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Joint Maximum Likelihood Estimation of
Microphone Array Parameters for a Reverberant

Single Source Scenario
Changheng Li, Jorge Martinez and Richard C. Hendriks

Abstract—Estimation of the acoustic-scene related parameters
such as relative transfer functions (RTFs) from source to mi-
crophones, source power spectral densities (PSDs) and PSDs of
the late reverberation is essential and also challenging. Existing
maximum likelihood estimators typically consider only subsets
of these parameters and use each time frame separately. In this
paper we explicitly focus on the single source scenario and first
propose a joint maximum likelihood estimator (MLE) to estimate
all parameters jointly using a single time frame. Since the RTFs
are typically invariant for a number of consecutive time frames
we also propose a joint maximum likelihood estimator (MLE)
using multiple time frames which has similar estimation per-
formance compared to a recently proposed reference algorithm
called simultaneously confirmatory factor analysis (SCFA), but
at a much lower complexity. Moreover, we present experimental
results which demonstrate that the estimation accuracy, together
with the performance of noise reduction, speech quality and
speech intelligibility, of our proposed joint MLE outperform those
of existing MLE based approaches that use only a single time
frame.

Index Terms—Maximum likelihood estimation, dereverbera-
tion, microphone array signal processing, RTF estimation, PSD
estimation.

I. INTRODUCTION

Microphone array signal processing has ubiquitous appli-
cations like source dereverberation [1]–[4], noise reduction
[5]–[8], source separation [9]–[11] and source localization
[12]. These applications heavily depend on acoustic-scene
related parameters such as relative transfer functions (RTFs),
power spectral densities (PSDs) of the source, PSDs of the
late reverberation and PSDs of the microphone self noise.
These parameters are typically unknown in practical scenar-
ios. Therefore, estimation of these parameters is an essential
problem for microphone array signal processing applications.

As speech sources are typically non-stationary, their PSD
changes over time. Moreover, the source might be moving,
resulting in changes in the RTF as well. The estimation of the
RTF and the PSDs of the source and the late reverberation
is therefore rather challenging, especially when considering
to estimate them simultaneously at low complexity. To get a
full understanding of the problem, we constrain ourselves in
this paper to the single source reverberant scenario and focus
on the joint estimation of the source’s RTF, PSD of the early
reflections and the PSD of the late reverberation. In future
work, we will extend this towards the multi-source scenario.
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There are many existing methods that consider maximum
likelihood estimation of these parameters [1], [13]–[16]. How-
ever, most of these methods do not estimate the parameters
in a joint manner. In [1], [13], the RTFs are assumed to be
known and the MLE for the PSDs of the source and the
late reverberation is proposed. In [2], the estimate of the late
reverberation is obtained without estimating the RTFs or the
PSDs of the source. In [14], the RTFs are estimated given
that the PSDs of the late reverberation are assumed to be
known or have been estimated. In [15], by assuming the late
reverberation is stationary, the expectation maximization (EM)
method [17] was used to estimate the RTFs and the PSD of
the source. However, in practice, the late reverberation is non-
stationary and the PSDs of the late reverberation can change
from time-frame to time-frame, which limits the scenarios to
which the method in [15] can be applied.

Apart from the fact that most reference methods only
estimate a subset of these parameters, all these methods, i.e.,
[1], [13]–[16], use each time frame separately. However, in
most practical scenes, the RTFs change slower than the PSDs
of the source and the late reverberation, and can be assumed
invariant for a number of consecutive time frames. Therefore,
better estimates of these parameters can be obtained by using
the time frames that share the same RTFs jointly. A recently
proposed method referred to as the simultaneous confirmatory
factor analysis (SCFA) method considers the joint estimation
of these parameters using multiple time frames [18] and has
a much better estimation performance compared to methods
using each time frame separately. However, since the problem
formulated in [18] is non-convex, this method suffers from a
rather high computational cost, which makes it difficult to be
applied when dealing with practical problems.

To estimate all the aforementioned parameters of interest
jointly and accurately with low computational complexity, we
first propose a joint maximum likelihood estimator (MLE)
using a single time frame. This has a closed form solution
and can be solved efficiently. Note that recently the joint MLE
using a single time frame is also proposed in [16], but we
provide an alternative proof. More importantly, we propose an
extension, which is a joint MLE using multiple time frames.
This extension uses the rough estimates obtained by the MLE
for a single time frame as initialisation and estimates all the
parameters in an iterative manner. Since the computational
cost for each step in the proposed method mainly comes from
an eigenvalue decomposition, it has similar computational
complexity as the MLE approach for a single time frame.
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Experimental results demonstrate that our proposed MLE
for multiple time frames has similar estimation performance
compared to the recently proposed SCFA method from [18],
but, at a much lower computational complexity. Moreover,
both the proposed and SCFA method outperform two other
reference methods that consist of combining several existing
state-of-the-art methods.

In the current work we thus focus on the single source
scenario. In our recent work published in [19], we proposed a
method that can jointly estimate the RTFs as well as the source
PSDs for multiple simultaneously present sources using multi-
ple time frames. The method proposed in [19] also has a much
lower computational complexity compared to SCFA, while
maintaining similar estimation performance. However, in [19],
a non-reverberant environment is assumed. In the current work
we therefore also consider the late reverberation components
constrained to the single source scenario. In future work, we
will consider the joint estimation of these parameters for a
combination of the two scenarios (i.e., multiple simultaneously
present sources in a reverberant environment).

The remaining parts of the paper are structured as follows.
We present the notation, the signal model and the main goal
of this paper in Section II. In Section III, we propose the joint
maximum likelihood estimator using a single time frame in
Section III-A and using multiple time frames in Section III-B.
In Section IV, we first introduce some reference methods and
compare them to our proposed joint MLE in different acoustic
scenarios. In the last section, Section V, conclusions will be
drawn.

