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Abstract—We consider an orthogonal frequency-division multi-
plexing (OFDM) transmission scheme over wideband underwater
acoustic channels, where the propagation paths can experience
distinct Doppler effects (manifested in signal scales) and time of
arrivals (manifested in lags). We capture such an effect in this
paper with a multi-scale multi-lag (MSML) model, and show
that the resulting frequency-domain MSML-OFDM channel is
subject to inter-carrier interference (ICI), whose amount differs
per subcarrier. The corresponding channel matrix can still be
approximated as highly sparse, but lacks a specific structure that
can optimally be exploited by those low-complexity equalizers
proposed for narrowband channels. In this paper, we propose to
use the conjugate gradient (CG) algorithm to equalize the channel
iteratively. The suitability of the preconditioning technique, that
often accompanies the CG to accelerate the convergence, is
discussed for the MSML-OFDM channel. We show that in order
for the preconditioner to function properly, optimal resampling
is indispensible.

Index Terms—OFDM, wideband, multi-lag, multi-scale,
Doppler, ICI, conjugate gradient, preconditioning, resampling

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) gains

most of its popularity thanks to its ability to transform

frequency-selective channels into subcarriers without mutual

interference. This is especially attractive for channels with a

long memory. For this reason, OFDM is also considered as a

promising technique for underwater acoustic communications,

where the channel is typically lengthy due to a slow sound

speed. However, underwater acoustic channels are very sensi-

tive to Doppler resulting from motion of the vessels as well

as the waves, which imposes a huge challenge on the receiver

design.

In this paper, we will model the underwater acoustic channel

with a multi-scale multi-lag (MSML) model [1], [2]. In a

nutshell, the MSML model assumes that the transmitted signal

propagates via diverse paths, and impinges on the receiver at

different time instances with different incident angles. The

former gives rise to the multi-lag effect; the latter implies

that the radial velocity experienced from diverse paths will

be disparage. In a wideband system, which is often the case

for underwater acoustic communications, the Doppler spread

manifests itself as a dilation or compression of the transmitted

waveforms, and therefore we have to deal with a multi-

scale effect. Corresponding to an MSML channel, the discrete

channel matrix in the frequency domain will not be diagonal

as in the frequency-selective channel case, but has non-zero

entries everywhere. Moreover, it is possible that the major

channel energy is not located on the main diagonal of the

channel matrix, but shifted away depending on the channel

scales as well as the sampling rate adopted at the receiver.

Equalizing such a channel can be costly. For instance,

a least-squares (LS) equalizer requires an inversion of the

channel matrix, which incurs a complexity that is cubic in

the number of subcarriers. In a narrowband system, where a

similar situation of time-varying OFDM channel occurs, the

channel matrix is assumed to be banded to enable a low-

complexity equalizer [3]–[5]. In a wideband system, a sparse

approximation might be more suitable to simplify the channel

matrix, and accordingly, we propose to use the conjugate

gradient (CG) algorithm for equalization [6], [7], which can

benefit maximally from the channel sparsity. Compared to the

LS equalizer which inverts the channel matrix directly, CG is

an iterative approach, where the result yielded by each iteration

is constrained in the Krylov subspace. This implies that the

performance of CG can be less sensitive to the condition of

the channel matrix in contrast to the LS method. On the other

hand, the convergence rate of CG is inversely proportional

to the channel matrix condition number. This is especially

of significance if a truncated CG is to be used in practice,

which halts the algorithm after a limited number of iterations

in order to further reduce the complexity. Therefore, it is still

desired by CG that the channel matrix is well conditioned

to ensure a fast convergence. To this end, preconditioning

techniques can be invoked which enforce the eigenvalues to

cluster around 1 [8]. At the same time, we desire that the

design and implementation of the preconditioner should be

simple enough such that the overall complexity stays low.

A common practice is to restrict the preconditioner to be a

diagonal matrix such as in [9], whose diagonal entries can be

designed following the steps given in [10]. However, in the

case where the major channel energy is located on the off-

diagonals of the channel matrix, we can show that a diagonal

preconditioner will render a negative effect on the channel
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matrix spectrum by clustering the eigenvalues around 0 instead

of 1. The condition number gets consequently enlarged, which

reduces the convergence rate of CG instead of increasing it.

