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Abstract
Accuracy in timemark estimation is crucial for time-of-flight positron emission 
tomography, in order to ensure high quality images after reconstruction. Since 
the introduction of multichannel digital silicon photomultipliers, it is possible 
to acquire several photoelectron timestamps for each individual gamma event.

We study several timemark estimators based on multiple photoelectron 
timestamps by means of a comprehensive statistical model. In addition, we 
calculate the MSE of the estimators in comparison to the Cramér–Rao lower 
bound as a function of the system design parameters.

We investigate the effect of skipping some of the photoelectron 
timestamps, which is a direct consequence of the limited number of time-to-
digital converters and we propose a technique to compensate for this effect. In 
addition, we carry out an extensive analysis to evaluate the influence of dark 
counts on the detector timing performance.

Moreover, we investigate the improvement of the timing performance 
that can be obtained with dark count filtering and we propose an appropriate 
filtering method based on measuring the time difference between sorted 
timestamps.

Finally, we perform a full Monte Carlo simulation to compare different 
timemark estimators by exploring several system design parameters. 
It is demonstrated that a simple weighted-average estimator can achieve 
a comparable performance as the more complex maximum likelihood 
estimator.

E Venialgo et al

Time estimation with multichannel digital silicon photomultipliers

Printed in the UK 

2435

Pmb

© 2015 Institute of Physics and Engineering in medicine

2015

60

Phys. med. biol.

PHmbA7

0031-9155

10.1088/0031-9155/60/6/2435

Paper

6

2435

2133

Physics in medicine & biology

Institute of Physics and Engineering in Medicine

IOP

0031-9155/15/062435+18$33.00 © 2015 Institute of Physics and Engineering in Medicine Printed in the UK 

Phys. Med. Biol. 60 (2015) 2435–2452 doi:10.1088/0031-9155/60/6/2435

mailto:e.venialgo@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-9155/60/6/2435&domain=pdf&date_stamp=2015-03-05
publisher-id
doi
http://dx.doi.org/10.1088/0031-9155/60/6/2435


2436

Keywords: multi-channel digital silicon photomultiplier (MD-SiPM), 
positron emission tomography (PET), coincidence resolving time (CRT), 
time-of-flight (TOF), Cramér–Rao lower bound (CRLB)

(Some figures may appear in colour only in the online journal)

1. Introduction

The coincidence resolving time (CRT) of a positron emission tomography (PET) scanner is 
a crucial parameter because of its direct impact on image quality. The signal-to-noise ratio 
(SNR) of the PET image is enhanced when the image reconstruction algorithms utilize time-
of-flight (TOF) information (Moses 2003). The suppression of noise propagation during the 
image reconstruction is the main reason for the image improvement.

Since the introduction of multichannel digital silicon photomultipliers (MD-SiPMs) multi-
ple-photoelectron timestamps are available for gamma photon timemark estimation; the use of 
several timestamps can in principle improve CRT significantly (Seifert et al 2012, Mandai and 
Charbon 2013). Nevertheless, more complex estimators are required to extract the gamma-
photon timemark from multiple photoelectron timestamps.

MD-SiPMs have many time-to-digital converters (TDCs) shared among single-photon 
avalanche diode (SPAD) pixels through column-parallel lines (Mandai and Charbon 2013). 
Consequently, MD-SiPMs can assign timestamps to multiple photoelectrons produced by 
scintillation photons. This type of silicon detectors has opened a new field of study that is the 
gamma-photon timemark estimation based on multiple photoelectron timestamps.

In this paper, we explore the use of weighted-average estimators and the maximum-like-
lihood estimator (MLE) for gamma-photon timemark estimation. A comprehensive Monte 
Carlo model is implemented to evaluate the performance of these estimation methods. In 
addition, several datasets are generated under different system design parameters in order to 
compare the performance of the estimators against the Cramér–Rao lower bound (CRLB).

Since the amount of available TDCs is less than the number of SPADs, after one TDC is 
measuring the qth photoelectron, the next photoelectron, qth + 1, has a lower probability of 
being detected. This is called skipping effect and it accounts for the inability to measure a 
continuous set of photoelectron timestamps with the same detection probability. In this work, 
we present a likelihood function that models this effect.

Furthermore, we study the possibility of filtering out spurious dark counts by measuring the 
time difference between ordered timestamps. In addition, we carry out a realistic simulation 
that compares the simplest estimator in terms of computing power against the most complex 
one investigated in this work, which is the MLE corrected for skipping effect and dark count 
rate (DCR) variations. In these last simulations we consider two light coupling conditions 
between the LYSO pixels and the MD-SiPM array. In the first condition, we analyze a LYSO 
pixel coupled to one MD-SiPM and in the second case we simulate a LYSO pixel coupled to 
four MD-SiPM.