II. PRELIMINARIES

A. Notation

In this paper, we denote scalars using lower-case letters,
vectors using bold-face lower-case letters and matrices using
bold-face upper-case letters (in some cases with subscripts
using bold-face lower-case letters, e.g. Py). Matrix notation
with subscripts using two lower-case letters (e.g. Pyi,j) de-
notes the element of the matrix. ℜ (·) and ℑ (·) represents the
real part and the imaginary part of a complex-valued variable,
respectively. Further, E (·) denotes the expected value of a
random variable, tr (·) denotes the trace of a matrix, and if
not further specified, |·| denotes the determinant of a matrix.
Finally, diag [a1, · · · , aM ] denotes a diagonal matrix with
diagonal elements a1, · · · , aM and ∥·∥2 denotes the Frobenius
norm of a matrix.

B. Signal model

We consider a single acoustic point source observed by a mi-
crophone array consisting of M microphones with an arbitrary
geometric structure in a reverberant and noisy environment.
Decomposing the signal into its direct component with its early
reflections, and the late reverberant components, we can write
the signal received at the mth microphone in the short-time
Fourier transform (STFT) domain as

ym (i, k) = em (i, k) + lm (i, k) + vm (i, k), (1)

where i is the time-frame index and k is the frequency bin
index, em (i, k) is the sum of the direct components and the
early reflections, lm (i, k) is the sum of all late reflections and
vm (i, k) is the microphone self-noise. The direct components
and early reflections are beneficial for speech intelligibil-
ity [20]. The combination of these components, denoted by
em (i, k) in Eq. (1), forms our target signal. In this work, we
differentiate between time segments (indexed by β) and time
frames (indexed by i). Each time segment consists of N time
frames, i.e., for each β, i = (β − 1)N + 1, · · · , βN . The
target signal at the mth microphone is given by

em (i, k) = am (β, k) s (i, k), (2)

where am (β, k) is the relative transfer function (RTF) for
source s from the reference location to the mth microphone
in time segment β and s is the target source including direct
and early reflections at the reference microphone. Note that,
for ease of analyzing, we use the multiplicative transfer func-
tion (MTF) approximation instead of the convolutive transfer
function (CTF) approximation in Eq. (2). CTF can be more
accurate than MTF but has a more complicated signal model
[21], [22]. We assume that the RTFs are constant during
a time segment (thus during multiple time frames that fall
in one segment) and a1 = 1, which means that the first
microphone is selected as the reference microphone. Stacking
the M microphone STFT coefficients into a column vector,
we have

y (i, k) = a (β, k) s (i, k) + l (i, k) + v (i, k) ∈ CM×1. (3)

C. Cross Power Spectral Density Matrices

We assume the STFT coefficients of the microphone signal
have a circularly-symmetric complex Gaussian distribution1,
i.e.: y (i, k) ∼ NC (0,Py (i, k)), where Py (i, k) is the noisy
cross power spectral density (CPSD) matrix, expressing the
covariance across microphones. Assuming that all components
in Eq. (3) are mutually uncorrelated, we have

Py (i, k) = Pe (i, k) +Pl (i, k) +Pv (i, k) ∈ CM×M , (4)

where Pe is given by

Pe (i, k) = p (i, k)a (β, k)aH (β, k) , (5)

and where p (i, k)= E
[
|s (i, k)|2

]
is the power spectral den-

sity (PSD) of the source at the reference microphone with |·|
the absolute value. Note that although the mutual uncorrelation
assumption is commonly used, these components are not
perfectly uncorrelated in practice.

The CPSD matrix of the late reverberation component is
commonly modelled as [1], [27]

Pl (i, k) = γ (i, k)Γ (k) , (6)

where the time-varying coefficient γ (i, k) is the PSD of the
late reverberation and the time-invariant matrix Γ (k) is the

1Although a super-Gaussian distribution can better model the coefficients
[23]–[25], the estimators based on it are much more cumbersome than that
based on the Gaussian distribution [26] and hence are not considered in this
paper.
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Figure 1: Time segment (TS), time frames (TF) and sub frames
(SF).

spatial coherence matrix of the late reverberation. Γ (k) is
assumed to be non-singular and known in this paper. Several
methods have been proposed to measure Γ (k) by using pre-
calculated room impulse responses [28] or by using knowledge
on the microphone array geometry [29], [30]. We use the latter
one and model the coherence matrix as a spherically isotropic
noise field [31]

Γ (k) = sinc
(
2πfsk

K

di,j
c

)
, (7)

where sinc (x) = sin x
x , di,j is the inter-distance between

microphones i and j, fs is the sampling frequency, c denotes
the speed of sound and K is the number of frequency bins.

Lastly, the microphone self-noise component is assumed to
have slow varying statistics and its CPSD matrix Pv (i, k)
can be modelled as a time-invariant diagonal matrix with
its M diagonal elements being the PSD of the self noise
corresponding to the M microphones

Pv (k) = diag [n1 (k) , · · · , nM (k)] . (8)

Due to its time-invariant property, a voice activity detector
(VAD) can be used to detect the noise-only segments of the
signal such that the covariance matrix of the noise can be
estimated [32]. Moreover, the power of the microphone self-
noise is usually very small compared to the other components.
Therefore, we assume in this paper that Pv (k) is neglectable
or can be subtracted from the noisy covariance matrix.

