formulation

Fig. 1 shows a typical communication model in WASNs,
which is considered in this work. The microphone recordings
are quantized with specified bit rates and then transmitted to an
FC through noisy communication channels. The FC conducts
noise reduction and outputs the estimated target signal(s). In this
work, we are interested in minimizing the transmission costs by
allocating bit rates to microphones to achieve a prescribed noise
reduction performance. Our initial goal can be formulated in
terms of the following optimization problem:

min
w ,b

M∑

k=1

d2
kVk (4bk − 1)

s.t. wH Rn+qw ≤ β

α

ΛH w = f ,

bk ∈ Z+ , bk ≤ b0 ,∀k, (P1)

where β denotes the minimum output noise power that can be
achieved when all sensors use full-rate quantization, α ∈ (0, 1]
is to control a certain expected performance, Z+ denotes a non-
negative integer set, and b0 the maximum rate per sample of each
microphone signal. The unknown variable b is implicit in the
output noise power wH Rn+qw. Note that (P1) is a general form
for the rate-distributed spatial filtering based noise reduction
problem. Also, β/α does not depend on the rate allocation
strategy or statistics of the whole sensor network, because β/α
is just a number that can be assigned by users, e.g., 40 dB,
to indicate an expected performance. By solving (P1), we can
determine the optimal rate distribution that each microphone can
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utilize to quantize its recordings, such that the noise reduction
system achieves a desired performance with minimum energy
usage. One simple method to solve (P1) is exhaustive search,
i.e., evaluating the performance for all (b0 + 1)M choices for
the rate distribution, but evidently this is intractable unless b0 or
M is very small. Next, we will find an efficient solver for (P1).

B. Solver for Rate-Distributed LCMV Beamforming

In this section, we will reformulate (P1) in the context of
LCMV beamforming. Considering the utilization of an LCMV
beamformer for noise reduction, the second constraint in (P1) is
automatically satisfied. Substituting the solution of the LCMV
beamformer from (14) into (P1), we get the following simplified
optimization problem:

min
b

M∑

k=1

d2
kVk (4bk − 1)

s.t. fH
(
ΛH R−1

n+qΛ
)−1

f ≤ β

α

bk ∈ Z+ , bk ≤ b0 ,∀k, (P2)

where the bit rates b are implicit in the output noise power
fH

(
ΛH R−1

n+qΛ
)−1 f , which is clearly non-convex and non-

linear in terms of b. In what follows, we will explicitly ex-
press fH

(
ΛH R−1

n+qΛ
)−1 f in b and reformulate (P2) by semi-

definite relaxation.
First of all, the first inequality constraint in (P2) is equivalent

to the following two new constraints by introducing a new Her-
mitian positive definite matrix Z ∈ SU

++ with SU
++ denoting a

set for Hermitian positive definite matrices of dimensionU × U ,
i.e.,

ΛH R−1
n+qΛ = Z, (16)

fH Z−1f ≤ β

α
. (17)

The inequality (17) can be rewritten as a linear matrix inequality
(LMI) using the Schur complement [34, p.650], i.e.,

[
Z f

fH β
α

]
� OU+1 . (18)

However, the equality constraint in (16) is clearly non-convex
in terms of the unknowns b. We therefore relax it to

ΛH R−1
n+qΛ � Z, (19)

since (17) and (19) are sufficient conditions to obtain the original
constraint in (P2), and we use � in (19) for convex relaxation.

Then, in order to linearize (19) in b, we calculate R−1
n+q as

R−1
n+q = (Rnn + Rqq)−1

= R−1
nn − R−1

nn

(
R−1

nn + R−1
qq

)−1 R−1
nn , (20)

where the second equality is derived from the matrix inversion
lemma [35, p.18]

(
A + CBCT

)−1

= A−1 − A−1C
(
B−1 + CT A−1C

)−1
CT A−1 .

