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ABSTRACT

In this paper, we propose a rate-distributed linearly constrained min-
imum variance (LCMV) beamformer for joint noise reduction and
spatial cue preservation for assistive hearing in wireless acoustic
sensor networks (WASNs). The WASN can consist of wireless com-
municating hearing aids, extended with additional wireless micro-
phones. Due to the fact that each sensor node has a limited power
budget, it is essential to consider the energy usage when designing
algorithms for such WASNs. As the energy usage in terms of data
transmission is directly affected by the communication rate, the pro-
posed method optimally distributes the bit rate for each microphone
node. The rate distribution is obtained by minimizing the total trans-
mission costs under constraints on the noise reduction performance
and spatial cue preservation of interfering sources. In contrast to sen-
sor selection, i.e., binary decisions on the usefulness of a node, rate
distribution allows for soft decisions, and, will lead to more degrees
of freedom for joint noise reduction and spatial cue preservation than
sensor selection. Numerical results show that given a certain noise
reduction requirement, the proposed method displays improved en-
ergy efficiency and can preserve the spatial cues of more interferers
compared to sensor selection approaches.

Index Terms— Rate allocation, sensor selection, LCMV, noise
reduction, energy usage, binaural cue preservation, hearing aids.

1. INTRODUCTION
With the introduction of wireless communication, binaural process-
ing for hearing assistive devices has attracted an increasing interest,
e.g., [1–3]. The traditional hearing-aid (HA) configuration consists
of two HAs that are mounted on the two ears, but operate indepen-
dently. Although this setup can very well suppress noise, it does not
take interaural information between the two HAs into account. That
is, traditional HAs cannot preserve the spatial cues in the sound field.
However, in many scenarios the user needs to be able to identify the
direction of the audible sound sources, which can be obtained from
the spatial cues (e.g., interaural level/phase difference).

In order to jointly suppress noise and preserve spatial cues, bin-
aural HA algorithms have been proposed assuming the availability
of wireless communication channels, e.g., [4–7]. In this work, we
consider a general framework where the HAs are part of a bigger
wireless acoustic sensor network (WASN) with additional assistive
wireless microphones, see Fig. 1. The microphones can thus be part
of the HA itself, or positioned somewhere in the vicinity. The micro-
phone recordings are transmitted via wireless links to a fusion center
(FC), which we consider in this work to be one of the HAs, see Fig. 1.
Subsequently, the FC computes the binaural outputs for both HAs
and transmits the output to the contralateral HA. As such, the FC
can preserve the interaural information in the binaural outputs. The
larger number of microphones in such a setup can potentially lead
to both better noise reduction and spatial cue preservation. These

Fig. 1. A general binaural HA configuration in WASN.

advantages of binaural HAs in a WASN setup come with higher bat-
tery costs for transmission of data, and, introduction of quantization
noise. These facts are typically neglected in most contributions on
binaural speech enhancement, with the exception of e.g., [8–12].

In practice, HAs and assistive microphones in a WASN are bat-
tery driven, so that the trade off between the increased performance
and energy usage for communication over such WASNs should be
taken into account. Typically, the network lifetime needs to be max-
imized. In order to reduce the energy usage, generally there are two
techniques that can be employed: sensor selection [13–15] and rate
allocation [8, 9, 16, 17]. Sensor selection approaches lead to sparse
networks, as only the most informative sensors are involved such
that the energy usage in terms of data processing is saved effectively.
Compared to sensor selection, rate allocation approaches can be used
to distribute communication rates optimally to save the energy usage
in terms of data transmission, since the transmission power between
nodes and the FC is directly affected by the rate. The relationship be-
tween sensor selection and rate allocation was investigated in [17].

In this work, we apply the rate allocation approach in [17] to
a binaural HA setting in a WASN. The problem is formulated by
minimizing the total transmission power and constraining the noise
reduction performance. The spatial cues are preserved using linear
constrains within a binaural linearly constrained minimum variance
(BLCMV) beamformer framework. Simulations show that although
both the sensor selection and rate allocation approaches satisfy the
performance requirement, the proposed rate allocation method is
more efficient in energy usage and can preserve more interferers’
spatial cues by including more sensors, each at a relatively low rate.