D. Problem Formulation

Based on the assumptions made in the previous subsection
and Eqs. (5) and (6), we can rewrite the noisy CPSD matrix
for each time frame i as

Py (i, k) = p (i, k)a (β, k)aH (β, k) + γ (i, k)Γ (k) . (9)

Each time frame i consists of Tsf overlapping sub frames
indexed by ts, each with equal length Ns. For a visual
interpretation of time segments, frames and sub frames see

Figure 1. Assuming the noisy signal is stationary within a
time frame, we can estimate the CPSD matrix per time frame
i based on a sampled covariance matrix using the sub-time
frames, that is,

P̂y (i, k) =
1

Tsf

Tsf∑
ts=1

y (ts, k)y(ts, k)
H
, (10)

where y (ts, k) denotes the STFT coefficients vector and the
FFT length is selected as 2⌈log2 Ns⌉, where ⌈·⌉ denotes taking
the next highest integer. Note that each time frame contains
multiple sub-time frames as illustrated in Figure 1 and these
sub-time frames are used to estimate the covariance matrix of
a single time frame. Notice that across the time frames of one
time segment, the RTF vector is assumed to be constant and
the PSDs of the source and late reverberation power γ (i, k)
are assumed to be time-variant.

Accurate estimation of the parameters from the signal model
in Eq. (9) is very important for speech enhancement and
intelligibility improvement algorithms. However, this is also
very challenging when the source is only stationary for a
short time and microphone and source positions are time
varying. The main goal of this paper therefore is to estimate
the RTF vector, the PSD of the source and the PSD of the
late reverberation simultaneously using N estimated CPSD
matrices P̂y (i, k) for i = 1, · · · , N , while the source is only
stationary within a time frame and the RTF changes from
segment to segment. Since we process the signal for each
frequency bin independently, we omit the frequency bin index
k in the following sections for notational convenience.

III. JOINT MLE

In this work, we present a novel maximum likelihood
estimator (MLE) to jointly estimate the parameters from the
signal model in Eq. (9). Note that MLEs have been proposed
before in this context [1], [13], [15], but typically they assume
that the RTF vector a is known and only determine the MLEs
of p (i) and γ (i) for each time frame i separately. We will first
in Section III-A propose the joint MLE estimator of p (i),a
and γ (i) using the estimated noisy CPSD matrix for a single
time frame. Since the CPSD matrices for multiple time frames
in a single time segment share the same RTF vector, we can
use these matrices jointly to obtain a better estimate of a.
Therefore, we will also propose in Section III-B the joint MLE
estimator of p (i),a and γ (i) using the CPSD matrices for
multiple time frames.

A. Joint MLE for a single time frame

Assuming that the Tsf sub-time frames in a single
time frame i per frequency band k are independent and
identically distributed (i.i.d.), we can write the joint PDF
f (y (1, k) , · · · ,y (Tsf , k)) as

f (y (1, k) , · · · ,y (Tsf , k)) =

exp
[
−tr

(
P̂yP

−1
y

)]
πM |Py|

Tsf

,

(11)
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where P̂y is given in Eq. (10) and Py in Eq. (9). The negative
log-likelihood function with respect to (w.r.t.) p,a and γ is
given by

−L (p,a, γ) = Tsf

[
log |Py|+ tr

(
P̂yP

−1
y

)]
, (12)

where the additive constant term TsfM log π has been omitted
as it is irrelevant for the parameters of interest. The MLEs
of p,a and γ are given by minimizing the cost function in
Eq. (12), i.e.,

argmin
p,a,γ

log |Py|+ tr
(
P̂yP

−1
y

)
. (13)

To solve this problem, we reparameterize the signal model
in Eq. (9) as

Py = paaH + γΓ

= L
(
pL−1aaHL−H + γI

)
LH

= L
(
p̃ããH + γI

)
LH ,

(14)

where L is the Cholesky factor of Γ (i.e. Γ = LLH),
ã = L−1a√

aHΓ−1a
and p̃ = paHΓ−1a. Therefore, the optimization

problem in Eq. (13) can be cast as

argmin
p̃,ã,γ

log |Py|+ tr
(
P̂yP

−1
y

)
. (15)

By using this reparameterization, we can make the estimation
of ã independent of the estimation of p̃ and γ. Therefore, the
joint estimation of these parameters can be decomposed into
two simpler estimation steps, as we will show below.

The first term in Eq. (15) can be rewritten as

log |Py| = log
∣∣L (

p̃ããH + γI
)
LH

∣∣
= log

(
|L|

(
p̃ãH ã+ γ

)
γM−1

∣∣LH
∣∣)

= log (|Γ|) + log (p̃+ γ) + (M − 1) log (γ) ,

(16)

where we have used the fact that ãH ã = 1. The second term
in Eq. (15) can be rewritten as

tr
(
P̂yP

−1
y

)
= tr

(
P̂y

[
L
(
p̃ããH + γI

)
LH

]−1
)

= tr
(
P̂w

(
p̃ããH + γI

)−1
)

= tr

(
P̂w

(
γ−1I− γ−2p̃ããH

1 + γ−1p̃ãH ã

))
= tr

(
γ−1P̂w

)
− tr

(
γ−2p̃

1 + γ−1p̃
P̂wããH

)
= tr

(
γ−1P̂w

)
− γ−2p̃

1 + γ−1p̃
ãHP̂wã,

(17)

where P̂w = L−1P̂yL
−H and the Sherman–Morrison for-

mula [33] is used to calculate
(
p̃ããH + γI

)−1
.

Substituting Eq. (16) and Eq. (17) in Eq. (15) and omitting
the constant irrelevant term log (|Γ|), the cost function from
Eq. (13) can eventually thus be expressed in the following
useful form,

argmin
p̃,ã,γ

log (p̃+ γ)
(
γM−1

)
+ tr

(
γ−1P̂w

)
− γ−2p̃

1 + γ−1p̃
ãHP̂wã.