Substitution of the expression for R−1
n+q from (20) into (19), we

obtain

ΛH R−1
nnΛ − Z � ΛH R−1

nn

(
R−1

nn + R−1
qq

)−1 R−1
nnΛ. (21)

Using the Schur complement, we obtain the following LMI5

[
R−1

nn + R−1
qq R−1

nnΛ

ΛH R−1
nn ΛH R−1

nnΛ − Z

]
� OM +U , (22)

where R−1
qq can be computed from (9) as

R−1
qq = 12 × diag

([
4b1

A2
1
,
4b2

A2
2
, . . . ,

4bM

A2
M

])
. (23)

For notational convenience, we define a constant vector e =
[ 12
A2

1
, . . . , 12

A2
M

]. Further, we introduce a variable change tk =

4bk ∈ Z+ ,∀k, such that R−1
qq = diag(e � t) and (22) are both

linear in t. In order to convexify the integer constraint bk ∈
Z+ ,∀k, we relax it to bk ∈ R+ , i.e., tk ∈ R+ ,∀k. Altogether,
we arrive at

min
t,Z

M∑

k=1

d2
kVk (tk − 1) (24)

s.t.

[
Z f

fH β
α

]
� OU+1 , (24a)

[
R−1

nn + R−1
qq R−1

nnΛ

ΛH R−1
nn ΛH R−1

nnΛ − Z

]
� OM +U , (24b)

1 ≤ tk ≤ 4b0 , ∀k, (24c)

which is a standard semi-definite programming problem [34,
p.128] and can be solved efficiently in polynomial time us-
ing interior-point methods or solvers, like CVX [36] or Se-
DuMi [37]. The computational complexity for solving (24) is of
the order of O((M + U)3).

After (24) is solved, the allocated bit rates can be resolved by
bk = log4 tk ,∀k which are continuous values.

C. Randomized Rounding

The solution provided by the semi-definite program in (24)
consists of continuous values. A straightforward and often used
technique to resolve the integer bit rates is by simply round-
ing, in which the integer estimates are given by round (bk ) ,∀k
where the round(·) operator rounds its arguments towards the
nearest integer. However, there is no guarantee that the inte-
ger solution obtained by this rounding technique always sat-
isfies the performance constraint. Hence, we utilize a variant

5Note that (22) is not an LMI essentially, because it is not linear in the
unknown parameters b. Here, we call it LMI for convenience, since it looks like
an LMI and is linear in 4bk , ∀k.
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rounding technique, i.e., randomized rounding [6], to the es-
timates obtained from (24). Specifically, letting ceil (bk ) − bk

and 1 − ceil (bk ) + bk ,∀k denote the probabilities for bk to be
the nearest lower integer and the nearest upper integer, respec-
tively, where the ceil(·) operator rounds its arguments towards
the nearest upper integer, then we can randomly round bk to the
nearest upper/lower integer based on its probability distribution
and the prescribed performance requirement. Alternatively, we
can simply use ceil (bk ) ,∀k to resolve the integer rates. How-
ever, this is suboptimal compared to the randomized rounding
technique due to more unnecessary energy usage.

IV. RELATION TO MICROPHONE SUBSET SELECTION

In this section, we will show the relation between rate al-
location and sensor selection. To do so, we first represent the
rate-distributed LCMV beamforming in (24) as a Boolean op-
timization problem, and then we extend the sensor selection
based MVDR beamformer from [7] to the LCMV beamform-
ing framework. We find that sensor selection is a special case
of the rate allocation problem. Finally, we propose a bisection
algorithm that can be used to obtain the sensor selection results
as in [7] based on the rate allocation method.

A. Representation of Rate-Distributed LCMV Beamforming

In this subsection, we will represent the rate-distributed
LCMV beamforming in (24) from the perspective of Boolean
optimization. This representation turns out to be very use-
ful when comparing the rate-distributed LCMV beamforming
framework to the LCMV beamforming based sensor selection
framework. Setting pk = tk/4b0 ,∀k in (24), we obtain the fol-
lowing equivalent form

min
p,Z

4b0

M∑

k=1

pkVkd2
k − ε (25)

s.t.