2. FUNDAMENTALS

2.1. Signal model
In this work, we assume that there are M microphones that are mon-
itoring the sound field, see e.g. Fig. 1, where the FC allocates bit
rates to each microphone node and computes the binaural output for
each HA. In the short-term Fourier transform (STFT) domain, let l
denote the frame index and ω the angular frequency bin. The noisy
DFT coefficient of the quantized signal which is to be transmitted to
the FC is given by

ŷk(ω, l) = yk(ω, l) + qk(ω, l), k = 1, 2, · · · ,M, (1)
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where qk(ω, l) denotes the quantization noise which is assumed to
be uncorrelated with the microphone recording1 yk(ω, l) given by

yk(ω, l) =

I∑
i=1

aik(ω)si(ω, l)︸ ︷︷ ︸
xik(ω,l)

+

J∑
j=1

hjk(ω)uj(ω, l)︸ ︷︷ ︸
njk(ω,l)

+vk(ω, l),

where aik(ω) denotes the acoustic transfer function (ATF) of the
ith target signal with respect to the kth microphone; si(ω, l) and
xik(ω, l), the ith target source at the source location and at the kth
microphone, respectively; hjk(ω) the ATF from the jth interferer
to the kth microphone; uj(ω, l) and nik(ω, l), the jth interferer at
the source location and at the kth microphone, respectively; vk(ω, l)
the kth microphone self noise. For notational brevity, we will omit
the frequency variable ω and the frame index l now onwards. Us-
ing vector notation, the M channel signals are stacked in a vector
ŷ = [ŷ1, ..., ŷM ]T . Similarly, we define the vectors y, xi, nj , v,
q for the microphone recordings, the ith target component, the jth
interfering component, the additive noise and the quantization noise,
respectively. Using this notation, (1) can be written compactly as

ŷ =

I∑
i=1

xi +

J∑
j=1

nj + v + q = As+Hu+ v + q, (2)

where xi = aisi ∈ C
M with ai = [ai1, ai2, · · · , aiM ]T and

nj = hjuj ∈ C
M with hj = [hj1, hj2, · · · , hjM ]T . Further,

A = [a1, · · · ,aI ] ∈ C
M×I , s = [s1, · · · , sI ]T ∈ C

I ,H =
[h1, · · · ,hJ ] ∈ C

M×J ,u = [u1, · · · , uJ ]T ∈ C
J . We assume

in this work that the ATFs of the present sources (i.e., A and H)
are known. In practice, the target ATFs can be estimated using the
generalized eigenvalue decomposition of the noise and noisy cor-
relation matrices. The ATFs of the interferers can be replaced by
pre-determined ATFs as in [19], at the cost of a small increase of the
errors on the spatial cues. Assuming that all sources are mutually
uncorrelated, the second-order statistics are then given by

Ryy = E{yyH} = Rxx +Ruu +Rvv︸ ︷︷ ︸
Rnn

∈ C
M×M , (3)

where Rxx =
∑I

i=1 E{xix
H
i } and Ruu =

∑J
j=1 E{nin

H
i }. In

practice, Rnn can be estimated using noise-only frames, and Ryy

during the speech+noise frames. The total noise second-order statis-
tics in ŷ is given by Rn+q = Rnn + Rqq, under the assumption
that the received noise sources and quantization noise are mutually
uncorrelated. In case sensors utilize uniform quantizers to quantize
their recordings, Rqq then reads [16, 17, 20]

Rqq =
1

12
diag

([A2
1

4b1
,
A2

2

4b2
, ...,

A2
M

4bM

])
, (4)

where Ak = max{|yk|} and bk, ∀k denotes the bit rate used by the
kth microphone node. Note that the quantization in the sequel takes
place in the STFT domain, e.g., the real and imaginary parts of the
complex STFT coefficients are quantized separately.