(18)

Since only the last term in Eq. (18) depends on ã and
γ−2p̃

1+γ−1p̃ > 0, the estimate of ã can be obtained by solving

argmax
ã

ãHP̂wã. (19)

The solution of Eq. (19) is known as the principal eigenvector
of P̂w and the optimum value of ãHP̂wã is the principal
eigenvalue λmax of P̂w.

Substituting the optimal ã from Eq. (19) in Eq. (18), we
can find the estimates of p̃ and γ by solving

argmin
p̃,γ

f = log
[
(p̃+ γ) γM−1

]
+ tr

(
γ−1P̂w

)
− γ−2p̃

1 + γ−1p̃
λmax.

(20)

Taking the partial derivatives of the cost function in Eq. (20)
w.r.t. p̃ and γ and setting them equal to zero, respectively, we
obtain

∂f

∂γ
=

1

p̃+ γ
+

M − 1

γ
−

tr
(
L−1P̂yL

−H
)

γ2

+
p̃ (2γ + p̃)

(γ2 + γp̃)
2λmax = 0

(21)

and
∂f

∂p̃
=

1

p̃+ γ
− λmax

(γ + p̃)
2 = 0. (22)

Solving Eq. (21) and Eq. (22) for p̃ and γ, we obtain

ˆ̃p =
Mλmax − tr

(
P̂w

)
M − 1

, (23)

γ̂ =
tr
(
P̂w

)
− λmax

M − 1
. (24)

To show that
(
ˆ̃p, γ̂

)
is the minimum point of function f , we

derive its second order derivatives

∂2f

∂γ2
=− 1

(p̃+ γ)
2 − M − 1

γ2
+

2tr
(
P̂w

)
γ3

+
2λmax

(
−3γ2p̃− 3γp̃2 − p̃3

)
γ3(γ + p̃)

3 ,

(25)

∂2f

∂γ∂p̃
= − 1

(p̃+ γ)
2 +

2λmax

(γ + p̃)
3 , (26)

∂2f

∂p̃2
= − 1

(p̃+ γ)
2 +

2λmax

(γ + p̃)
3 . (27)

At point
(
ˆ̃p, γ̂

)
, we have

∂2f

∂γ2

∣∣∣∣
γ=γ̂

=
(M − 1)

3(
tr
(
P̂w

)
− λmax

)2 +
1

(λmax)
2 > 0, (28)

∂2f

∂p̃2

∣∣∣∣
p̃=ˆ̃p

=
1

(λmax)
2 > 0, (29)
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∂2f

∂γ2

∂2f

∂p̃2
−

(
∂2f

∂γ∂p̃

)2
∣∣∣∣∣ γ= γ̂

p̃ = ˆ̃p

=
(M − 1)3/(λmax)

2(
tr
(
P̂w

)
− λmax

)2 > 0.

(30)
Furthermore, we can show that ˆ̃p, γ̂ are both positive such that
they can be used as the estimates of p̃ and γ. Since P̂w is a

positive definite matrix, we have
tr(P̂w)

M < λmax < tr
(
P̂w

)
.

Hence from Eqs. (23) and (24) it follows that ˆ̃p > 0 and
γ̂ > 0. Note that this examination of the Hessian matrix and
ˆ̃p, γ̂ being positive is absent in [16].

Finally, we obtain the optimal estimates of p and a using
the estimated ˆ̃p and ˆ̃a by setting

â = No
(
Lˆ̃a

)
(31)

and

p̂ =
ˆ̃p

âHΓ−1â
, (32)

where No (x) means taking normalization w.r.t. the first ele-
ment of x.

As mentioned in [16], the estimation of a is consistent
with the covariance whitening method [5], [14], while we
provided an alternative proof that this estimate equals the MLE
of a. More specifically, the proof in [16] with respect to the
estimation of the PSDs does not include the examination of the
Hessian matrix and the estimates of the PSDs being positive.
This examination of the Hessian matrix being positive definite
is necessary, since setting the partial derivative to zero does
not give us the optimal estimate when the Hessian matrix is
not positive definite. Also, the examination of estimates of
the PSDs being positive is necessary, since the PSDs should
always be positive. Moreover, The proof in [16] is based on the
proportion of the likelihood function, which makes it difficult
to analyze the cost function for multiple time frames. While, in
this work, our proof is based on the likelihood function itself
and the extension to multiple time frames is straightforward.

B. Joint MLE for multiple time frames

In the previous subsection we considered the joint MLE for
p, γ and a given a single time frame. As a is assumed to stay
fixed across multiple frames in a segment, we consider in this
subsection the joint ML optimal estimates of p (i), γ (i) for
i = 1, · · · , N and a using all time-frames in a segment.

Assuming that the N time frames are independent, we
can write the negative log likelihood function of the STFT
coefficients as

L = −
N∑
i=1

Tsf

[
log |Py (i)|+ tr

(
P̂y (i)P

−1
y (i)

)]
, (33)

where non-essential constant terms have been omitted. The
joint MLEs for p (i), γ (i)∀i = 1, · · · , N and a are the
solution to the optimization problem

argmin
p(i),a,γ(i)

N∑
i=1

log |Py (i)|+ tr
(
P̂y (i)P

−1
y (i)

)
. (34)

By reparameterizing the signal model in a similar way as in
the previous subsection, i.e., using ã = L−1a√

aHΓ−1a
and p̃ =

paHΓ−1a, the CPSD matrix for each time frame i has the
form

Py (i) = L
(
p̃ (i) ããH + γ (i) I

)
LH , (35)

and the optimization problem in Eq. (34) can be cast as

argmin
p̃(i),ã,γ(i)

N∑
i=1

log |Py (i)|+ tr
(
P̂y (i)P

−1
y (i)

)
. (36)

Substituting Eq. (16) and Eq. (17) in Eq. (36) and omitting the
irrelevant constant terms, the cost function can be expressed
as

argmin
p̃(i),ã,γ(i)

N∑
i=1

log
[
(p̃ (i) + γ (i))

(
γ (i)

M−1
)]

+ tr
(
γ (i)

−1
P̂w (i)

)
− γ (i)

−2
p̃ (i)

1 + γ (i)
−1

p̃ (i)
ãHP̂w (i) ã,

(37)

where similar manipulations have been carried out as in
Eq. (18).