⎡

⎣
Z f

fH β

α

⎤

⎦ � OU+1 , (25a)

[
R−1

nn + R−1
qq R−1

nnΛ

ΛH R−1
nn ΛH R−1

nnΛ − Z

]
� OM +U , (25b)

0 ≤ pk ≤ 1,∀k, (25c)

where R−1
qq = 4b0 diag (e � p) and ε =

∑M
k=1 d2

kVk which is
an irrelevant constant that does not depend on the optimization
variables. Note that for (25), minimizing 4b0

∑M
k=1 pkVkd2

k − ε

is equivalent to minimizing
∑M

k=1 pkVkd2
k . Given the solution of

(25), the rates to be allocated can be resolved by bk = log4 pk +
b0 ,∀k and the randomized rounding technique in Section III-C.

Remark 1: From the perspective of optimization, (24) and
(25) are equivalent, i.e., both are semi-definite programming
problems with the same computational complexity and can pro-
vide the optimal rate distribution. However, apart from the func-
tion of rate allocation, (25) gives an insight to sensor selection,
because its unknowns p are continuous values between 0 and

1. Hence, if we apply the randomized rounding technique to
the continuous p, we can obtain a Boolean solution which can
indicate whether a sensor is selected or not. In other words, if
we are interested in sparsity-aware networks instead of energy-
aware ones, (25) can be employed to select the best microphone
subset.

Based on the representation of rate-distributed LCMV beam-
forming in (25), next we will find the relation between rate
allocation and sensor selection.

B. Model-Driven LCMV Beamforming

In [7], we considered the problem of microphone subset se-
lection based noise reduction in the context of MVDR beam-
forming. We minimized the transmission costs by constraining
to a desired noise reduction performance. The transmission cost
was related to the distance between each microphone and the
FC. In the case the number of constraints in (13) is reduced to
a single constraint preserving a single target, the LCVM beam-
former reduces to a special case, i.e., the MVDR beamformer.
Hence, mathematically, the original sensor selection problem
in [7] can be extended by adding more linear constraints to
obtain the following optimization problem

min
wp ,p

M∑

k=1

pkd2
k

s.t. wH
p Rn+q,pwp ≤ β

α
,

ΛH
p wp = f , (26)

where p = [p1 , . . . , pM ]T ∈ {0, 1}M are selection variables to
indicate whether a sensor is selected or not, wp denotes the
coefficients of the LCMV beamformer corresponding to the
selected sensors, Λp is a submatrix of Λ which was defined
in (13), and other parameters are defined similarly as in (P1).
Note that the transmission cost in (26) is only influenced by
the transmission distance, since we assume that all the selected
sensors use a full-rate quantization, such that we do not need the
ideal source/channel coding assumption for the sensor selection
problem and the channel noise Vk ,∀k is neglected. Suppose
that for the microphone subset selection problem, all the can-
didate sensors use the maximum rates, i.e., b0 bits per sample,
to communicate with the FC, such that Rn+q = Rnn + Rqq

and Rqq = 1
12 × diag([ A

2
1

4b 0
,
A2

2
4b 0

, . . . ,
A2

M

4b 0
]). The problem (26)

is called model-driven LCMV beamforming, because it is based
on the statistical knowledge Rn+q .

We will show that the optimization problem in (26) can be
solved by considering (25). Let diag(p) be a diagonal ma-
trix whose diagonal entries are given by p, such that Φp ∈
{0, 1}K×M is a submatrix of diag(p) after all-zero rows (cor-
responding to the unselected sensors) have been removed. As a
result, we can easily get the following relationships

ΦpΦT
p = IK , ΦT

p Φp = diag(p). (27)

Therefore, applying the selection model to the classical LCMV
beamformer in (14), the best linear unbiased estimator for a
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subset of K microphones determined by p will be

ŵp = R−1
n+q,pΛp

(
ΛH

p R−1
n+q,pΛp

)−1
f , (28)

where Rn+q,p = ΦpRn+qΦT
p represents the total noise corre-

lation matrix of the selected sensors after the rows and columns
of Rn+q corresponding to the unselected sensors have been
removed, i.e., Rn+q,p is a submatrix of Rn+q .

