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Abstract—Multiple time-to-digital converters coupled with sil-

icon photomultipliers allow to timestamp several light photons

generated by a scintillation event. Multichannel digital silicon

photomultipliers opened the possibility to estimate a gamma-

photon time mark by using several photoelectrons timestamps.

We studied the already-existing statistics models of pho-

toeletron time-stamping generation, while extending the current

models by adding the skipping effect. Which accounts for

the inability of the system to timestamp a continuous set of

photoelectrons.

In addition, we proposed two multiple photoelectron timemark

estimators based on the best linear unbiased and the maximum

likelihood estimation methods. We calculated the Cram

´

er Rao

lower bound for several system parameter and compared it

to the proposed estimators’ performance. We concluded that

under certain system configurations the proposed estimators are

efficient.

Moreover, we investigated the effect of the dark count rate on

the timing performance. Also, we introduced a filtering method

that is based on measuring the time distance between adjacent

timestamps. We performed a full Monte Carlo simulation to

evaluate the proposed filter efficiency.

Finally, we performed a full Monte Carlo simulation to

compare the timemark estimators’ performance. We concluded

that the best linear unbiased estimator is as efficient as the

maximum likelihood estimator. In addition, it was verified that

the multichannel digital silicon photomultipliers have a stronger

tolerance to dark counts in comparison current digital silicon

photomultiplier architectures.

I. CRAMÉR RAO LOWER BOUND

The Cramér Rao Lower Bound (CRLB) determines a maxi-
mum estimation performance for problems that satisfy certain
regularity conditions. The CRLB for the particular case of
gamma-photon timemmark estimation was analyzed by [1],
[2].

In single-photoelectron (qth) timestamp estimation there is
only one possible unbiased estimator, which is given by

T̂0 = tq �A, (1)

where tq represents the time-of-registration of the qth pho-
toelectron and A is expressed as

A = E[pq|T0=0]. (2)

The root mean square error (root-MSE) of the single-
photoelectron estimation method is equal to the square root
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Fig. 1: �q and root-CRLB (intrinsic limit) as a function of the
photoelectron order for dataset I.

of the variance of the PDF (probability density function) of
the time-of-registration of the qth photoelectron [2].

�q =
q
MSE(T̂0). (3)

The maximum timing performance in the single-
photoelectron estimation case is determined by Eq. (3). We
calculated the performance as a function of the photoelectron
order for two different system parameter configurations
(see Figs. 1 and 2) called datasets I and II. Dataset I is
characterized by 100 ps FWHM jitter and 300 photoelectrons;
dataset II by 700 ps FWHM jitter and 3800 photoelectrons.
The scintillation decay constants were the same for both cases
(LSO with properties [1]). We also calculated the CRLB
(intrinsic limit) for each data set [2], [1].

II. MAXIMUM LIKELIHOOD ESTIMATION

The likelihood function that corresponds to the t1:Q times-
tamps of the first Q photoelectrons, when estimating the
location parameter (T0) is defined by

L1:Q(t1, ..., tQ|T0) =
R!

(R�Q)!

QY

q=1

f(tq|T0) {1�F (tQ|T0)}R�Q,

(4)
where R represents the total number of detected photoelec-

trons and f(t) represents the pulse shape function convolved
with the timing response of the photosensor.

,
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Fig. 2: �q and root-CRLB (intrinsic limit) as a function of the
photoelectron order for dataset II.

This likelihood corresponds to a type II censored sample
of order statistics. The likelihood functions were calculated
numerically. We evaluated the performance of this estimator
for dataset I and II by utilizing the likelihood functions
numerically calculated and a Monte Carlo code (see Figs. 1
and 2) [2].

III. SKIPPING EFFECT AND LIKELIHOOD FUNCTION

In the MD-SiPM (multichannel digital silicon photomulti-
plier) architecture, each TDC (time-to-digital converter) shares
8 or 9 SPAD cells through an OR gate [3]; therefore, when
a TDC detects a photoelectron, it becomes unavailable for
subsequent detections and the overall detection probability de-
creases. Therefore, it is not possible to timestamp a continuous
set of photoelectrons unless the digital silicon photomultiplier
features one TDC per pixel.

If we considered a constant detection probability for every
set composed by SPAD cells and a TDC, the decrease in
detection probability can be calculated by Eq. (5). We call
this decrease in detection probability the skipping effect [2].

P (1 : Q) =
QY

i=1

(NTDCs � i+ 1)

NTDCs
(5)

Fig. 3 shows the probability of measuring a complete set
1:Q without skipping any photoelectron timestamps.

In addition, the photoelectron timestamp probability distri-
bution that includes the skipping effect can be modeled as a
two-stage order-statistics process by assuming constant detec-
tion probability [2]. Firstly, we model the time distribution
of the unsorted timestamps measured by any TDCs scaling
the amount of received photons by a group of a TDC and
eight SPAD cells. In addition, we considered that only the
first photoelectron is detected (see Eqs. 6 and 7). This time
distribution is called fk(t). In order to obtain the likelihood
function we replaced in Eq. (4) f(t) by fk(t) and R by the
total number of TDCs (NTDCs).

R0 =
R

NTDCs
, (6)
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Fig. 3: Probability of measuring a complete set 1:Q without
skipping any photoelectron timestamps.

fk(t) = R0[1� F (t)](R
0�1)f(t). (7)

IV. MLE AND BLUE DCR AND SKIPPING EFFECT

We performed a final Monte Carlo simulation and compared
the performance of two timemark estimators, which were
the best linear unbiased estimator (BLUE) and the maximum
likelihood estimator (MLE). In addition, we performed simu-
lations for several DCR levels.

The simulated LSO and its properties were according to [1].
The total jitter of the system was 180 ps. The total number of
detected photoelectrons was set to 800. We chose a relatively
low number of photoelectrons because we assumed that the
limiting factor is the total number of SPAD cells, which is
416.

Dark counts were included in this simulation. In addition,
a DCR filtering method was implemented to filter out dark
counts by measuring the time distance between adjacent
registered registered TDCs’ events (see Fig. 4). As depicted
in Fig. 4, the first three dark counts can be filtered out. Fig.
5 shows the timestamps that were detected as dark counts by
the DCR filter under several DCR conditions.

Fig 6 shows the performance of the BLUE and the MLE
under several DCR conditions [2]. As observed in the previous
figure, MLE and BLUE have almost the same performance.
However, BLUE is much simpler in terms of computing power.
Subsequently, it can be implemented in real time hardware and
achieve a favorable performance.

V. CURRENT WORK

In our lab., we have designed a small animal PET detector
module composed of 8 small chip-on-boards (see Fig 7).
Each chip-on-board contains an array of 9x18 MD-SiPMs.
The small chip-on-boards are connected onto a motherboard
that contains an FPGA for controlling the MD-SiPMs. This
detector is partially manufactured, the motherboard is currently
being assembled.

Furthermore, we designed a PCB that contains a small form-
factor FPGA to control a single chip-on-board (see Fig. 8).
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Fig. 4: DCR filter illustration.
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Fig. 5: Detected DCR counts by the DCR filter as a function
of the DCR level.
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Fig. 6: Single detector root-MSE (�T) for several estimators
for different DCR levels with contidition I.

The targeted application of this miniaturized PET detector
is endoscopic PET. This detector has been manufactured and
currently is under testing and characterization.
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Fig. 7: MD-SiPM Small Animal PET Detector Module.
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Fig. 8: MD-SiPM Endoscopic PET Detector Module.
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