To estimate ã, we can focus on the last term of Eq. (37).
Hence, the estimation of ã is the solution of the following
optimization problem

argmax
ã

N∑
i=1

(
p̃ (i)

γ (i) + p̃ (i)

1

γ (i)
ãHP̂w (i) ã

)
, (38)

which is the principal eigenvector of the matrix
N∑
i=1

p̃ (i)

γ (i) + p̃ (i)

1

γ (i)
P̂w (i) . (39)

Note that unlike the estimation of ã in a single time frame
case where the estimate is the principal eigenvector of P̂w,
the estimate is now the principal eigenvector of a weighted
sum of the whitened CPSD matrices for all time frames and
the weights depend on the estimation of p̃ (i) and γ (i) for
i = 1, · · · , N . Therefore, a closed form solution to Eq. (38)
does not exist and we propose a recursive estimation approach.

For the first step, we estimate the parameters for each
time frame independently using the method proposed in Sec-
tion III-A. In this case, we will obtain N different estimates of
the RTF vector, say, ˆ̃a (i), which is the principal eigenvector
of L−1P̂y (i)L

−H per frame i. Given ˆ̃a (i) for a single frame
i, the estimates of p̃ (i) and γ (i) are obviously identical to
expressions in Eq. (23) and Eq. (24), that is,

ˆ̃p (i) =
Mλmax (i)− tr

(
P̂w (i)

)
M − 1

, (40)

γ̂ (i) =
tr
(
P̂w (i)

)
− λmax (i)

M − 1
, (41)

where λmax (i) is the principal eigenvalue of P̂w (i).
For the second step, we use the initial estimates of p̃ (i)

and γ (i) to calculate the matrix in Eq. (39) and then use
its principal eigenvector as the estimate of the RTF vector ˆ̃a.
Next, we use the estimated ˆ̃a in Eq. (37) and find new update
estimates of p̃ (i) and γ (i) based on the estimate ˆ̃a which was

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2022.3231706

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



6

found using the joint information across all time frames in a
segment. That is,

ˆ̃p (i) =
M ˆ̃a

H
P̂w (i) ˆ̃a− tr

(
P̂w (i)

)
M − 1

(42)

and

γ̂ (i) =
tr
(
P̂w (i)

)
− ˆ̃a

H
P̂w (i) ˆ̃a

M − 1
. (43)

Note that ˆ̃a
H
P̂w (i) ˆ̃a ≤ λmax (i) < tr

(
P̂w (i)

)
, hence

γ̂ (i) > 0. But ˆ̃p (i) in Eq. (42) can become negative. We
replace these negative values using the initial estimates from
Eq. (40) and store their corresponding time frame indices as
index set G, which will not be included when calculating the
weighted sum in Eq. (39) to estimate the RTF vector in the
next step.

In the remaining steps, we repeat the second step until the
relative change of ˆ̃a

H
P̂w (i) ˆ̃a between the current iteration

and the last iteration does not exceed a certain number ϵ, or
a certain number of iterations has been executed.

C. Robust parameter estimation

In [18], it has been shown that linear inequality constraints
on the parameters of interest can be used to improve the
robustness of the estimation. Herein, we introduce these con-
straints on the RTF, the PSD of source and the PSD of the late
reverberation. Note that, after obtaining estimates in each step
of our proposed method, we can project the estimates into the
constraint intervals introduced below. These constraints can
effectively avoid large underestimation or overestimation er-
rors and therefore can improve the robustness of our proposed
joint MLE for multiple time frames.

1) Constraints for the RTFs: Considering only the direct
path component, the anechoic acoustic transfer function (ATF)
has the following equation [34]

āi =
1

4πdi
exp

(
−j2πkdi

Kc

)
, (44)

where c denotes the sound speed, K is the FFT length and di is
the distance between the source and the ith microphone (di >
0). The RTF in the kth frequency bin is then given by (with
the first microphone selected as the reference microphone)

ai (k) =
d1
di

exp

(
−j2πk(di − d1)

Kc

)
. (45)

Using Eq. (45), for any frequency bin, a tight bound for both
the real and imaginary parts of ai is given by

−d1
di

≤ ℜ (ai) ,ℑ (ai) ≤
d1
di

. (46)

When not only the direct path component but also the early
reflections are considered, the RTF value might exceed the
tight bound above and we need to use a looser bound.
Observing d1 ≤ d1,i+di (d1,i is the distance between the first
microphone and the ith microphone) and assuming di ≥ dmax

(i.e. the distance between the source and each microphone is

not smaller than a given small value dmax), a looser bound for
RTFs is

−d1,i + dmax

dmax
≤ ℜ (ai) ,ℑ (ai) ≤

d1,i + dmax

dmax
. (47)

Note that after obtaining ˆ̃a at each step in our proposed
method, we first normalize it with its first element to estimate
the RTF vector â and then project the estimated RTF vector
into the interval