Applying the result in (28) to (26) yields a simplified opti-
mization problem based on the LCMV beamformer as

min
p

M∑

k=1

pkd2
k

s.t. wH
p Rn+q,pwp ≤ β

α
, (29)

where similar to (15) the output noise power is given by

wH
p Rn+q,pwp = fH

(
ΛH

p R−1
n+q,pΛp

)−1
f . (30)

By introducing a symmetric PSD matrix Z ∈ SU
+ , we can rewrite

the constraint in (29) into two new constraints in a similar way
as in the previous section, i.e.,

ΛH R−1
n+qΛ = Z, (31)

fH Z−1f ≤ β

α
. (32)

The inequality in (32) can be rewritten as an LMI using the
Schur complement, which is identical to (25a). Also, similar to
Section III, we relax the equality constraint in (31) to

ΛH
p R−1

n+q,pΛp � Z, (33)

due to the non-convexity. The left-hand side of (33) can be
calculated as

ΛH
p R−1

n+q,pΛp
(a)= ΛH ΦT

p R−1
n+q,pΦpΛ

(b)= ΛH ΦT
p

(
ΦpRn+qΦT

p

)−1
ΦpΛ

(c)= ΛH ΦT
p

⎛

⎜⎝ΦpRnnΦT
p + ΦpRqqΦT

p︸ ︷︷ ︸
Q

⎞

⎟⎠

−1

ΦpΛ

(d)= ΛH
[
R−1

nn − R−1
nn

(
R−1

nn + ΦT
p Q−1Φp

)−1
R−1

nn

]
Λ

(e)= ΛH R−1
nnΛ−ΛH R−1

nn

(
R−1

nn +4b0 diag(p � e)
)−1

R−1
nnΛ,

(34)

where (c) constructs ΦpRqqΦT
p as a new diagonal matrix

Q ∈ RK×K whose diagonal entries correspond to the selected
sensors, (d) is derived based on the matrix inversion lemma [35,
p.18],6 and (e) holds when p contains Boolean variables.

6Based on the Woodbury identity (A + CBCT )−1 = A−1 − A−1C
(B−1 + CT A−1C)−1CT A−1 , we can see that C(B−1 + CT A−1C)−1

CT = A − A(A + CBCT )−1A. Taking A = R−1
nn , B = Q−1 and C =

ΦT
p and applying the Woodbury identity to the right side of the third equality

in (34), we can obtain the fourth equality.

Substitution of (34) into (33) and using the Schur comple-
ment, we can obtain an LMI which will be identical to (25b).
Altogether, we then reformulate the sensor selection problem
for the LCMV beamforming as the following semi-definite
program:

min
p,Z

M∑

k=1

pkd2
k (35)

s.t.

[
Z f

fH β
α

]
� OU+1 , (35a)

[
R−1

nn + R−1
qq R−1

nnΛ

ΛH R−1
nn ΛH R−1

nnΛ − Z

]
� OM +U , (35b)

0 ≤ pk ≤ 1,∀k, (35c)

where the Boolean variables pk ,∀k have already been relaxed by
continuous surrogates. Comparing the rate allocation problem
in (25) with the sensor selection problem in (35), we see that
they only have difference in the cost functions. Intuitively, the
sensor selection problem is equivalent to the rate allocation
problem when all the communication channels have the same
noise power, e.g., Vk = 1,∀k. Based on this observation, it can
be concluded that the sensor selection problem can be solved by
the rate allocation algorithm. In other words, the proposed rate
allocation approach is a generalization of the sensor selection
method in [7].