To ensure that the preconditioner works properly, we need

to find a way to “push” the channel energy back to the main di-

agonal. Recall that in a single-scale multi-lag (SSML) channel

case [11], [12], we can achieve a diagonal channel matrix by

using resampling at the receiver complying with the channel

scale, and apply a proper phase shift in the time domain.

For an MSML channel, we can adopt the same method by

optimizing the resampling rate such that the channel energy

on the main diagonal will be maximized. Note that optimal

resampling is also considered in [13], but uses different metrics

for optimization.

The remainder of the paper is organized as follows. In

Section II, the data model of the OFDM channel matrix is

presented and an analysis of the inter-carrier interference (ICI)

is given. CG is proposed in Section II for channel equalization

where the focus is laid on the design of a preconditioner.

We discuss optimal resampling in Section IV, and simulation

results are given in Section V.

Notation: We use upper (lower) bold face letters to denote

matrices (column vectors). (·)∗, (·)T and (·)H represent conju-

gate, transpose and complex conjugate transpose (Hermitian),

respectively. [x]p indicates the pth element of the vector x and

[X]p,q indicates the (p, q)th entry of the matrix X. diag{x} is

used to denote a diagonal matrix with x on the diagonal; ⊙
represents the Hadamard product. IN stands for the N × N
identity matrix and ek is reserved for the kth column of

IN ; 1M×N stands for an M ×N all-one matrix. Finally, we

use ‖X‖Fro and ‖X‖2 to denote the Frobenius norm and the

ℓ2−norm of the matrix X, respectively.

II. DATA MODEL

A. Input/Output Relationship

We consider an OFDM system with K subcarriers. At

the transmitter, the baseband time-domain signal s(t) can be

expressed as

s(t) =
∑

p

K−1∑

k=0

bk,pe
 2π
KT

k(t−TCP)u[t− p(KT + TCP)], (1)

where bk,p stands for the pth information symbol modulated

onto the kth subcarrier; T is the reciprocal of the signal

bandwidth and TCP denotes the length of a cyclic prefix (CP).

Hence, the OFDM symbol has a duration of KT + TCP. u(t)
is a windowing function, which is, for the sake of simplicity,

defined to be a rectangular window within [0,KT +TCP) and

zero outside the range. Without loss of generality, in the sequel

we will focus just on a single OFDM symbol case, e.g., p = 0,

and therefore omit the index p. Accordingly, s(t) can be more

concisely expressed as

s(t) =

K−1∑

k=0

bke
 2π
KT

k(t−TCP)u(t). (2)

The baseband signal is first modulated onto the carrier

frequency fc resulting in

x(t) = s(t)e2πfct, (3)

which is afterwards sent over the channel. The channel impulse

response h(t, τ), comprising the joint effects of the transmit

and receive filter as well as the actual propagation channel, is

approximated in this paper by a discrete multi-path model:

h(t, τ) ≈
L−1∑

l=0

hl(t)δ
(
τ − τl(t)

)
, (4)

where δ(t) is the Kronecker delta function; L represents the

total number of paths we consider; hl(t) stands for the time-

varying gain of the lth path, and τl(t) the time-varying delay,

which can be expressed as

τl(t) = αl(t)(τl − t), (5)

with τl being a constant corresponding to propagation delay,

and αl(t) denoting the time dilation/compression (scale) effect

due to Doppler on the lth path. Suppose that the instant

radial velocity of the transmitter corresponding to the lth
path is νl(t), and the medium speed is c with vl(t) ≪ c.

Then it follows that αl(t) ≈ 1 + 2νl(t)
c

. It is noteworthy that

Dirichlet kernele the signal waveforms impinge on the receiver

at different angles, νl 6= νl′ for l 6= l′, and therefore, the

scaling effects corresponding to different paths are distinctive.

This fact deviates from the assumption adopted in many papers

that a single scale is universally present in all the paths [11],

[12]. In this paper, we assume that both hl(t) and αl(t) are

constant during the transmission of the OFDM symbol. As a

result, the received signal in the noiseless case, denoted as

rc(t), can be expressed as

rc(t) =

L−1∑

l=0

hl

√
αlx[αl(t− τl)]. (6)

When demodulated to baseband, the CP is stripped off from

the received signal rc(t)e
−2πfct such that the resulting signal

r(t) can be expressed as

r(t) =
L−1∑

l=0

hl

√
αl

K−1∑

k=0

bke
 2π

K
k

αl(t−τl)

T e2πfc[αl(t−τl)]e−2πfct.