[
−d1,i+dmax

dmax
,
d1,i+dmax

dmax

]
. Finally, we calculate

the reparameterized vector using ˆ̃a = L−1â√
âHΓ−1â

.
2) Constraints for the source PSDs: In Eq. (9), using the

fact that a1 = 1 and Γ1,1 = 1, we have

Py1,1 (i) = p (i) + γ (i) . (48)

Hence, an upper bound for p (i), by using a prefixed constant
δ (with δ ≥ 1), is found as

p (i) ≤ δPy1,1 (i)− γ (i) , (49)

and the upper bound for the reparametrized parameter p̃ (i, k)
is

p̃ (i) ≤
[
δPy1,1 (i)− γ (i)

]
aHΓ−1a. (50)

3) Constraints for the late reverberation PSDs: As shown
in [18], the following constraints can be applied to ensure
better speech intelligibility performance by reducing overesti-
mation errors on the PSD of the late reverberation [3], [35]

γ ≤ min [diag (Py (i))] . (51)

Since Γm,m = 1 for m = 1, · · · ,M , we have

Pym,m (i) = p (i) amaHm + γ (i) , (52)

where p (i) amam
H is positive. Hence we have Pym,m (i) ≥

γ (i) for all m and Eq. (51) holds.

IV. EXPERIMENTS

In this section, we evaluate the estimation performance of
the proposed methods as well as the performance on noise
reduction, speech quality and speech intelligibility. We will
first introduce the reference methods in Section IV-A and the
evaluation metrics in Section IV-B. Then, in Section IV-C, we
consider a static source scenario and use the simulated room
impulse responses (RIRs) to construct the microphone signals.
At last, in Section IV-D, we consider both the static source
scenario and the source-moving scenario and use the RIRs
recorded in real life from [36].

A. Reference methods

1) Combination of existing methods: The first reference
method we consider utilizes several existing methods [2],
[13], [14] to estimate the PSD of the late reverberation, the
RTF vector and the PSD of the source successively. First,
by assuming a noiseless or high SNR scenario, we use the
eigenvalue decomposition-based method proposed in [2] to
estimate the PSD of the late reverberation. With this estimate,
we use the covariance whitening method in [14] to estimate
the RTF vector. Finally, we use the method proposed in [13]
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to estimate the PSD of the source. Note that although this
reference method is a combination of existing state-of-the-art
methods, this combination has the same estimation steps as
the joint MLE estimator for a single time frame presented
in Section III-A. Note also that this reference method only
considers using the CPSD matrix for a single time frame.
Therefore, when dealing with multiple time frames in one time
segment, we can either use it to estimate parameters for all
time frames independently or averaging the CPSD matrices
for all time frames in a time segment and use it to estimate
parameters with this averaged CPSD matrix. For convenience,
we refer to this first case as ‘Ref1’ and the second case as
‘Ref2’ in each figure.

2) Simultaneous confirmatory factor analysis: The recently
published method in [18] is also used for comparison in
all the experiments. This method is based on confirmatory
factor analysis (CFA) and non-orthogonal joint diagonalization
principles and, hence, is called the simultaneous confirmatory
factor analysis (SCFA) method. Note that the SCFA method
is very accurate and can estimate the RTF matrix, the PSDs
of the early components of the sources, the PSD of the late
reverberation, and the PSDs of the microphone-self noise
jointly, but, also has high computational complexity. With the
SCFA method, the parameters estimation problem is modelled
as the following optimization problem

p̂ (i) , â

γ̂ (i) , P̂v
= argmin

p (i) ,a
γ (i) ,Pv

N∑
i=1

log |Py (i)|+ tr
(
P̂y (i)P

−1
y (i)

)

s.t. Py (i) = Pe (i) +Pl (i) +Pv

(53)
where Pe (i), Pl (i) and Pv are defined in Eqs. (5), (6)
and (8), respectively. This problem is not a convex problem
and the computational complexity is high. In [18], the problem
is solved iteratively and the fmincon procedure in the standard
MATLAB optimization toolbox is used to decrease the value
of the cost function in Eq. (53) for each iteration. The iteration
terminates if a given estimation accuracy is achieved or the
iteration number exceeds a certain number.

Although the SCFA method can estimate the RTF matrix
and the PSDs jointly, it is computationally not efficient and
sometimes may have a wrong estimate because it deals with
a non-convex problem and does not assure a global optimal
solution. Therefore, a set of “box constraints” is proposed
in [18] to improve the robustness of the SCFA method. In
our experiments, we used the same constraints as in Eqs.
(27), (38), (39) and (40) in [18].

B. Evaluation metrics

In all the experiments, three types of performance compar-
ison between the proposed method and the reference methods
are presented. We first compare the estimation error of the
parameters of interest. For the RTF vector, we use the Her-
mitian angle measure (in rad) [37] which is averaged over all

frequency bins and time segments

Ea =

B∑
β=1

K/2+1∑
k=1

acos

(
|a(β,k)H â(β,k)|

∥a(β,k)∥2∥â(β,k)∥2

)
B (K/2 + 1)

. (54)

For the PSDs of the source and the late reverberation, we use
the averaged error (in dB)

Es =

10
B∑

β=1

N∑
i=1

K/2+1∑
k=1

∣∣∣log (p(i,k)
p̂(i,k)

)∣∣∣
BN (K/2 + 1)

(55)

and

Eγ =

10
B∑

β=1

N∑
i=1

K/2+1∑
k=1

∣∣∣log (γ(i,k)
γ̂(i,k)

)∣∣∣
BN (K/2 + 1)

, (56)

where |·| denotes taking the absolute value in Eqs. (54) to (56).
Then, we provide the speech intelligibility and quality

comparison among the estimated sources constructed using
parameters that are obtained by different methods. That is,
we use estimated parameters to calculate the following multi-
channel Wiener filter (MWF)

ŵ =
p̂

p̂+ ŵH
MVDRR̂nnŵMVDR

ŵMVDR, (57)

where wMVDR is the minimum variance distortionless re-
sponse (MVDR) beamformer [38]

ŵMVDR =
R̂−1

nn â

âHR̂−1
nn â

, (58)

and
R̂nn = γ̂Γ̂. (59)

Note that Γ̂ is calculated by Eq. (7) for all methods by assum-
ing the distance between each microphone pair is known. For
the SCFA method, we set R̂nn = γ̂Γ̂+ P̂v , since SCFA can
provide an estimate of the PSD of the microphone self noise.