2. Statistical models of scintillator-based coincidence detectors 

In the early 1950s, a statistical model that described the decay process of a scintillator was 
introduced for the first time (Post and Schiff 1950). It was based on Poisson statistics, assumed 
a single-exponential decay model and did not include the variation in transit times, or jitter, 
of the photosensor. Consequently, it predicted that the best timing performance for gamma 
timemark estimation was obtained when utilizing the first photoelectron.
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In 1966, a review paper was published that compared experimental and simulation results 
of coincidence measurements with scintillation detectors. This work demonstrated that the 
lowest variance is not necessarily obtained with the first photoelectron because of the influ-
ence of transit time spread (TTS) in photomultiplier tubes (PMTs) and of the finite rise time 
in scintillators (Gatti and Svelto 1966).

Later, a broad theoretical background was established that allowed the use of any type of scin-
tillation decay pulse shape or probability density function (PDF) (Gioacchino 1993). According 
to this model, the PDF of the qth photoelectron’s time-of-registration, called pq, is given by

 = !
− ! − !

− − −p t
R

q R q
F t F t f t( )

( 1) ( )
[1 ( ) ] [ ( ) ] ( ) ,q

R q q( ) ( 1) (1)

where f(t) represents the photoelectron time distribution PDF and F(t) is the corresponding 
cumulative density function (CDF).

In 2010, the concept of order statistics was introduced to the scintillation decay process, 
in combination with a double-decay exponential model (Fishburn and Charbon 2010). It is 
possible to obtain the same theoretical framework derived in Gioacchino (1993) using order 
statistics. The double exponential decay model, where τr, τd are the rise and decay constants, 
respectively, while T0 is the timemark of the gamma photon, can be expressed as

 

⎧
⎨
⎪

⎩⎪ τ τ
=

  ⩽

−
−   >τ τ− − − −f t

t T

t T
( )

0 for
1

[e e ] for
.t T t T

s

0

d r
0

0
d

0
r

(2)

According to the model proposed in that work, the distribution of timestamps generated by a 
system composed of a scintillator and a photosensor follows the distribution defined by

 N μ σ= ∗f t f t( ) ( ) ( , ) .s TT TT (3)

The Gaussian distribution N μ σ( , )TT TT  models the total transit time and jitter of the instrumen-
tation chain. Moreover, the PDF of the resulting photoelectron time distribution is the convolu-
tion between fs(t) and N μ σ( , )TT TT  since the total jitter is modeled as additive noise; μTT and σTT 
model the total transit time and jitter, respectively (Fishburn and Charbon 2010). σTT includes 
all of the sources of time uncertainty such as, TDC jitter, SPAD jitter, electronic noise, etc.

Recently, Seifert et al (2012) derived the Cramer–Rao lower bound on the time resolution 
of scintillation detectors. Instead of the single bi-exponential function fs(t) given in (2), their 
analysis is based on a more accurate model of scintillation decay that is able to account for 
the multiple, simultaneous cascades of excitation and decay processes that occur in some 
scintillators, such as LaBr3:Ce. Their model can be used with a Gaussian function to describe 
the single-photon jitter of the instrumentation chain, as in (3), or with a more complex PDF in 
cases where a Gaussian approximation is considered insufficiently accurate. Moreover Seifert 
et al (2012), analyzed the possibility to utilize multiple photoelectron timestamps for gamma 
timemark estimation in some depth.

The present work is based on the analysis of Seifert et al (2012), using a Gaussian PDF to 
describe the single photon timing jitter as in (3).

3. Cramér–Rao lower bound

The CRLB is a scalar value that establishes the lower bound on the variance of any unbiased 
estimator of the parameter of interest (Kay 2013). The CRLB for the particular case of order 
statistics was analyzed in Park (2003) and Seifert et al (2012).
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The regularity conditions that are required to obtain a valid CRLB are given in Arnold et al 
(1992). Common support is a condition for obtaining a valid Fischer information calculation. 
This regularity condition can be expressed as follows for the problem under consideration in 
this work

 ∣ >     ∀ ∈t f t T T{ : ( ) 0} is the same IR.0 0 (4)

In principle one might question if this condition is fulfilled since our model assumes zero prob-
ability of scintillation photon emission before T0 (Hanggi and Carr 1985, Seifert et al 2012).

However, the condition is fulfilled when the scintillation decay function is convolved with 
the total Gaussian jitter of the system, as in (3). It is to be noted that this model in princi-
ple allows the (false-positive) registration of scintillation photons at times earlier than T0. 
Although this is not unphysical if the instrumentation chain indeed exhibits a white jitter 
spectrum, one might prefer to also truncate N μ σ( , )TT TT  at T0 in (3). Such truncation should be 
performed carefully in order to include a sufficiently large part of the left tail of N μ σ( , )TT TT ,  
so as to avoid significant breaching of regularity condition (4). Fortunately, this is easily 
achieved in practice because in a typical photosensor instrumentation chain, μTT −T0 is many 
times larger than σTT.