(7)

For a multi-scale channel, the sampling rate at the receiver

is not straightforward to determine. For the moment, let us

assume that the receiver adopts a sampling rate of T
β

with β
being a positive number between min(αl) and max(αl), and

define the signal r
(β)
n as the sample obtained at the nth time

interval equal to r(nT
β
). Accordingly, we can write

r(β)n =
L−1∑

l=0

hl

√
αl

β

K−1∑

k=0

bke
 2π

K

αl
β

kne
2π
K

k
αlτl
T e2πfc

αl−1

β
nT e−2πfcαlτl ,

=

L−1∑

l=0

g(αl−1,β)
n h

(β)
l

K−1∑

k=0

bke
 2π

K

αl
β

kne− 2π
K

kρl . (8)

655



In the above, the following definitions have been introduced

g(α,β)n := e2πfc
α
β
nT ,

ρl :=
αlτl
T

,

h
(β)
l := hl

√
αl

β
e−2πfcρlT .

If we stack these time-domain samples r
(β)
n for n =

0, · · · ,K − 1 into a vector r
(β)
T := [r

(β)
0 , · · · , r(β)K−1]

T , it will

admit the following matrix/vector expression as

r
(β)
T =

L−1∑

l=0

h
(β)
l diag{g(αl−1,β)}FH

K,
αl
β

diag{λl}b, (9)

where b and g(α,β) are similarly defined as r
(β)
T ; λl :=√

K[1, · · · , e 2π
K

(K−1)ρl ]T , and FK,α stands for the fractional

discrete Fourier transform (DFT) matrix

FK,α :=
1√
K






1 e− 2π
K

α0·1 · · · e− 2π
K

α0·(K−1)

...
...

. . .
...

1 e− 2π
K

α(K−1)·1 · · · e− 2π
K

α(K−1)·(K−1)




 .

(10)

Note that FK,α reduces to the normal DFT matrix FK when

α = 1.

Normally speaking, the channel equalization of an OFDM

system is implemented in the frequency domain. To this end,

the received signal r
(β)
T is first transformed into the frequency

domain by means of DFT yielding

r
(β)
F := FKr

(β)
T = H

(β)
F b, (11)

where

H
(β)
F :=

L−1∑

l=0

h
(β)
l FKdiag{g(αl−1,β)}FH

K,
αl
β

︸ ︷︷ ︸

H
(β)
F,l

diag{λl}. (12)

In the above, the symbol H
(β)
F,l is introduced to denote the

frequency-domain channel matrix corresponding to the lth path

resulting from a sampling rate of β at the receiver.

B. Structure of H
(β)
F

To study the structure of H
(β)
F , it is instrumental to first

focus on the structure of H
(β)
F,l whose (m, k)th entry can be

expressed as

[H
(β)
F,l ]m,k =

K−1∑

n=0

e− 2π
K

mne2πfc
αl−1

β
nT e

2π
K

αl
β

nk,

= Ke
π
K

(K−1)(m−
αl
β

k−
αl−1

β
D)×

sinc
(
π(m− αl

β
k − αl−1

β
D)

)

sinc
(
π(m− αl

β
k − αl−1

β
D)/K

) , (13)

where in the second equality D := fcTK. Obviously, in

case of time-invariant channels with αl = β = 1, we have

[HF,l]
(β)
m,k = δ(m−k), which suggests that HF,l is a diagonal

matrix. For time-varying channels with αl 6= 1, [H
(β)
F,l ]m,k

becomes a Dirichlet kernel. Most notably, the mainlobe of

this Dirichlet kernel function is not necessarily located on

the main diagonal of H
(β)
F,l , but could shift away to off-

diagonal entries. To realize this, we can derive from (13) that

|[H(β)
F,l ]m,k| = max|[H(β)

F,l ]m,k| if

mod[m− αl

β
k − αl − 1

β
D]K = 0. (14)

This suggests that a majority of the energy transmitted through

the kth subcarrier could be received on a a different subcarrier,

whose difference depends on k. We will refer to this phe-

nomenon, which is unique to wideband time-varying channels,

as subcarrier offset. Because we can only deal with integer

subcarrier indexes, to study the effect of subcarrier offset in

practice, let us introduce the following symbol

∆
(β)
k,l = ⌈mod[

αl

β
k +

αl − 1

β
D]K⌉ − k, (15)

where ⌈·⌉ denotes the ceiling operation. (15) suggests that the

ICI depends on two factors: 1) it has a fixed part determined

by αl−1
β

D, which is more often known as the normalized

Doppler shift for a narrowband time-varying channel; and 2) a

variable part αl

β
k linear to the subcarrier index k. Compared to

narrowband systems where the ICI results primarily from the

normalized Doppler shift, and is thus on average similar for all

the subcarriers, the variable part in wideband systems causes

the ICI to be more severe with an increase of the subcarrier

index k.