C. Threshold Determination by Bisection Algorithm

In Section IV-B, we have shown the relationship between the
rate allocation problem and sensor selection, i.e., the former is a
generalization of the latter problem, from a theoretical perspec-
tive. From this, we know that the best subset of microphones
can be identified by the solution of rate distribution. Now, the
essential question remaining is how to determine the selected
sensors as in [7], based on the rate distribution presented in
the current work. Here, we propose a bisection algorithm for
threshold determination.

In detail, given the rate distribution bk ,∀k which is the solu-
tion of the problem (24) and the maximum rate b0 , first we set
the threshold T = b0

2 , such that we choose a subset of sensors,
say S, whose rate is larger than T , that is, S = {k|bk ≥ T}. If
the performance using the sensors contained in the set S, say τ ,
is larger than β

α , we decrease T and update S; if τ < β
α , we will

increase T . This procedure continues until β
α − τ ≤ ε where ε

is a predefined very small positive number. Furthermore, the
best subset of microphones can also be found by solving the
optimization problem in (25), while we need to apply the ran-
domized rounding technique to resolve the Boolean variables p.

V. NUMERICAL RESULTS

In this section, we will show some numerical results for the
proposed algorithm in terms of noise reduction in WASNs.
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Fig. 2. A typical wireless acoustic sensor network in a 2D scenario, where
the indexes of microphones are labelled.

A. Single Target Source

Fig. 2 shows the experimental setup employed in the simu-
lations, where 24 candidate microphones are placed uniformly
in a 2D room with dimensions (3 × 3) m. The desired speech
source (red solid circle) is located at (0.3, 2.7) m. The FC (black
solid square) is placed at the centre of the room. Two interfering
sources (blue stars) are positioned at (0.3, 0.3) m and (2.7, 2.7)
m, respectively. The target source signal is a 10 minute long
concatenation of speech signals originating from the TIMIT
database [38]. The interferences are stationary Gaussian speech
shaped noise sources. The uncorrelated noise is modeled as mi-
crophone self noise at an SNR of 50 dB. All signals are sampled
at 16 kHz. We use a square-root Hann window of 20 ms for
framing with 50% overlap. The acoustic transfer functions are
generated using [39] with reverberation time T60 = 200 ms. In
order to focus on the rate-distributed spatial filtering issue, we
assume that a perfect voice activity detector (VAD) is avail-
able in the sequel. Also, the microphone-to-FC distance dk ,∀k
and the channel noise Vk ,∀k are assumed to be known, e.g.,
Vk = 1,∀k without loss of generality. For the noise correlation
matrix Rnn , it is estimated at the FC end using sufficiently long
noise-only segments when each node communicates with the
FC at the maximum rate b0 or larger.

An example of bit-rate allocation obtained by the rate-
distributed LCMV beamforming and model-driven sensor selec-
tion based MVDR beamforming (referred to as MD-MVDR in
short) [7] is shown in Fig. 3 with α = 0.8. Since only one target
source of interest exists, the optimization problem in (24) for the
proposed method reduces to rate-distributed MVDR beamform-
ing, which is referred to as RD-MVDR in short. From Fig. 3,
it is observed that in order to fulfill the same performance, the
proposed RD-MVDR method activates more sensors than the
MD-MVDR. The MD-MVDR has a smaller cardinality of the
selected subset. However, each active sensor obtained by RD-
MVDR is allocated with a much lower bit-rate per sample com-
pared to the maximum rates, i.e., b0 = 16 bits. Also, the sensors
that are close to the target source and the FC are more likely to
be allocated with higher bit-rates, because they have a higher

Fig. 3. Example of bit-rate allocation by the proposed approach (RD-MVDR)
and microphone subset selection method (MD-MVDR). For the latter method,
the selected sensors are allocated with b0 bits, i.e., 16 bits per sample.

Fig. 4. Output noise power and energy usage ratio (EUR) in terms of α. In
the log-domain, the gap between the desired performance (i.e., β/α) and the
maximum performance when using all sensors (i.e., β) will be −10 log10 α.