In general, it is not guaranteed that an unbiased estimator exists that is able to reach the CRLB 
for a given problem. To illustrate this, we investigate the simple case in which the registration 
time of only one of the scintillation photons is known and we compare the only possible unbi-
ased estimator that exists in this case to the CRLB, as a function of several system parameters.

When estimating the gamma timemark just utilizing the qth photoelectron only, the only 
possible unbiased estimator is given by

 ̂ = −T t A,q0 (5)

where A is expressed as

 = ∣ =A E p[ ] .q T 00 (6)

The accuracy of this estimator in terms of the root mean square error (root-MSE) is equal to 
the square root of the variance of the PDF of the time-of-registration of the qth photoelectron.

 σ^ =TMSE ( ) .q0 (7)

Equation (7) provide a simple means to compare the only possible unbiased estimator perfor-
mance against the CRLB for several system design parameter configurations.

In the single-photoelectron T0 estimation case, the Fisher information I(T0) is given by
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where the chain rule was applied to rewrite pq(t∣T0) as follows

 ∣ = −p t T g t T( ) ( ) .q q0 0 (9)

We calculated the Fisher information with a time step of 1 ps, for different values of the essen-
tial scintillation properties and swept the system design parameters (Ludziejewski et al 1995, 
Glodo et al 2005, Szczesniak et al 2009, Seifert et al 2012). Subsequently, we calculated the 
standard deviation of pq(t) with the same time step and compared the results.

Figure 1(a) shows the σq and root-CRLB as a function of the photoelectron order for differ-
ent numbers of detected photoelectrons. Figures 1(b) and (c) depict similar comparisons for 
different scintillators and for different values of total jitter of the system respectively. In all of 
the plots the total jitter of the system is given at FWHM level. The number of photoelectrons 
was intentionally kept low in figures 1(b) and (c) (i.e. corresponding to an overall photodetec-
tion efficiency of about 6%, since under these conditions the only possible unbiased estimator 
does not fully reach the CRLB, as in figure 1(a)).

4. Maximum likelihood estimation

As demonstrated in the previous section, the only possible unbiased estimator in the single-
photoelectron timestamp case does not always reach the CRLB, for certain system design 
parameters. In the multiple-photoelectron time estimation case, there are many possible unbi-
ased estimators and it is computationally impractical to perform the previous analysis for all 
system design parameter combinations.

In the multiple photoelectron timestamp case, we therefore limited ourselves to the calcula-
tion of the MSE of the multiple-photoelectron MLE in two different conditions, which were 
defined based on the results obtained in the single-photoelectron time estimation case. We cal-
culated the CRLB of the multiple-photoelectron estimation case for the same two conditions 
and compared it to the result obtained with the MLE.

The likelihood function defined for the t1:Q timestamps of the first Q photoelectrons, for the 
estimation of location parameter (T0) is expressed by

 ∏∣ = !
− !

∣ − ∣
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−L t t T
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This expression corresponds to a type II censored sample of order statistics (Arnold et al 
1992). The likelihood functions were calculated with a time step of 1 ps. Subsequently, the 
root-MSE of the multiple-photoelectron MLE was evaluated utilizing random timestamps 
generated with a Monte Carlo code, which follows the same model as L1:Q(t1, ..., tQ∣T0).

As observed in figures 1(a)–(c), the only possible unbiased estimator in the single pho-
toelectron timestamp case does not fully reach the CRLB when the jitter level is low and 
the number of detected photoelectrons is small. Thus, we generated two random timestamp 
datasets called I and II, the dataset I with 100 ps FWHM jitter and 300 photoelectrons; the 
dataset II with 700 ps FWHM jitter and 3800 photoelectrons. The scintillation decay constants 
were the same for both datasets, namely LSO with properties according to (Ludziejewski et al 
1995, Seifert et al 2012). In the multiple-photoelectron estimation case, the Fisher informa-
tion can be calculated as follows (Park 2003)
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Figure 1. σq and root-CRLB as a function of the photoelectron order for different system 
design parameters. (a) τr was set to 89 ps and τd to 46.6 ns, the total jitter of the system was 
set to 300 ps (FWHM). (b) The number of detected photoelectrons was 1800 for LaBr3 
and 800 in all of the other scintillators; the total jitter of the system was 300 ps (FWHM). 
(c) τr and τd was set as in (a); the total number of detected photoelectrons was 1300.
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The performance of MLE for estimating the location parameter T0 utilizing both datasets is 
depicted in figure 2. The number of TDCs is equal to the number of sorted timestamps uti-
lized for the estimation and varies from 1 to 30. The root-MSE of the MLE differs from the 
CRLB by about 67 ps in the case of dataset I. However, for dataset II (see figure 2) the root-
MSE of the MLE is very close to the CRLB. In conclusion, we observe that the MLE does 
not fully reach the CRLB if the number of detected photoelectrons is small and the total 
jitter of the system is low, similarly to what was observed for the only possible unbiased 
estimator in the single photoelectron timestamp case. The important difference between 
the single- and multiple photoelectron timestamp cases is that in the latter many different 
estimators can be defined. The fact that the MLE does not reach the CRLB under some 
conditions in the multiple photoelectron timestamp case implies that it may be possible 
to find more efficient estimators than the MLE under such conditions. However, obtaining 
good timing resolution in scintillation detectors requires the use of scintillators with high 
light output in combination with photosensors with high photoelectron detection efficiency 
(PDE) (Seifert et al 2012). Under those conditions, the present results indicate that the MLE 
is an efficient estimator.