2.2. BLCMV beamforming with binaural cue preservation
In [5], a general BLCMV beamforming framework was proposed for
joint noise reduction and binaural cue preservation. Mathematically,
this problem was formulated as

ŵBLCMV = argmin
w

wHR̃n+qw, s.t. ΛHw = f̃ , (5)

where

R̃n+q =

[
Rn+q 0
0 Rn+q

]
∈ C

2M×2M , (6)

1This assumption holds under high rate communication. At low rates, this
can be achieved by subtractive dither [9, 18].

Λ =
[
Λ1 Λ2

] ∈ C
2M×(2I+J )

=

[
A 0 h1h1R · · · hJ hJR

0 A −h1h1L · · · −hJ hJL

]
, (7)

f̃ =
[
fH1 fH2

]T ∈ C
2I+J

=
[
a∗1L · · · a∗IL a∗1R · · · a∗IR 0 0 · · · 0

]T
,

and the BLCMV beamformer is the concatenation of the LCMV
beamformers at the two HAs, i.e., wBLCMV = [wT

L wT
R]

T . In the
BLCMV formulation, L and R are used to indicate the left and right
beamformer or reference microphone for the two ears, respectively.
Information on the spatial cues is contained in the interaural transfer
function (ITF). The ITF of the ith target source with respect to the
reference microphones can be defined as ITFxi = aiL

aiR
, ∀i, and the

ITF of interferers can be defined similarly. Accordingly, we can see
that the constraint ΛHw = f̃ in (5) consists of two components: 1)
a constraint on the exact preservation of the I target sources, i.e.,
ΛH

1 w = f1, for which we know that full preservation requires

ITFin
xi

= ITFout
xi

=
aiL

aiR
, i = 1, · · · , I; (8)

2) A constraint on the preservation of theJ interferers, i.e., ΛH
2 w =

f2, for which we know that preserving the spatial cues requires

ITFin
nj

= ITFout
nj

=
hjL

hjR
=

wH
L hj

wH
Rhj

, j = 1, · · · ,J . (9)

With the preservation of ITFs in (8-9), the binaural cues, e.g., in-
teraural level difference (ILD) and interaural phase difference (IPD)
are also preserved, because ILD and IPD are derived from ITF as

ILD = |ITF|2, IPD = ∠ITF. (10)

Using the method of Lagrange multipliers, the closed-form solution
of the above BLCMV problem is given by

ŵBLCMV = R̃−1
n+qΛ(ΛHR̃−1

n+qΛ)−1 f̃ ∈ C
2M . (11)

For more details on BLCMV beamforming with binaural cue preser-
vation, we refer to [5, 10, 11, 21, 22] and references therein.

3. RATE-DISTRIBUTED BLCMV BEAMFORMING
3.1. General problem formulation
Let Vk be the noise power spectral density (PSD) at the kth commu-
nication channel and dk the distance over which transmission takes
place. The transmission energy model is then given by [17]

g(b) =

M∑
k=1

d2kVk(4
bk − 1), (12)

where b = [b1, · · · , bM ]T . The above energy model holds under
two conditions [23–25]: 1) in the context of band-limited appli-
cations (e.g., audio processing); 2) the microphone recordings are
quantized at the channel capacity for reliable transmission. In this
work, we intend to minimize g(b) by allocating bit rates to micro-
phone nodes, such that a prescribed noise reduction performance is
obtained. With this, our initial problem can be formulated as:

min
w,b

g(b) =
M∑
k=1

d2kVk(4
bk − 1)

s.t. wHR̃n+qw ≤ β

α

ΛHw = f̃ , bk ∈ Z+, bk ≤ b0, ∀k,

(P1)

where β denotes the minimum output noise power that can be
achieved, α ∈ (0, 1] is to control the expected performance, Z+

denotes the set of non-negative integers, and b0 the maximum num-
ber of bits per sample of each microphone signal. Note that β/α
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does not depend on the rate allocation strategy or statistics of the
sensor network, because β/α is just a number that can be assigned
by the users, e.g., 40 dB, to indicate a certain expected performance.
By solving (P1), we can determine the optimal rate distribution that
each microphone can utilize to quantize its recordings, such that the
noise reduction system achieves a desired performance with mini-
mum energy usage. One simple method to solve (P1) is exhaustive
search, i.e., evaluating the performance for all (b0+1)M choices for
the rate distribution, but evidently this is intractable unless b0 or M
is very small. In the next section, we will propose an efficient solver
for (P1) in the context of BLCMV beamforming.