SNR and less energy costs, respectively. More importantly, we
find a threshold for the rate distribution of RD-MVDR, e.g.,
6.2818 bits, using the bisection algorithm from Section IV-C,
and the active sensors whose rates are larger than this threshold
are completely the same as the best subset obtained using the
MD-MVDR algorithm. This phenomenon supports the conclu-
sion that we have made in Section IV, i.e., the best microphone
subset selection problem can be resolved by the rate allocation
algorithm. Hence, given the solution of rate distribution, to find
out the best microphone subset is equivalent to determining a
bit-rate threshold.

In order to show the comparison of the proposed method
in terms of noise reduction and energy usage, we also show
the output noise power (in dB) and energy usage ratio
(EUR) in terms of α in Fig. 4, where the indicator EUR is



ZHANG et al.: RATE-DISTRIBUTED SPATIAL FILTERING BASED NOISE REDUCTION IN WASNs 2023

Fig. 5. The average difference between the desired performance 10 log10
β
α

and output noise power of the RD-MVDR or MD-MVDR method in terms of
α with random source/FC positions.

defined by

EURi = Ei/Emax , i ∈ { RD-MVDR, MD-MVDR},
where Ei denotes the energy used by the RD-MVDR or MD-
MVDR method, and Emax the maximum transmission energy
when all the sensors are involved and communicate with the
FC using b0 bits. Clearly, the lower the EUR, the better the
energy efficiency. In Fig. 4, we also compare to the desired
maximum noise power, i.e., 10 log10

β
α . Note that β denotes

the output noise power when using all sensors. Although this
is hard to calculate in practice, in the simulations it can be
estimated by including all sensors and allocating each with b0
bits. In practical applications, we just need to set a value for
10 log10

β
α , e.g., 40 dB, to constrain the desired performance.

From Fig. 4, it follows that both RD-MVDR and MD-MVDR
satisfy the performance requirement (i.e., below the upper bound
10 log10

β
α ), while RD-MVDR is more efficient in the sense of

energy usage, which is also explicit in the rate distribution in
Fig. 3.

B. Monte-Carlo Simulations

In order to give a more comprehensive comparison between
rate allocation and sensor selection, we conduct Monte-Carlo
simulations to show their average noise reduction performance.
Considering the experimental setup in Fig. 2, we fix the mi-
crophone placement and the positions of the two interfering
sources, but randomly choose the positions for the single target
source and the FC. In Fig. 5, we show the average difference
between the performance requirement 10 log10

β
α and the output

noise power of the RD-MVDR/MD-MVDR method in terms of
the performance controller α, i.e., 10 log10

β
α minus the out-

put noise power of the RD-MVDR/MD-MVDR method, which
is always positive. The results are averaged over 200 trails. It
can be seen that with increasing α, the average difference for
both RD-MVDR and MD-MVDR decreases. Compared to the

Fig. 6. The average difference between the desired performance 10 log10
β
α

and output noise power of the RD-MVDR or MD-MVDR method in terms of
the ATF estimation errors with fixed source/FC positions and α = 0.6.

Fig. 7. A larger-scale WASN, which consists of 169 microphone uniformly
placed in a (12 × 12) m 2D room. The sensors are labelled from bottom to top
and from left to right, which is similar to the labeling in Fig. 2. The selected
microphones are obtained by solving (35) for α = 0.8.

MD-MVDR method, the RD-MVDR method achieves a smaller
difference for all α-values, that is, the performance of the pro-
posed rate-distributed approach is closer to the performance
requirement.