5. Weighted-average timemark estimators

In general, a linear function of a sorted set of random samples provides an efficient estimator 
of the location parameter (Arnold et al 1992). We tested several weighted-average estima-
tors such as the simple mean, the variance weighted and the best linear unbiased estimator 
(BLUE) by calculating the single detector root-MSE of the estimators using the Monte Carlo 
simulator.

The weighted-average timemark estimators are given by

 ∑^ = =
=

T t w p, 1, 2, 3.
p

q

Q

q q
p

0
( )

1

( )
(13)

The first estimator calculates the average value of a group of ordered Q photoelectron time-
stamps. We call this estimator the simple mean estimator and the weights are given by (p = 1)

 = =w
Q

q Q
1

, 1, ..., .q
(1)

(14)

The number of photoelectrons timestamps Q utilized to calculate the mean value was var-
ied from 1 to 48, since the MD-SiPM that was designed in our laboratory has 48 TDCs per 
MD-SiPM (Mandai et al 2012, Mandai and Charbon 2013). Furthermore, tq corresponds to the 
time-of-registration of the qth photoelectron.

The second method is a weighted-average estimator, in which the weights are calculated 
according to the variance of the corresponding tq timestamp (p = 2)

 ∑
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Furthermore, the weights are normalized so the sum of the weights is equal to the unity, in 
order to preserve the linearity of the estimation. This method is called the variance weighted 
estimator. Experimentally, each weight can be estimated during a calibration procedure.

The third method is also a weighted-average estimator but we calculated the weights 
according to the covariance of the timestamps following (p = 3)

 = …w w w w[ , , , ] ,q Q
T(3)

1
(3)

2
(3) (3) (16)

 =
‖ ‖

−

−w
C d
C d

,q
(3)

1

1/2
2
2 (17)

where d is a column vector filled with ones and with a length equal to the number of uti-
lized timestamps and C is the covariance matrix of the timestamps. This estimator follows 
the BLUE methodology in order to obtain a weighted-average estimation with minimum vari-
ance. The last step in the derivation of this estimator for the case of a single detector would be 
to compensate the bias in the estimation by subtracting the multiplication between wq(3) and the 
mean vector of the timestamps. However, in a coincident setup such as a PET system this step 
is not required, since the biases of two equal, coincident detectors cancel against each other.

In order to test the estimators, we generated random timestamps with the Monte Carlo code 
based on the models explained in Seifert et al (2012). In addition, we included the influence 
of the energy resolution (ER) into the Monte Carlo code by sampling R (number of detected 
photoelectrons) randomly according to the selected ER.

Figure 3(a) shows the root-MSE of all estimators as a function of the number of TDCs 
under two jitter conditions. Figures 3(b) and (c) show the root-MSE as a function of the num-
ber of photoelectron timestamps for two different energy resolutions and for two different 
number of photoelectrons, respectively. Figure 3(d) shows the root-MSE of the estimators for 
two types of crystals scintillators.

In figures 3(a)–(d) the LYSO decay constants were taken from Seifert et al (2012) table 1 
entry 10. In figure 3(d), the LaBr3 decay constants were taken from Glodo et al (2005).

As observed, the accuracy of BLUE and MLE improves as more TDCs are included in the 
estimation. In contrast, the other estimators tend to degrade when increasing the number of 
TDCs. The MLE and BLUE estimators are observed to have practically equal efficiency under 
all the system conditions studied.

Figure 2. Root-MSE of the multiple photoelectron MLE and root-CRLB versus size of 
multiple timestamps set, when utilizing dataset I and II.
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6. Skipping effect and likelihood function

In the previous sections, we did not yet take into account the fact that the TDCs are shared. 
Subsequently, the number of available TDCs per SPAD is less than 1. This condition signifi-
cantly modifies the time distribution of the ordered photoelectrons; therefore, the likelihood 
function must be readjusted in order to account for this effect.