3.2. Solver for rate-distributed BLCMV beamforming
Substituting the solution of the BLCMV beamformer from (11) to
the general problem formulation in (P1), we can obtain a simplified
optimization problem for rate-distributed BLCMV beamforming as

min
b

g(b) =

M∑
k=1

d2kVk(4
bk − 1)

s.t. f̃H(ΛHR̃−1
n+qΛ)−1 f̃ ≤ β

α

bk ∈ Z+, bk ≤ b0, ∀k,

(P2)

where b is implicit in the output noise power f̃H(ΛHR̃−1
n+qΛ)−1 f̃ ,

which is non-convex and non-linear in terms of b. In what follows,
we will explicitly express f̃H(ΛHR̃−1

n+qΛ)−1 f̃ in terms of b.

First of all, in order to reformulate (P2) as a convex optimiza-
tion problem, we introduce a symmetric positive semi-definite ma-
trix Z ∈ S

2I+J
+ with S+ denoting the set of symmetric positive

semi-definite matrices, such that the first inequality constraint in (P2)
can be recast to the following two new constraints equivalently, i.e.,

ΛHR̃−1
n+qΛ = Z, (13)

f̃HZ−1 f̃ ≤ β

α
. (14)

The inequality (14) can be rewritten as a linear matrix inequality
(LMI) using the Schur complement [26, p.650], i.e.,[

Z f

fH β
α

]
� O2I+J+1. (15)

However, the equality constraint in (13) is both non-linear and non-
convex in the unknown b. The non-convexity can be tackled by
relaxing it to

ΛHR−1
n+qΛ � Z, (16)

since (14) and (16) are sufficient to obtain the original constraint in
(P2). In order to linearize (16) in b, we calculate R̃−1

n+q as

R̃−1
n+q = (R̃nn + R̃qq)

−1

= R̃−1
nn − R̃−1

nn(R̃
−1
nn + R̃−1

qq )
−1R̃−1

nn, (17)

where the second equality is derived from the matrix inversion
lemma [27, p.18]2, and

R̃nn =

[
Rnn 0
0 Rnn

]
, R̃qq =

[
Rqq 0
0 Rqq

]
. (18)

Substituting R−1
n+q from (17) into (16), we obtain

ΛHR̃−1
nnΛ− Z � ΛHR̃−1

nn(R̃
−1
nn + R̃−1

qq )
−1R̃−1

nnΛ. (19)

Using the Schur complement, we obtain the following LMI[
R̃−1

nn + R̃−1
qq R̃−1

nnΛ

ΛHR̃−1
nn ΛHR̃−1

nnΛ− Z

]
� O2M+2I+J , (20)

2(A+CBCT )−1 = A−1−A−1C(B−1+CTA−1C)−1CTA−1

Fig. 2. Experimental setup and rate distribution obtained by RD-
BLCMV, MD-BLCMV and exhaustive search, respectively.

where R̃−1
qq =

[
R−1

qq 0
0 R−1

qq

]
and R−1

qq can be calculated from (4)

directly. For notational convenience, we define a constant vector

e =
[

12
A2

1
, · · · , 12

A2
M

]
. Further, we introduce a variable change tk =

4bk ∈ Z+, ∀k, such that R−1
qq = diag (e� t) and (20) are both

linear in t. In order to convexify the integer constraint bk ∈ Z+, ∀k,
we relax it to bk ∈ R+, i.e., tk ∈ R+, ∀k. Altogether, we arrive at

min
t,Z

g(t) =
M∑
k=1

d2kVk(tk − 1)

s.t. (15), (20), 1 ≤ tk ≤ 4b0 , ∀k,
(21)

which is a standard semi-definite programming problem [26, p.128]
and which can be solved efficiently in polynomial time using
interior-point methods or solvers, e.g., CVX [28].