Because of the Dirichlet kernel, (13) also implies that the

energy leaks into subcarriers adjacent to k+∆
(β)
k,l . On the other

side, the hight and width of the main-lobe or the side-lobes in

(13) are constant and hence independent of αl, β and D. To

be more specific, the mainlobe has a peak amplitude equal to

K, and the width between the first zero-crossings around the

peak is always equal to two.

Based on the afore-mentioned observations, we summarize

the following properties regarding the structure of H
(β)
F,l .

Property 1: H
(β)
F,l is a sparse matrix with most of its sig-

nificant entries clustered around an axis. This axis lies above

the main diagonal if al

β
is larger than one, or below the main

diagonal otherwise, and it deviates farther away from the main

diagonal with an increase of the subcarrier index.

Now that the actual frequency-domain channel matrix H
(β)
F

is a weighted superposition of the matrices H
(β)
F,l from indi-

vidual paths, the following properties concerning the structure

of H
(β)
F are in order.

Property 2: It is still reasonable to approximate H
(β)
F as a

banded matrix. However, it differs from the “normal” banded

matrix in that 1) the direction of the band is not in parallel

to the main diagonal; 2) the bandwidth is not constant but

increases with the subcarrier index, implying that the band

has a trapezoidal shape.

In Fig. 1, we give a numerical example of H
(β)
F with system

parameters K = 128, D = 256, and channel parameters given

in Table I; the sampling rate is chosen to be identical to that

at the transmitter, i.e., β = 1.
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αl hl τl(ms)
l = 0 0.9866 0.7806 97.09

l = 1 0.9863 0.2869 27.50

l = 2 0.9866 0.5247 39.53

l = 3 0.9865 -0.1815 35.03

TABLE I
CHANNEL PARAMETERS USED IN FIG. 1.
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Fig. 1. An example of the frequency-domain channel matrix H
(β)
F .

III. DESIGN OF CHANNEL EQUALIZERS

A. Low-Complexity Equalization

As evident from the previous section, due to the multiple-

scale channel property, it is theoretically not possible to attain

a diagonal frequency-domain channel matrix by means of

resampling as claimed in e.g., [12]. This implies that for

channel equalization, a direct inversion of H
(β)
F will inflict

a complexity of O(K3), which is obviously not desired for a

practical system.

To facilitate a cheaper equalizer, we leverage Property 2,

and approximate H
(β)
F as a truly sparse matrix H̃

(β)

F . The

approximation can be realized in two ways:

Method 1: Suppose QB denotes a circulant banded matrix

with bandwidth 2B + 1, i.e., QB has ones on its main

diagonal, B super-diagonals and B sub-diagonals, and zeros

on the remaining entries. Then we approximate H
(β)
F by

H̃
(β)

F = QB⊙H
(β)
F where ⊙ stands for the Hadamard product,

and B is the smallest integer for which

‖H̃(β)

F −H
(β)
F ‖2Fro

‖H(β)
F ‖2Fro

≤ η, (16)

where η is a predefined percentage.

A second approach can be described as follows.

Method 2: For each row (or column) of H
(β)
F , let the entries

be sorted in an ascending order in terms of their power. Then

we obtain a new matrix H̃
(β)

F by replacing the first η% of the

entries with zero, where η is a predefined threshold.

Method 1 is adopted by many works [3]–[5], [14] for

narrowband time-varying OFDM systems, for which the cor-

responding channel matrix is characterized with a relatively

small ICI that is at the same time located in the vicinity of

the main diagonal. In that case, Method 1 renders a very tight

approximation. However, for a multi-scale multi-lag channel

matrix which is characterized by Property 2, Method 1 will

retain unnecessarily many small entries by enforcing a strictly

banded approximation on H
(β)
F . As a comparison, Method 2

focuses on the significant entries per row(column), and hence

is able to yield a much more sparse H̃
(β)

F .