Figure 3. Single detector root-MSE (ΔT) for all of the estimators. (a) For two different 
jitter levels, the ER was set to 14%, the number of detected photoelectrons was set 
to 2400 and the scintillator was set to LYSO. (b) For two different ERs, the number 
of detected photoelectrons set to was 2400, the scintillator was set to LYSO and the 
total jitter of the system was set to 100 ps (FWHM). (c) For two different number of 
photoelectrons, the ER was set to 14%, the scintillator was set to LYSO and the total 
jitter of the system was set to 100 ps (FWHM). (d) For two scintillators, the number of 
detected photoelectrons was set to 2400 for the scintillation decay constants of LYSO 
and 4800 for the scintillation decay constants of LaBr3; the ER was set to 14% and the 
total jitter of the system was set to 100 ps (FWHM).

1 24 48

20

40

60

80

100

120

Photoelectron order number
∆ 

T
 (

ps
)

1 24 48
Number of TDCs

MLE and BLUE

simple mean

simple mean
variance weighted

100ps jitter

700ps jitter

sin
gle photoelectr

on

single photoelectron

variance weighted

MLE and BLUE

1 24 48

20

40

60

80

100

120

Photoelectron order number

∆ 
T

 (
ps

)

1 24 48
Number of TDCs

ER 14%

ER 22%

sin
gle photoelectr

on

ER 22%

ER 14%

ER 22%

ER 14%

simple mean

variance weighted ER 22%

ER 14%

MLE and BLUE

1 24 48

20

40

60

80

100

120

Photoelectron order number

∆ 
T

 (
ps

)

1 24 48
Number of TDCs

2400 pe

800 pe

si
ng

le
 p

ho
to

el
ec

tro
n

si
m

pl
e 

m
ea

n

variance weighted

MLE and BLUE

MLE and BLUE

Variance weighted

simple mean

sin
gle photoelectr

on

1 24 48

20

40

60

80

100

120

Photoelectron order number

∆ 
T

 (
ps

)

1 24 48
Number of TDCs

LaBr
3 MLE and BLUE

LYSO

single photoelectron

simple mean and variance weighted

MLE and BLUE

sim
pl

e 
m

ea
n

variance weighted

si
ng

le
 p

ho
to

el
ec

tro
n

(a) (b)

(c) (d)

Table 1. System design parameters for condition I and II.

Scintillator Size MD-SiPMs TDCs SPAD Cells Total DCR (max)

Condition I 0.8 × 0.8 × h mm3 1 48 416 125 Mcps
Condition II 1.6 × 1.6 ×  h mm3 4 96 1664 500 Mcps
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In this implementation, each of the 3 TDCs in a column is shared by 8 or 9 SPADs through 
an OR gate (see figure 4); therefore, as soon as a TDC detects the qth photoelectron signal, it 
becomes unavailable and the overall probability that the next photoelectron is timestamped 
decreases. In other words, if a light photon generates an avalanche in a SPAD that is connected 
to an already-triggered TDC, then its time information is lost. We call this decrease in detec-
tion probability the skipping effect. Assuming that the photoelectron detection probability is 
equal and constant for every group composed by 8 or 9 SPADs and a TDC; then, the prob-
ability to detect a continuous set of timestamps without skipping can be straightforwardly 
calculated as follows

 ∏= − +

=

P Q
N i

N
(1 : )

( 1)
,

i

Q

1

TDCs

TDCs
(18)

where NTDCs represents the total number of TDCs of the MD-SiPM and 1:Q is refereed to a set 
of sorted timestamps of size Q < NTDCs.

From (18), P (1:Q) decreases significantly if the set size 1 : Q is larger than 20 and NTDCs 
is 48, for instance. Consequently, the resulting time distribution of the qth photoelectron does 
not follow (1) anymore and the likelihood function (10) is no longer valid. In order to obtain 
an accurate estimation with the MLE method, the likelihood function must account for this 
effect.

The photoelectron timestamp probability distribution including the skipping effect can be 
modeled as a two-stage order-statistics process if we assume that the photoelectron detection 
probability is equal for every TDC when all TCDs are in non-occupied state. We first model 
the time distribution of the unsorted timestamps measured by the TDCs using a modified ver-
sion of the function f(t) called fk as follows

 ′ =R
R

N
,

TDCs
(19)

Figure 4. Block diagram of the MD-SiPM.

48 TDC array

26 row

16 columns

780µm

800µm
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 = ′ − −′f t R F t f t( ) [1 ( ) ] ( ) .R
k

( 1) (20)

Thus, fk(t) represents the time distribution of the first photoelectron that is timestamped by any 
of the TDCs. In the second step, we model the sorting of the TDC’s timestamps. The resulting 
pq(t) that accounts for the skipping effect is given by

 ⎜ ⎟
⎛
⎝

⎞
⎠= − − −p t q

N
q F t F t f t( ) [1 ( ) ] [ ( ) ] ( ) .q

N q qTDCs
k

( )
k

( 1)
k

TDCs (21)

Figure 5(a) depicts the pq(t) for several ordered photoelectrons with and without skipping 
effect modeling. Figure 5(b) shows the PDFs calculated by (21) and the normalized histo-
grams generated from a Monte Carlo simulation.