After reconstructing the estimated sources, we use the seg-
mental signal-to-noise-ratio (SSNR) [39] to measure the noise
reduction performance. In addition, we compare the speech
intelligibility performance using the speech intelligibility in
bits (SIIB) measure [40], [41]. The speech-to-reverberation
modulation energy ratio (SRMR) measure [42] is also calcu-
lated in each scenario to demonstrate the speech quality and
intelligibility of all reconstructed sources.

Finally, we compare the computation time between our
proposed method and the reference methods.

C. Experiments with Simulated RIRs

1) Setup: To simulate room impulse responses from source
to microphones, we use the image source method [34]. The
four microphone signals are then constructed by convolving
the speech source (with a duration of 35 s) with each of the
four room impulse responses corresponding to each micro-
phone. The positions of four microphones and the position of
the source are shown in Fig. 2, and the dimensions of the
simulated room are set to 7 × 5 × 4 m. Since we used the
SCFA method as a reference method, the parameters used in
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Figure 2: Top view of the acoustic scene. The red circle
denotes the source. The cross in the center denotes the set
of microphones. A zoom-in of that set of four microphones is
provided in the little square.

the experiments are similar to those used in [18]. Subsequently,
microphone self-noise is simulated by adding realizations of
a zero-mean uncorrelated Gaussian process with variance σ2

v ,
such that the SNR per microphone due to the self-noise is
equal to the values as specified in each figure. Note that since
we consider only the microphone self-noise, the noise energy
is relatively low resulting in large SNR values of about 50
dB. The sampling frequency is fs = 16 kHz. Per sub-time
frame, the sampled noisy microphone signals are converted
to the frequency domain using the STFT procedure, where
the sub-time frames are windowed with a square-root Hann
window with a length of 512 samples (i.e. 32 ms) and an
overlap of 50% between sub-time frames. The true RTF is set
to the early reflections of the room impulse response, which
is set here as the 512-length FFT of the first 512 samples of
the room impulse responses, as this equals the early part (first
32 ms) of the impulse response that falls within a single sub-
frame. Each time frame consists of Ns = 40 overlapped sub
frames. The prefixed parameters are δ = 1.1 and dmax = 0.02
(i.e. the distance between each microphone and the source is
larger than 0.02 m).

2) Results: In Fig. 3, we fix the reverberation time T60 at
1 s and obtain noisy speech with the SNR fixed at 50 dB. We
change the number of time frames in a time segment from 1 to
8. The CPSD matrix of the microphone self noise is subtracted
from the noisy CPSD matrix for JMLE, Ref1 and Ref2 in
this scenario. The performance comparison among JMLE and
the other three reference methods is shown in Fig. 3 as the
number of time frames used in each time segment changes
from 1 to 8. When using only one time frame, JMLE, Ref1
and Ref2 have exactly the same estimates of the RTF and the
PSDs of the source and the late reverberation as expected and
their estimation performance is better than SCFA. When the
number of time frames in a time segment increases, the RTF
estimation performance for Ref1 nearly does not change since
this method always uses each time frame independently and
does not use the prior information that the RTF is constant
for all time frames in a time segment. However, for JMLE,
SCFA and Ref2, the estimation error of the RTF decreases
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Figure 3: Performance vs the number of time frames.

with the increase of the number of time frames in a time
segment. For a larger number of time frames, i.e. a longer
segment, among these three methods, JMLE and SCFA have
similar performance, and both notably outperform Ref2. The
PSD estimation performance for JMLE, SCFA and Ref1 does
not change much since the PSDs can differ time-frame by
time-frame. However, the PSD estimation performance for
Ref2 decreases when the number of time frames increases
because Ref2 assumes the source is stationary during a time
segment, which is mostly not true in a practical scene. For
the noise reduction performance and the speech quality and
intelligibility performance, we can see that JMLE and SCFA
have larger SSNR, SIIB and SRMR values compared to the
other two reference methods in most cases.

D. Experiments with Recorded RIRs

The performance of all methods is now compared using
recorded room impulse responses from [36]. The reverberation
time of the RIRs include 0.36 s and 0.61 s. The positions of the
microphones and the position of the source used to record the
impulse responses are shown in Fig. 4. The source is placed
at a distance of 2 m from the center of the uniform linear
microphone array which has inter-distances of 8 cm. Although
the angles of the source include {−90◦,−75◦, · · · , 90◦} in
[36], we use only {0◦, 15◦, 30◦, 45◦, 60◦} in this work. We
will first consider a static source scenario and evaluate the
performance for various SNR values. Then, we will show the
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influence on the estimation performance of all methods when
the source position changes at specific moments.

2 m

90
◦

45
◦

0
◦

-45
◦

-90
◦

Figure 4: Setup for the real RIRs.
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Figure 5: Performance vs SNR.