The banded structure of H̃
(β)

F resulting from Method 1

makes a lot of direct inversion methods applicable that have

a complexity of O(KB2), whereas H̃
(β)

F resulting from

Method 2 often lacks a specific structure. For this reason,

an alternative is to invert H̃
(β)

F iteratively using e.g., the

conjugate gradient (CG) algorithm, which does not rely on

a specific structure of the channel matrix, and therefore a

sparse channel matrix approximation using Method 2 can

also be applied. Moreover, the data estimates yielded by CG

are always constrained in the Krylov subspace, making its

performance less susceptible to the spectral distribution of

H
(β)
F . On the other hand, a truncated CG, which halts the

algorithm after a limited number of iterations, is often desired

in practice to reduce the complexity. This requires though a

fast convergence of CG, whose convergence rate depends on

the condition number of H
(β)
F as argued in e.g., [6], [7]. We

will address this issue in the next subsection.

B. To precondition or Not?

It is well-known that the convergence of the CG can be

accelerated by applying preconditioning on H
(β)
F [8], [10].

With P denoting such a preconditioner, the I/O relationship

given in (11) in the noiseless case can be rewritten as

rF = H
(β)
F b,

= H
(β)
F PP−1b, (17)

from which an estimate of x̂ = P−1b is first obtained by ap-

plying CG on the preconditioned matrix H
(β)
F P. Afterwards,

b̂ = Px̂ is computed to obtain the final data estimates.

One of the approaches to design P is to make the matrix

after preconditioning as close as possible to the identity

matrix in an ℓ2−norm sense. This approach is preferred

for a hardware implementation by allowing for a parallel

architecture, but a cost function expressed in an ℓ2−norm is

often difficult to solve. As a relaxation, the Frobenius norm is

used, which clusters most of the eigenvalues H
(β)
F P around 1

with the exception of a few outliers [10]. Further, observing

that the design of P itself as well as the operation of H
(β)
F P

also inflicts an additional complexity, a common approach

is to impose a sparse structure on P, e.g., diagonal with

P = diag{[p0, · · · , pK−1]
T } [10]. The above arguments can

be mathematically formulated by the following optimization

problem function

arg min
p0,··· ,pK−1

‖H(β)
F diag{[p0, · · · , pK−1]

T } − IK‖2Fro, (18)
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from which we can solve each pk separately as

pk,opt = arg min
pk

‖H(β)
F ekpk − ek‖2Fro,

=
[H

(β)
F ]∗k,k

‖H(β)
F ek‖2Fro

, (19)

where ek stands for an all-zero vector except for its nth entry

which equals 1.

One problem of the preconditioner designed by (18) is that

the eigenvalues will in many cases cluster around 0 instead

of 1, with the consequence that the condition number of the

preconditioned channel matrix can considerably increase. To

realize this, let us use ǫ1 to denote the lowest upper-bound of

the residual from (19) such that

‖H(β)
F ekpk − ek‖2Fro < ǫ1, (20)

holds for k = 0, · · · ,K − 1. In [10], it is shown that the

eigenvalues of H
(β)
F diag{[p0,opt, · · · , bK−1,opt]

T }, denoted by

λk, should satisfy

K−1∑

k=0

= |1− λk|2 ≤ Kǫ21. (21)

Based on the above, it is shown in [10] that all λk’s lie inside a

disk of
√
Kǫ1 centered around 1. On the other hand, following

similar steps as in [10], let us use ǫ0 to denote the lowest

upper-bound of the residual ‖H(β)
F ekpk‖2Fro such that

‖H(β)
F ekpk,opt‖2Fro < ǫ0 (22)

holds for k = 0, · · · ,K − 1. Further, let UWUH be a Schur

decomposition of H
(β)
F diag{[p0,opt, · · · , bK−1,opt]

T } such that

UUH = I, and the diagonal of W equals [λ0, · · · , λK−1]
T .