The next step is to derive a likelihood function that models the skipping effect. Such a 
function is given by

 ∏∣ = !
− ′ !

∣ − ∣′ ′
=

′

′
− ′L T t t

N

N Q
f t T F t T( , ..., )

( )
( ) {1 ( ) } ,Q Q

q

Q

q Q1: 0 1
TDCs

TDCs 1
k 0 k 0

N QTDCs (22)

where in this case, 1:Q′ represents a subset of the timestamps that were registered by a system 
that has skipping effect.

This equation  shows that, if all of the timestamps are utilized, then the MLE does not 
require sorted timestamps. In addition, under this condition the assumption of equal detection 
probability for every TDC is no longer required; consequently, the fk(t) can be replaced by a 
specific TDC PDF (van Dam et al 2013).

7. Dark count rate

Dark counts can significantly affect the resolving time of a PET detector module composed 
by SiPMs. Several DCR filtering methods have been implemented in digital SiPMs (Frach 
et al 2009, Mandai et al 2012, Braga et al 2013, Mandai and Charbon 2013). In this section, 
we simulated the DCR rejection method described in Mandai and Charbon (2013), propose a 
new filtering method based on timestamps subtractions and correct the likelihood function to 
account for DCR.

In this subsection, we consider two scintillator-photosensor coupling conditions. In condi-
tion I, a single pixel of LYSO is coupled directly to a MD-SiPM. In condition II, we simulated 
a pixel of LYSO, with a four times larger footprint, coupled to four MD-SiPMs. Consequently, 
in condition II the initial amount of available TDCs is twice as high as in condition I and the 
DCR is four times higher. The number of TDCs in condition II is not four times larger because 
of the way of sharing the TDCs in an array of MD-SiPMs (Mandai and Charbon 2013). The 
number of TDCs in condition II is twice as high as in condition I. The photoelectron dynamic 
range of condition II quadruples in condition I. Table 1 shows the system design parameters 
for condition I and II. Figures 6(a) and (b) show a representation of the coupling condition 
between the LYSO pixels and the MD-SiPMs.

In order to simplify the free parameters, we assume that the factor limiting the total amount 
of light detected is only the MD-SiPM dynamic range. That is, it is not limited by the crystal 
light output nor the MD-SiPM’s PDE. Consequently, the mean number of detected photoelec-
trons was fixed to 800 for condition I and 3200 for condition II . The total jitter of the system 
(σTT) was kept equal to 179 ps for both cases (Mandai et al 2012).
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We included the DCR effect within the Monte Carlo simulation and simulated the smart-
reset technique introduced in Mandai et al (2012). The gamma photon timemark was ran-
domly generated following a uniform distribution between 0 and 100 ns. The dark counts were 
generated following an exponential distribution with a given DCR, since the SPADs are reset 
in every new detection cycle. Afterpulsing was ignored. The DCR was kept identical for every 
group composed by a TDC and 8 or 9 SPADs. If the total DCR of the MD-SiPM is above 
100 Mcps, then the probability that a dark count triggers a TDC within the detection cycle of 
100 ns is considerable. Consequently, another filtering technique should be performed before 
the time estimation occurs. We propose to filter out the dark counts based on the time differ-
ences between sorted timestamps.

For known system design parameters, such as crystal type, total number of TDCs, etc; it is 
possible to calculate the distribution of the time difference between consecutive timestamps. 
Utilizing fk(t) (20), the joint distribution of order statistics can be expressed as follows

 
=

− − −
−

×

+
− − −p t t

N

q N q
F t F t

f t f t

( , )
!

( 1) ! ( 1) !
[ ( ) ] [1 ( ) ]

( ) ( ) ,

q q
q N q

, 1 1 2
TDCs

TDCs
k 1

1
k 2

1

k 1 k 2
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(23)

where t1 < t2.
Using this result, the distribution of the time difference between two consecutive times-

tamps tq and tq + 1 is given by

 ∫= +Δ +
−∞

+∞

+f t p a t a a( ) ( , ) d .q q q q( , 1) , 1 (24)

It is important to mention that fk(t) and consequently Fk(t) must be recalculated for each of the 
possible skipping effect conditions that may arise due to the presence of dark counts. DCR 
modifies the amount of available TDCs because of dark counts that accumulate after each reset. 
Consequently, for each fΔ(q, q + 1)(t) there are NTDCs − 1 possible PDFs (see figures 7(a) and (b)). 
These PDFs are utilized to define a filtering time window for the time difference between sub-
sequent photoelectron in every skipping effect condition. The time windows are defined as the 
time at which fΔ(q, q + 1)(t) is completely vanished. Figure 7(c) shows the normalized histograms 
of Δ(q, q + 1) calculated from Monte Carlo simulations, which overlap the fΔ(q, q + 1)(t) using (24).