After (21) is solved, the allocated bit rates can be resolved by
bk = log4 tk, ∀k which are continuous values. In order to re-
solve the final integer rates, we apply the randomized rounding
technique [13, 14, 17] to the solution of (21).

4. SIMULATION RESULTS
For the experiments, we place in total M = 6 microphones in a 2D
room with dimensions (3 × 4) m, see Fig. 2 (left). From these M
microphones, one is placed at each ear. These two microphones are
taken as the reference microphone for the two HAs. The other four
wireless microphones are placed as a (wireless) uniform linear array,
whose x-coordinates are given by {0.9, 1.3, 1.7, 2.1} m, and the y-
coordinate is set to 1 m. The radius of the head of a user who wears
the HAs is assumed to be 10 cm, and the FC is positioned at the left
HA, i.e., the coordinate of the FC is (1.4, 2.5) m. The ATFs are gen-
erated using [29] with reverberation time T60 = 200 ms. We consider
one target source of interest which is located in front of the head. The
target source signal is a 10 minute long concatenation of speech sig-
nals originating from the TIMIT database [30]. Seven speech shaped
Gaussian interfering sources are present, and are placed at−30◦, 0◦,
30◦, 60◦, 120◦, 150◦ and 180◦, respectively. All the sources are
distributed on a circle (radius = 1 m) centered at the head and the el-
evation is set to be 0◦. All the signals are sampled at 16 kHz. We use
a square-root Hann window of 20 ms for framing with 50% overlap.
Microphone self noise is modeled at a signal-to-noise ratio (SNR) of
50 dB. The signal-to-(total)interference ratio (SIR) is set to be 0 dB.
Furthermore, the PSD of the communication channel noise sources
Vk in (21) are assumed to be the same for all microphones.

For comparison, we use as reference methods the model-driven
BLCMV (MD-BLCMV) based microphone selection [14] and a so-
lution to (P2) based on exhaustive searching. MD-BLCMV is an
extension of [14] to our binaural setup. In order to validate the opti-
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Fig. 3. Output noise power and energy efficiency in terms of α.

mality of the proposed method, the exhaustive search is employed to
find out the optimal rate distribution. For the maximum rate b0 = 16
bits and six microphones, there are 176 combinations for the ex-
haustive search. Fig. 2 (right) shows the rate distribution obtained
by (21) (i.e., the proposed method referred as RD-BLCMV), MD-
BLCMV and exhaustive search, respectively. The performance con-
trol parameter α for all methods is set to be 0.8. We observe that the
proposed RD-BLCMV method is very close to the optimal solution
that is obtained by the exhaustive search, and if we post-process the
results from RD-BLCMV using randomized rounding, they are com-
pletely the same. For RD-BLCMV, five sensors are activated, and the
first one is allocated with highest rate (i.e., 16 bits per sample), be-
cause it has no communication cost to the FC and has a higher SNR.
The rates of the other activated sensors obtained by RD-BLCMV
are much smaller than 16 bits, resulting in a saving of transmission
costs. The MD-BLCMV method selects only three microphones, but
each operates at the maximum rate of 16 bits per sample.

Next, we compare the output noise power and energy usage ratio
(EUR) in terms of the performance control parameter α. The EUR is
defined as the ratio between the energy used by RD-BLCMV or MD-
BLCMV and the maximum transmission energy when all sensors are
involved and each quantizes at b0 bits. By inspection of Fig. 3, we
see that both RD-BLCMV and MD-BLCMV [14] satisfy the desired
amount of noise reduction, but RD-BLCMV is much closer to the
target performance 10 log10

β
α

, particularly when 0.2 ≤ α ≤ 0.6.
Actually, for these α-values, the two microphones at the ears and
the third microphone are chosen for MD-BLCMV, so that the output
noise power and energy efficiency of MD-BLCMV remains the same
over this α-range. More importantly, RD-BLCMV has much better
energy efficiency compared to MD-BLCMV.