Then

K−1∑

k=0

|λk|2 = ‖diag{W}‖22 ≤ ‖W‖2Fro

= ‖H(β)
F diag{[p0,opt, · · · , bK−1,opt]

T }‖2Fro ≤ Kǫ20,

which implies that all λk’s at the same time lie inside a disk

of radius
√
Kǫ0 centered around 0. Obviously, if ǫ0 < ǫ1, then

minimizing ‖H(β)
F P− IK‖2Fro will at the same time minimize

the Frobenius norm of H
(β)
F P itself, making the eigenvalues

more clustered around 0 rather than 1. With pk,opt obtained

from (19), we can show that

ǫ1 = max
k

|∑K−1
m=k[H

(β)
F ]m,k|2 − |[H(β)

F ]k,k|2
∑K−1

m=0 |[H
(β)
F ]m,k|2

, (23)

and

ǫ0 = max
k

|[H(β)
F ]k,k|2

∑K−1
m=0 |[H

(β)
F ]m,k|2

. (24)

Obviously, if

|[H(β)
F ]k,k|2 <

K−1∑

m=0,m 6=k

|[H(β)
F ]m,k|2, (25)

holds for k = 0, · · · ,K − 1, then a diagonal preconditioner

will cluster the eigenvalues in a “wrong” area. Note that (25)

arises when the sum of the off-diagonal power in each column

is higher than the power on the diagonal. Such a situation could

occur in multi-scale channels since significant channel power

could be located on off-diagonal entries as we argued in the

previous section where an example of such a channel matrix is

given in Fig. 1. In the left plot of Fig. 2, the eigenvalues of this

channel matrix with and without preconditioning are displayed

on a complex plane, where one can see that preconditioning

indeed clustesr the eigenvalues around 0. In the right plot of

Fig. 2, we show the convergence of CG which is evaluated in

terms of the mean squared error (MSE) computed as

MSE =
‖b̂[n] − b‖2

‖b‖2 , (26)

with b̂[n] standing for the data estimation of b yielded during

the nth iteration.
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Fig. 2. Left plot: eigenvalues with and without preconditioning; right plot:
convergence performance with and without preconditioning.

To enforce the eigenvalues to cluster in the “right” area,

a more complex structured preconditioner is indispensable,

which is, however, not desired due to complexity and im-

plementation considerations. In light of this, we understand

that CG without preconditioning can sometimes yield a better

performance than with preconditioning, as opposed to what is

claimed in [10].

IV. RESAMPLING AND DOPPLER COMPENSATION

The derivations in Section II leave the sampling rate β
open for choice. Recall that resampling (β 6= 1) is a stan-

dard step taken in many underwater communication works to

compensate for the Doppler effect, when a single-scale channel

model is assumed. The objective of resampling is then to make

the scaled channel after resampling as close as possible to a

time-invariant channel, with the residual Doppler effect being

modeled as a carrier frequency offset (CFO). The advantage of

resampling is that after CFO correction, the frequency-domain

channel matrix is approximately diagonal and a simple one-

step equalizer, typical to OFDM, is still viable. In contrast to

a single-scale channel assumption, resampling a multi-scale

channel is less straightforward as argued in [13].

In this paper, we will study resampling from a slightly

different point of view. Note that resampling itself does not

inflict any information loss as long as the Nyquist criterion is
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satisfied. Focusing on the significant entries of the frequency-

domain channel matrix, whether or not this matrix is diagonal

is in principle not crucial for the equalizers discussed in this

paper. However, it is still beneficial to find a resampling

factor β, such that we can attain a new channel matrix,

denoted by HF, opt, for which the channel energy is as much as

possible concentrated on the main diagonal for the following

two reasons: 1) the analysis from the previous section learns

that in order for the diagonal preconditioner to be effective,

the diagonal power needs to be larger than the sum of the

power on the off-diagonal elements [c.f. (25)]; 2) it is well-

known from the Geršgorin Theorem [15] that the eigenvalues

of HF, opt lie in the union of the Geršgorin discs, which

are circles in the complex plane centered at |[HF, opt]k,k| for

k = 0, · · · ,K − 1, with a radius of
∑m=K−1

m=0,m 6=k |[HF, opt]m,k|.
Optimal resampling implies that these Geršgorin discs will

be maximally compressed and located farthest away from 0.

Note that a lower condition number can already enhance the

convergence rate of CG without preconditioning.