1) Static source: For the static source scenario, we use the
RIRs for the source position fixed at 0◦ and the reverberation
time of 0.61 s. We obtain noisy speech with the SNR simulat-
ing the microphone self noise ranging from 10 dB to 50 dB.
Notice that realistic values for microphone self noise are in
the order of 40 to 50 dB. Each time segment contains 8 time
frames. Note that in this scenario, the prior information of the
microphone self noise is used by none of the methods and for
JMLE, Ref1 and Ref2, we simply ignore the microphone self
noise and use the CPSD matrix of the noisy signal directly.

The performance comparison among JMLE and the other
three reference methods is shown in Fig. 5 as the SNR
increases from 10 dB to 50 dB. As shown in Fig. 5, JMLE
and SCFA outperform Ref1 in the RTF estimation performance

and outperform Ref2 in the PSDs estimation performance (of
the source and the late reverberation). As the SNR becomes
larger, all methods have both better RTF and PSD estimation
performance. However, JMLE shows the most significant
improvement compared to the other methods. For the noise
reduction performance and the speech quality and intelligibil-
ity performance, JMLE and SCFA still outperform the other
two reference methods.

TABLE I: Computation time comparison.

method SCFA JMLE Ref1 Ref2
Normalized run time 1310 19 6 1

In Table I we show the normalized computation time com-
parison among all methods, where we have averaged the run
time over all cases for each method. As expected, SCFA needs
significantly more time compared to the other three methods.
The computational cost of the proposed method using multiple
time frames mainly comes from the calculation of the eigen-
value decomposition of an M × M matrix in each iteration,
which has a complexity of order M3. The total complexity
order is thus (N+Ni)M

3 with one initial step and Ni iterative
steps. Similarly, for Ref1, its complexity order is NM3 with
N the number of time frames in a time segment. For Ref2, its
complexity order is M3. Therefore, the time cost ratio among
JMLE, Ref1 and Ref2 is Ni +N : N : 1 = 18 : 8 : 1, which
is similar to the real averaged run time ratio in Table I. Note
that the proposed method using multiple time frames can be
initialized by either Ref1 or Ref2. In this work, we present
only using Ref1 as the initialization step. If the Ref2 is used
as the initialization, the complexity order of JMLE will be
(Ni + 1)M3.

2) Moving source: For the moving source scenario, we
place the source at 0◦ and change the position to 60◦ in steps
of 15◦ every 7 s. Since each time frame contains 40 sub-
time frames of 32 ms taken with 50% overlap and each time
segment contains 8 time frames, the time segment duration
is about 5.12 s. The 35 s speech is divided into 6 complete
time segments (the last incomplete time segment is not used).
Only the microphone signals during the first and the fourth
time segments are received from a single source position.
In all other segments, the source position changes during
the segment. We evaluate the estimation performance of all
methods for per time segment.

In Fig. 6, the reverberation time is 0.36 s. For comparison,
we show the estimation performance of all methods when
the source position is fixed at 0◦ in Figs. 6a, 6c and 6e.
As shown, the estimation performance of all methods does
not change much for different time segments, except the
poor PSDs estimation performance of the Ref2 method. In
Figs. 6b, 6d and 6f, we show the estimation performance
of all methods when the source position is moved from 0◦

to 60◦ by 15◦ every 7 s. The vertical dashed lines in these
figures denote the time point when the source position is
changed. As shown, the estimation performance during the
first and the fourth time segments is best among others for the
methods using multi-time frames in their estimation as during
these time segments, the source position is fixed while during

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2022.3231706

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



10

5 10 15 20 25 30

TS

0.1

0.2

0.3

0.4

0.5

0.6

SCFA

JMLE

Ref1

Ref2

(a)

5 10 15 20 25 30

TS

0.1

0.2

0.3

0.4

0.5

0.6

SCFA

JMLE

Ref1

Ref2

(b)

5 10 15 20 25 30

TS

0

2

4

6

8

10

12

SCFA

JMLE

Ref1

Ref2

(c)

5 10 15 20 25 30

TS

0

2

4

6

8

10

12

SCFA

JMLE

Ref1

Ref2

(d)

5 10 15 20 25 30

TS

0

2

4

6

8

10

12

SCFA

JMLE

Ref1

Ref2

(e)

5 10 15 20 25 30

TS

0

2

4

6

8

10

12

SCFA

JMLE

Ref1

Ref2

(f)

Figure 6: Performance vs time segments (TS) with the rever-
beration time 0.36 s.

other time segments the source position is changed. The RTF
estimation performance is influenced the most while the late
reverberation PSD estimation performance is influenced the
least by source position change. The reason is that the RTF
contains information on the source position, while the late
reverberation can be considered as a diffuse noise field. For
the Ref1 method, its estimation performance is not affected
much since it estimates the parameters frame by frame instead
of segment by segment and only four time frames are affected
by source position change.

V. CONCLUDING REMARKS

We considered the problem of estimating the RTFs, the
PSDs of the source and the PSDs of the late reverberation
jointly for a single source scenario. We first proposed a joint
maximum likelihood estimator (JMLE) using a single time
frame, which has a closed form solution and can be solved
efficiently. Then, we proposed a joint MLE using multiple
time frames that share the same RTF and achieved similar
estimation accuracy, together with the performance of noise
reduction, speech quality and speech intelligibility, compared
to the SCFA method, which both outperform the other ref-
erence methods combining several existing state-of-the-art
methods. Moreover, it is also shown that the proposed JMLE
for multiple time frames has a much lower computational
complexity than that of the SCFA method.

To constrain the scope of this work, the focus of this
work was on a single source in a reverberant environment.
Understanding the single source scenario in future work, we
will extend this work in combination with recent results [19]
towards the multi-source formulation.
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