Figure 5. pq(t) for several ordered qth photoelectrons. (a) pq(t) was calculated with 
skipping effect from (21) and without skipping effect from (1). (b) pq(t) was obtained from 
a Monte Carlo simulation, as compared with the calculated values accounting for skipping 
effect. Note the near perfect match between the calculated and simulated values of pq(t).

0 2 4 6 8
0

0.5

1

Time (ns)

P
ro

ba
bi

lit
y 

D
en

si
ty

 (
a.

u.
)

 

 

Without Skipping Effect
With Skipping Effect

1st photon

20th photon

40th photon

30th photon

40th photon

30th photon

0 2 4 6 8
0

0.5

1

Time (ns)

(a) (b)

P
ro

ba
bi

lit
y 

D
en

si
ty

 (
a.

u.
)

0

0.5

1

N
or

m
al

iz
ed

 C
ou

nt
s 

(a
.u

.)

40th Photoelectron

30th Photoelectron

20th Photoelectron

1st Photoelectron

E Venialgo et alPhys. Med. Biol. 60 (2015) 2435



2447

Before the arrival of the gamma photon, the TDCs are being fired with dark counts 
that follow a certain inter-avalanche time distribution. When the gamma photon triggers 
a scintillation event, light photons are emitted producing a higher avalanche rate in the 
photosensor. Consequently, the proposed filter is designed to remove the dark counts that 
accumulated in the beginning of the measurement frame before the gamma-photon arrival. 
This filter measures the distance between timestamps and discards the timestamps that are 
registered at the beginning of the frame, because after the gamma-photon arrival it is not 
possible to discriminate dark counts from actual photoelectron detections. The procedure is 
detailed as follows.

Figure 6. Condition I and II representation. In (a), the crystal pixel is attached to one 
MD-SiPM and in (b) the crystal pixel is attached to four MD-SiPMs.

(a) (b)

Algorithm 1: DCR Filter Algorithm

Input : A timestamp set TM(q) of NTDCs size.
Input :  A set of time windows ΔW ( , skipped)qN  of size 

(NTDCs − 1) ×(NTDCs − 1)
Input :  Number of required first timestamps within their corresponding time 

 windows, length
Output : A filtered timestamp set FM(q) of (NTDCs − skipped) size.
Output : Amount of TDCs that are initially triggered by dark counts, skipped

skipped = NTDCs ;
deltaT = diff(TM) ;
for sweep = 1:(NTDCs − 1) do
  current = deltaT(sweep:end);
  condition =  −W (:, sweep)N current >  0;
  if all(condition (1 : length)) then
    skipped = sweep;
    FM = TM(sweep:end) ;
    break;
   end
end
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As shown in algorithm 1, the timestamps are calculated and compared to a time window. 
If the first N timestamp differences are not inside their corresponding time windows, the first 
timestamp is discarded and the procedure is repeated by utilizing new windows that corre-
spond to the new skipping condition. The set size of the first N timestamps is defined by the 
parameter length in the algorithm 1.

Some dark counts are not discriminated because they are randomly generated inside the 
time windows. Particularly, among the first photoelectron timestamps there is more probabil-
ity to register dark counts even after filtering, because of the dark count accumulation before 
gamma-event detection. In order to account for this effect within the likelihood functions, we 
re-estimated fk(t) for several DCR levels by utilizing Monte Carlo simulations and a kernel 
density estimator based on the Epanechnikov kernel function. Figures 8(a) and (b) show the 
estimated fk(t) for condition I and II. The magnified area shows an increase of probability in 
the beginning of the PDF that depends on DCR. This effect is produced by dark counts that are 
not discriminated among the first photoelectron timestamps, as explained before.

It is to be noted that we did not take into account the statistical Poisson variations of R′ in 
equations (19) and (20). This fluctuations can potentially modify the likelihood equation sig-
nificantly if the number of photoelectrons per TDC is low. Consequently, we included this 
effect within the Monte Carlo simulation that estimates fk(t). Therefore, the likelihood func-
tions depicted in figures 8(a) and (b) do take into account the statistical variations of R′. In 

Figure 7. (a) fΔ(q, q + 1)(t) calculated for condition I and several skipping cases. (b) fΔ(q, 

q + 1)(t) calculated for condition II and several skipping cases. (c) Normalized histograms 
obtained from a Monte Carlo simulation, as compared with the calculated fΔ(q, q + 1)(t) 
from (24).
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addition, we calculated a fk(t) with a fixed value of R′ for condition I and 250 kcps DCR. This 
fk(t) is depicted with a dashed line in figure 8(a).

8. MLE and BLUE including DCR and skipping effect

After including the DCR model in the Monte Carlo code, it appears that DCR filters and 
corrections of the likelihood function are required to account for the dark counts that are not 
discriminated. The last part of this study is focused on the performance of BLUE and MLE 
under DCR and skipping effect conditions. A new set of Monte Carlo simulations was run, 
which included the skipping effect, DCR and the proposed rejection method.