In addition, in practice the ATFs are usually estimated by
the generalized eigenvalue decomposition of the matrices Rnn

and Ryy [40], [41]. The ATF estimation accuracy is affected
by the estimation of the second-order statistics, i.e., VAD and
available speech-absence/speech-presence durations. In order
to analyze the robustness of the proposed approach to the ATF
estimation errors in realistic scenarios, we conduct Monte-Carlo
simulations. Considering that the ATF estimation of a single
source (the setup is similar to Fig. 2) is given by â = a + ã,
where a and ã represent the true ATF and the estimation error,
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Fig. 8. Rate distribution for the larger-scale WASN in Fig. 7 with α = 0.8. The MD-LCMV problem is solved by the bisection algorithm using the results of
RD-LCMV. Clearly, the sensors within three regions that are close to the targets and the FC are allocated with higher rates.

respectively, we define

ζ = 10 log10
E[||ã||2 ]
||a||2 , (36)

to measure the level of the estimation error. Given ζ in dB, we
can generate ã randomly based on zero-mean complex Gaus-
sian distributions. Fig. 6 shows the average difference between
the performance requirement and the aforementioned methods
in terms of the ATF estimation error ζ with fixed source/FC
positions and α = 0.6. The results are also averaged over 200
trails. Clearly, the performance of the MD-MVDR method is
further away from the desired performance. With increasing
ζ, the mean values of the average performance difference do
not change too much, but the corresponding variances increase
gradually. Hence, the proposed method is robust against the ATF
estimation errors.

C. Multiple Target Sources

In order to further investigate the noise reduction capability
of the proposed algorithm for multiple target sources, we con-
sider a larger-scale WASN as Fig. 7 shows, which consists of
169 microphones uniformly placed in a 2D room with dimen-
sions (12 × 12) m. The FC is placed at the center of the room.
Two target sources are located at (2.4, 9.6) m and (9.6, 2.4) m,
respectively. Two interfering sources are located at (2.4, 2.4) m
and (9.6, 9.6) m, respectively. Fig. 8 shows the rate distribution,
where the proposed method (referred as RD-LCMV) is com-
pared to the model-driven sensor selection method (referred as
MD-LCMV in Section IV-B), which is solved by the bisection
algorithm in Section IV-C. Similar to Fig. 3, the sensors that
are close to the target sources and FC are allocated with higher
rates. The 85th microphone node is allocated with the highest
rate, e.g., 16 bits, because it is exactly located at the position
of the FC. Also, it is shown that the best microphone subset by
MD-LCMV can be determined by finding the optimal threshold
for the solution of RD-LCMV (i.e., 3.7812 bits). Furthermore,
we plot the sensor selection result that is obtained by solving
(35) in Fig. 7. Comparing the sensors selected by solving (35) as

shown in Fig. 7 to the sensors that are selected by applying the
bisection algorithm to the solution of the RD-LCMV algorthm
as shown in Fig. 8, we see that both sets are completely identi-
cal. This also validates the relationship between sensor selection
and the rate allocation problem.

To summarize, the rate allocation algorithms (RD-LCMV or
RD-MVDR) activate more sensors than the sensor selection
algorithms (MD-MVDR or MD-LCMV) in general, but each
activated sensor is allocated with a much lower bit-rate. Hence,
from the perspective of energy usage for data transmission, the
rate allocation algorithms consume less energy.

VI. CONCLUSION

In this paper, we investigated the rate-distributed spatial fil-
tering based noise reduction problem in energy-aware WASNs.
A good strategy for bit-rate allocation can significantly save the
energy costs, and meanwhile achieve a prescribed noise reduc-
tion performance as compared to a blindly uniform allocation
for the best microphone subset obtained by the sensor selection
approach. The problem was formulated by minimizing the total
transmission costs subject to the constraint on a desired perfor-
mance. In the context of LCMV beamforming, we formulated
the problem as a semi-definite program (i.e., RD-LCMV). Fur-
ther, we extended the model-driven sensor selection approach
in [7] for the LCMV beamforming (i.e., MD-LCMV). It was
shown that the rate allocation problem is a generalization of
sensor selection, e.g., the best subset of microphones can be
chosen by determining the optimal threshold for the rates that
are obtained by the RD-LCMV or RD-MVDR algorithm. In
WASNs, based on numerical validation, we found that the mi-
crophones that are close to the source(s) and the FC are allocated
with higher rates, because they are helpful for signal estimation
and for reducing energy usage, respectively.
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