Because it is difficult to maximize the diagonal power of

HF, opt for each diagonal entry individually, as a relaxation,

we desire that the function f(HF, opt) defined as

f(HF, opt) =

∑K−1
k=0 |[HF, opt]k,k|2

∑K−1
k=0

∑K−1
m=0,m6=k |[HF, opt]m,k|2

, (27)

should yield a maximum. To this end, let us first introduce the

time-domain channel matrix resulting from a resampling rate

of β as [ c.f. (9) ]

H
(β)
T :=

L−1∑

l=0

h
(β)
l diag{g(αl−1,β)}FH

K,
αl
β

diag{λl}, (28)

and consider the matrix HF, opt = FKdiag{g(γ−1,β)H}H(β)
T

with β and γ denoting the parameters that is obtained by

solving the following optimization problem

{βopt, γopt} = arg max
β,γ

f(FKdiag{g(γ−1,β)H}H(β)
T ). (29)

The necessity of diag{g(γ−1,β)H} is due to the fact that

resampling alone is not able to maximize the diagonal energy.

Even in the simplest case of a single-scale model where

α0 = · · · = αL−1 = α, after resampling, the most energy will

be located on one of the sub-diagonals (or super-diagonals)

of the resulting channel matrix, which is commonly known

as the CFO. It is diag{g(γ,β)} that compensates for this CFO

and shifts all the energy to the main diagonal. Obviously, in

this single-scale case, both the optimal values of β and γ are

both equal to α.

Because the Frobenius norm of H
(β)
T , which equals

∑K−1
k=0

∑K−1
m=0 |[HF, opt]m,k| is almost constant for different

β’s, we are allowed to simplify (29) as

arg max
β,γ

K−1∑

k=0

|[FKdiag{g(γ,β)}H(β)
T ]k,k|2

⇔arg max
β,γ

1

β

K−1∑

k=0

|
L−1∑

l=0

cl
e

2π
K

(k−
αl
β

k−
αl+γ

β
D)K − 1

e
2π
K

(k−
αl
β

k−
αl+γ

β
D) − 1

|2, (30)

with cl :=
√
αlhle

−2π(fcT− k
K

)ρl . A closed-form solution to

the above cost function is challenging. Note that for underwa-

ter acoustic channels with a realistic vessel velocity, the typical

range of scale is between 0.98 and 1.02. For this reason, we

can assume that the value of β and γ should lie within this

range. Furthermore, if we agree on a solution resolution of

10−3, then (30) can be solved by virtue of a 2-D exhaustive

search for all possible values of β and γ.

As an example, we show in Fig. 3 the result of eval-

uating (30) upon β = {0.98, 0.981, · · · , 1.02} and γ =
{0.98, 0.981, · · · , 1.02}, for the channel whose parameters

are given in Table I. It shows that with βopt = 0.985 and

γopt = 0.998, we have f(HF, opt) ≈ 2.17. The intensity of

HF, opt is plotted in Fig. 4. In comparison, if no resampling

is adopted, and the receiver uses the same sampling rate as

the transmitter β = 1 (and γ = 1), then the corresponding

channel matrix H
(1)
F , whose intensity is plotted in Fig. 1,

will have f(H
(1)
F ) ≈ 0.002. Note also that the condition

number of HF, opt is around 8.84, while the condition number

of H
(1)
F is around 1960! In the left plot of Fig. 5, we show

that after optimal resampling, the eigenvalues resulting from

preconditioning are indeed clustered around 1, which results

in a faster convergence as shown in the right plot of Fig. 5.
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Fig. 3. Evaluation of (30) for a range of β’s and γ’s.

As mentioned earlier, optimal resampling for multi-scale

multi-lag channels is also discussed in [13], but a slightly

different criterion is applied in [13]. For the discrete data

model in particular, [13] aims to find a virtual single-scale

multi-lag channel that is closest (in the ℓ2−norm sense) to the

original discrete channel, which is obtained using the same

sampling rate at the receiver as at the transmitter. The virtual

single-scale multi-lag channel is assumed in [13] to have the
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Fig. 4. Optimally resampled HF, opt.
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Fig. 5. Left plot: eigenvalues with and without preconditioning; right plot:
convergence performance with and without preconditioning. Channel matrix
is obtained after optimal resampling.

same path gain and delay as the original channel, but a single

scale β. As a result, the optimization cost function, after some

algebra, can be equivalently formulated as

arg min
β

‖H(1)
T −

L−1∑

l=0

h
(1)
l diag{g(β,1)}FH

K,βdiag{λl}‖22. (31)