Random timestamps were regenerated under condition I and II (see table 1 and figures 6(a) 
and (b)), taking into account the influences of DCR and skipping effect. The coefficients 
of BLUE were calculated utilizing a different realization of the Monte Carlo data; conse-
quently, they include the influence of DCR and skipping effect. MLE utilizes the fk(t) func-
tions depicted in figures 8(a) and (b) in order to model the DCR influence.

In addition, the likelihood function was customized for each individual gamma event, since 
the skipping effect changes depending on how many TDCs were occupied by dark counts, see 
(20) and (21). For instance, if 10 TDCs are triggered by dark counts, NTDCs must be readjusted 
to 38. The number of TDCs that are initially triggered by dark counts are detected by the DCR 
filter for each individual gamma event (see variable skipped in algorithm 1).

Figures 9(a) and (b) show the performance of several estimators for condition I and 
condition II respectively, when including DCR and skipping effect. It appears that MLE 
approximates a minimum root-MSE when increasing the size of the multiple-photoelectron  
timestamp set.

To investigate the efficiency of the estimators developed in this section, the CRLB that 
accounts for DCR and skipping effect was calculated using fk(t) that was estimated with 
Monte Carlo events. In (11) and (12), we replaced f(t) by fk(t), the corresponding CDF and 
Q by NTDCs. pq(T∣t0) was calculated performing the same replacement in (1). Furthermore, in 
pq(T∣t0) we replaced R by NTDCs. The CRLB calculated for the maximum number of available 
timestamps is depicted in figures 9(a) and (b).

Figure 8. fk(t) estimated with Monte Carlo simulations: (a) with condition I, (b) with 
condition II. The DCR is the total amount of one MD-SiPM for condition I and of 
four MD-SiPMs for condition II. In (a), fk(t) is shown, estimated with a Monte Carlo 
simulation for condition I that fixed R′ without any random samplings. The total DCR 
was 250 kcps.
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9. Discussion and conclusions

In section 3, we first analyzed the single-photoelectron estimation case. We concluded that 
with a single timestamp, the only possible unbiased estimator did not fully reach the CRLB 
under certain conditions, namely when the number of photoelectrons registered is low and the 
jitter of the complete instrumentation chain is small (see figures 1(a)–(c)). In section 5, we 
tested the MLE in the multiple timestamp estimation case and it did not fully reach the CRLB 
under similar conditions (see figure  2). Nevertheless, under conditions that are typical for 
scintillation detectors intended for fast timing applications, i.e. detectors based on fast, bright 
scintillators and photosensors with a high photodetection efficiency, it appears that the MLE 
is an efficient estimator of the time of interaction of the gamma quantum.

It was shown in section 5 that BLUE can reach the same performance as MLE in the mul-
tiple photoelectron timestamp case, under no-DCR conditions. In addition, both estimation 
methods are essentially insensitive to the energy resolution (see figure 1(b)). Furthermore, the 

Figure 9. Single detector root-MSE (ΔT) for several estimators for different DCR 
levels: (a) with condition I, (b) with contidition II. The DCR is the total amount of one 
MD-SiPM for condition I and of four MD-SiPMs for condition II.
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largest improvement in time resolution due to the use of multiple timestamps is obtained in 
systems with a high level of total jitter (see figure 3(a)).

In section 8, it was shown that a favorable performance under high-DCR conditions (see 
figures 9(a) and (b)) can be achieved by a DCR filter. Thus, DCR robustness is a particular 
advantage of the MD-SiPM. Since this architecture is more DCR-tolerant, it can be imple-
mented in a standard CMOS process instead of requiring a more expensive and less widely 
available image sensor CMOS process (Mandai and Charbon 2013).

In section 8, it was furthermore shown that the performance of BLUE and MLE are essen-
tially equal in the presence of DCR and skipping effect (with a DCR filter applied). Moreover, 
both estimators appear to be efficient (i.e. they closely approach the CRLB), when the amount 
of detected photoelectrons is high (i.e. under condition II).

However, BLUE is much simpler than MLE in terms of computing power or hardware 
implementation. BLUE requires just NTDCs multiplication and accumulation operations 
(MACs). On the other hand, MLE requires several MACs per TDC, depending on the numeri-
cal resolution of fk(tq∣T0) in addition to a maximum-value search algorithm. Hence, BLUE is 
considered the best of the different estimators tested for estimating the time of interaction of 
gamma quanta in MD-SiPM based scintillation detectors.

In conclusion, a comprehensive theoretical analysis of multiple-photoelectron time esti-
mation in MD-SiPM based scintillation detectors was performed, supported with realistic 
Monte Carlo simulations. The statistical models that are described within this work can be 
applied to any time estimation problem based on MD-SiPMs by substituting the appropriate 
function for fs(t).
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