Fig. 4 shows the total preservation errors of the binaural cues
(e.g., ILD and IPD) in terms of the number of activated interferers3.
The errors ΔILD and ΔIPD are defined as

ΔILD =

J∑
j=1

∑
ω

(
ILDj(ω)− ˜ILDj(ω)

)2

,

ΔIPD =

J∑
j=1

∑
ω

(
IPDj(ω)− ˜IPDj(ω)

)2

.

The RD-BLCMV method is compared to a BMVDR beamformer [11],
a BLCMV framework [5] and the MD-BLCMV beamformer. The

3In [5], it was shown that the binaural cues of at most 2M−2I−1 inter-
ferers can be preserved with M microphones using the BLCMV beamformer
in (5). In our case with M = 6 microphones, I = 1 target source andJ = 7
interferers, the binaural cues of both the target source and all the interferers
can be preserved by BLCMV or RD-BLCMV because 2M − 3 > J , and
the degree of freedom devoted to noise reduction is 2M − J − 2 = 3.

Fig. 4. Preservation errors versus the number of activated interferers.

BMVDR method is the worst preserving algorithm, as it does not
consider binaural cue preservation constraints at all. More specifi-
cally, for the BMVDR method, the left and right MVDR beamform-
ers can be formulated as

wL =
R−1

n+qaa
∗
L

aHR−1
n+qa

, wR =
R−1

n+qaa
∗
R

aHR−1
n+qa

(22)

for one target source that is identified by the ATF a. Clearly, we have
ITFin

x = ITFout
x = aL

aR
using the BMVDR beamformers. However,

ITFout
nj

=
wH

L hj

wH
R

hj
= aL

aR
= ITFin

x , ∀j, which implies that the output

binaural cues of the interfering sources collapse to the binaural cues
of the target source. Hence, the BMVDR beamformer cannot pre-
serve any binaural cues of interferers. The BLCMV method shows
the best performance. However, it does not take the quantization into
account and includes all microphones. This means it will be able to
keep the spatial cues of all present sources, however, at the high bat-
tery cost of full-rate transmission. The MD-BLCMV method uses a
hard selection, e.g., if it selects a subset of microphones that is too
small, it will not be able to preserve the spatial cues of all sources.
The RD-BLCMV approach applies the rate distribution and thus has
a soft decision of microphones. In that sense, it usually activates
more microphones (at the cost of more quantization noise), but this
might lead to more degrees of freedom to preserve more spatial cues,
while still satisfying the target noise reduction performance. In addi-
tion, all the methods can preserve the spatial cues of the target source
because of the constraint ΛH

1 w = f1 being taken into account. From
Fig. 4, we see that with an increasing number of interferers, the er-
rors of RD-BLCMV or BLCMV only slightly increase, but the errors
of MD-BLCMV suddenly increase when there are more than 3 in-
terferers. This is because the BLCMV beamformers can preserve
the binaural cues of up to 2M − 2I − 1 interferers using M mi-
crophones [5]. Using hard decisions on microphone selection, the
degrees of freedom are much lower than when we use the rate allo-
cation which is a soft decision. Therefore, the RD-BLCMV beam-
former allows to use more constraints to preserve interferers than
the MD-BLCMV beamformer: 7 versus 3 interferers in Fig. 2. Fur-
thermore, similar to the BMVDR, the output binaural cues of the
{4,5,6,7}th interferer based on MD-BLCMV will also collapse to
those of the target source.

5. CONCLUSION

In this work, we studied rate-distributed BLCMV beamforming for
wireless binaural hearing aids. The proposed method was formulated
by minimizing the energy usage and constraining the noise reduc-
tion performance. Under the utilization of a BLCMV beamformer,
the problem was solved by semi-definite programming with the ca-
pability of joint noise reduction and binaural cue preservation. The
proposed method can achieve better energy efficiency by distribut-
ing bit rates, and preserve more interferers’ spatial cues by activating
more sensors as compared to sensor selection approaches.
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