In Fig. 6, we show the evaluation of (31) upon β =
{0.98, 0.981, · · · , 1.02}, where it can be seen that due to a

different design criterion, the corresponding optimal resam-

pling rate is β̃opt = 0.987; If the receiver adopts such a

sampling rate, the resulting channel matrix H
(β̃opt)
F will have

f(H
(β̃opt)
F ) = 2.10, which is thus slightly smaller than that of

HF, opt. This is not surprising since H
(β̃opt)
F can be expressed

as FKdiag{g(γ̃opt,β̃opt)}H(β̃opt)
T , with γ̃opt = 1, which is thus

suboptimal in terms of f(·).
V. SIMULATIONS AND DISCUSSION

We compare the performance of CG with and without

preconditioning under the impact of optimal resampling with

bit error rate (BER) versus signal-to-noise ratio (SNR) as the

performance metric. Here, SNR is defined as the ratio between

the received signal strength and the noise. To reduce the

complexity, we use a sparse approximation of the real channel

matrix for all the equalizers, which is obtained following

Method 2 where η = 90% of the entries in each row is

discarded. In addition, we halt CG after 5 iterations.

OFDM with K = 128 subcarriers is considered. Onto

each subcarrier, a QPSK symbols is modulated. The OFDM

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025
100

150

200

250

300

350

400

β

β̃opt = 0.987

Fig. 6. Evaluation of (30) for a range of β’s.

Case 1 Case 2 Case 3

ν[knots] 1 20 20

B 8× 10−4 8× 10−4 1× 10−2

TABLE II
CHOICE OF PATH SCALES

symbols are transmitted at a center frequency of fc = 10 kHz

with a bandwidth of 5 kHz. The MSML channel is assumed

to have L = 4 paths with a power profile of [0,−3,−5,−7]
dB. The path delay is chosen as a random variable that has a

uniform distribution within the range [10, 150] ms. Likewise,

the path scale is chosen as a random variable that has a uniform

distribution within the range [M − B/2,M + B/2], where

M is related to the vessel velocity ν as M = 1 + 2ν
c

with

c = 1500m/s standing for the sound speed in water, and B
gives the size of the range. We differentiate between three

multi-scale cases as summarized in Table II.
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Fig. 7. BER performance of Case 1

The BER performance resulting from Case 1 is plotted in

Fig. 7 where one can observe that in case of no optimal re-

sampling, CG with preconditioning performs even worse than

without preconditioning. When optimal resampling is applied,
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which maximizes the channel energy on the main diagonal,

the channel matrix condition is expected to be reduced. As a

result, all the equalizers yield a better performance, and CG

with preconditioning outperforms CG without preconditioning.
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Fig. 8. BER performance of Case 2

The BER performance resulting from Case 2 is plotted in

Fig. 8. In this case, because of a higher vessel velocity, the

channel energy will be “pushed” farther away from the main

diagonal, thus the condition number gets even worse. As a

result, only CG without preconditioning can work properly.

This situation is greatly improved when optimal resampling is

employed.
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Fig. 9. BER performance of Case 3

The BER performance resulting from Case 3 is plotted

in Fig. 8. When no optimal resampling is applied, a similar

situation as for Case 2 can be observed as a result of a high

vessel velocity. What is different in this case is that the scale

discrepancy of each path, represented by the parameter B is

much larger than in Case 2, which implies that it will be more

difficult to enforce the channel energy to concentrate on the

main diagonal. As a result, we observe that the performance

lead of CG with preconditioning after optimal resampling

becomes less pronounced in this case.

VI. CONCLUSION

In this paper, we gave a brief ICI analysis on the OFDM

channel matrix resulting from a multi-scale multi-lag (MSML)

channel model. It has been shown that with a realistic Doppler

scenario, it is still reasonable to approximate the channel ma-

trix as highly sparse such that a low-complexity equalization

is applicable. We have considered the conjugate gradient (CG)

algorithm, and argued that CG with a diagonal preconditioner,

which is commonly used to accelerate the convergence speed

of CG, does not necessarily lead to a performance improve-

ment with respect to CG without preconditioning. This is due

to the fact that the major channel energy can deviate from the

main diagonal of the channel matrix in the MSML model,

and the resulting diagonal preconditioner will enlarge the

channel matrix condition making CG converge more slowly.

To alleviate this problem, we have proposed to use optimal

resampling to ensure that the channel energy on the main

diagonal of the channel matrix is maximized.
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